Combinatorics and Graph Theory

   

Enumeration of Self-Avoiding Walks in a Lattice

Authors: Tom Harvey

A self-avoiding walk (SAW) is a path on a lattice that does not pass through the same point more than once. We develop a method for enumerating self-avoiding walks in a lattice by decomposing them into smaller pieces called tiles, solving particular cases on the square, triangular and cubic lattices. We also show that enumeration of SAWs in a lattice is related to enumeration of edge-connected shapes, for example polyominoes.

Comments: 12 Pages.

Download: PDF

Submission history

[v1] 2013-05-06 20:09:16

Unique-IP document downloads: 118 times

Articles available on viXra.org are pre-prints that may not yet have been verified by peer-review and should therefore be treated as preliminary and speculative. Nothing stated should be treated as sound unless confirmed and endorsed by a concensus of independent qualified experts. In particular anything that appears to include financial or legal information or proposed medical treatments should not be taken as such. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus