Condensed Matter


Defining Temperatures of Granular Powders Analogously with Thermodynamics to Understand the Jamming Phenomena

Authors: Tian Hao

For the purpose of applying laws or principles originated from thermal systems to granular athermal systems, we may need to properly define the critical “temperature” concept in granular powders. The conventional environmental temperature in thermal systems is too weak to drive movements of particles in granular powders and cannot function as a thermal energy indicator. For maintaining the same functionality as in thermal systems, the temperature in granular powders is defined analogously and uniformly in this article. The newly defined granular temperature is utilized to describe and explain one of the most important phenomena observed in granular powders, the jamming transition, by introducing jamming temperature and jamming volume fraction concepts. The predictions from the equations of the jamming volume fractions for several cases like granular powders under shear or vibration are in line with experimental observations and empirical solutions in powder handlings. The goal of this article is to establish similar concepts in granular powders, allowing granular powders to be described with common laws or principles we are familiar with in thermal systems. Our intention is to build a bridge between thermal systems and granular powders to account for many similarities already found between these two systems.

Comments: 34 Pages.

Download: PDF

Submission history

[v1] 2015-08-21 18:27:50
[v2] 2015-08-22 09:25:23
[v3] 2016-08-01 23:55:08

Unique-IP document downloads: 118 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus