Astrophysics

   

Direct Orbital Dynamics: Using Independent Orbital Terms to Treat Bodies as Orbiting Each Other Directly While in Motion

Authors: Daniel S. Orton

Abstract: There are many longstanding problems associated with orbital systems at all scales. Direct Orbital Dynamics applies a set of independent orbital terms to the Newtonian orbital equations, in place of the standard combined orbital terms. This results in a number of surprisingly successful applications. The standard orbital equations treat the bodies in a two-body system as orbiting their mass center point at the combined orbital period. These orbital terms are all combined terms containing the influence of both bodies. The direct orbital system treats each body as orbiting the other body directly at the full radius distance, with each body also orbiting the other at its own natural, independent orbital period (which is a portion of the combined period). The orbital velocity of each body is now based solely on the mass and radius distance of the body being orbited. It is no longer affected by the mass of the orbiting body, as in the standard system, because the effects of the combined orbital terms are removed from the calculations. The orbital equations remain balanced when using the terms of the direct orbital system frame of reference, with some additional equations balancing. The direct orbital set of equations initially treats the bodies as orbiting each other independently rather than as a combined system. The two bodies are treated as being the orbital center points of each other. However, these two orbital center points are also in motion and are constantly altering the orbital direction of the two bodies. The orbiting bodies must therefore be treated as responding to both the gravitational acceleration and the physical motion of each other. This additional motion factor of the orbital center points is then applied to the direct orbital system. This results in the same mass and velocity to the fourth power relationship found in the excessive orbital velocities and flat rotation curves of disk galaxies, as seen in the Baryonic Tully Fisher Relation (M∝V4). These excessive velocities are thought to be caused by either halos of dark matter, or by a change in gravitation at low accelerations (MOND). Direct Orbital Dynamics is shown to be the source of this fourth power radial force law. This same mass-velocity relationship of galaxies is found to also exist in smaller orbiting systems within the high acceleration Newtonian regime. The direct orbital system goes on to provide successful application to well known orbital problems. Keywords: cosmology: dark matter – galaxies: kinematics and dynamics – galaxies: structure – planets and satellites: dynamical evolution and stability – gravitation

Comments: 29 Pages.

Download: PDF

Submission history

[v1] 2015-07-14 02:38:40

Unique-IP document downloads: 93 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus