Thermodynamics and Energy


The Little Heat Engine: Heat Transfer in Solids, Liquids and Gases

Authors: Pierre-Marie Robitaille

In this work, an introductory exposition of the laws of thermodynamics and radiative heat transfer is presented while exploring the concepts of the ideal solid, the lattice, and the vibrational, translational, and rotational degrees of freedom. Analysis of heat transfer in this manner helps scientists to recognize that the laws of thermal radiation are strictly applicable only to the ideal solid. On the Earth, such a solid is best represented by either graphite or soot. Indeed, certain forms of graphite can approach perfect absorption over a relatively large frequency range. Nonetheless, in dealing with heat, solids will eventually sublime or melt. Similarly, liquids will give way to the gas phase. That thermal conductivity eventually decreases in the solid signals an inability to further dissipate heat and the coming breakdown of Planck’s law. Ultimately, this breakdown is reflected in the thermal emission of gases. Interestingly, total gaseous emissivity can decrease with increasing temperature. Consequently, neither solids, liquids, or gases can maintain the behavior predicted by the laws of thermal emission. Since the laws of thermal emission are, in fact, not universal, the extension of these principles to non-solids constitutes a serious overextension of the work of Kirchhoff, Wien, Stefan and Planck.

Comments: 9 Pages. First Published in: Progress in Physics, 2007, v. 4, 25-33.

Download: PDF

Submission history

[v1] 2013-10-15 06:56:51

Unique-IP document downloads: 237 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus