Condensed Matter


London-Proca-Hirsch Equations for Electrodynamics of Superconductors on Cantor Sets

Authors: Victor Christianto

In a recent paper published at Advances in High Energy Physics (AHEP) journal, Yang Zhao et al. derived Maxwell equations on Cantor sets from the local fractional vector calculus. It can be shown that Maxwell equations on Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. However, so far there is no derivation of equations for electrodynamics of superconductor on Cantor sets. Therefore, in this paper I present for the first time a derivation of London-Proca-Hirsch equations on Cantor sets. The name of London-Proca-Hirsch is proposed because the equations were based on modifying Proca and London-Hirsch’s theory of electrodynamics of superconductor. Considering that Proca equations may be used to explain electromagnetic effects in superconductor, I suggest that the proposed London-Proca-Hirsch equations on Cantor sets can describe electromagnetic of fractal superconductors. It is hoped that this paper may stimulate further investigations and experiments in particular for fractal superconductor. It may be expected to have some impact to fractal cosmology modeling too.

Comments: 11 Pages. This paper has been submitted to Prespacetime Journal for review. Your comments are welcome

Download: PDF

Submission history

[v1] 2015-08-17 06:01:13

Unique-IP document downloads: 104 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus