Storage Stability of Biofuel

Authors: H.H. Masjuki, M. Varman, M.Y. Cheah, Y.H. Cheng, M.A. Kalam, A.M. Liaquat, M. Shahabuddin, M. Mofijur

Biofuel is one of the prime candidates to take over the role played by fossil fuel as the main source of energy in the future. Numerous studies have been done on the potential of biofuel to produce similar power output generated by the current petrol and diesel which are depleting without any drawbacks. The objective of this particular study is to investigate 4 of the more established vegetable oil in the energy industry namely jatropha, palm, coconut and canola oil in terms of storage stability of biofuel at room temperature and 80ºC. The biofuels were tested in terms of density, kinematic viscosity, Total Acid Number (TAN), flash point and oxidation stability every 2 weeks for 10-12 weeks or 3 months at 2 different temperatures to obtain a conspicuous result. At the end of the experiment and test, it is found that palm oil is the biofuel with the best storage stability. The next biofuel that followed is jatropha oil, canola oil and finally coconut oil. Although palm oil showed poor kinematic viscosity, however it has good stability in terms of density, Total Acid Number (TAN) and also relatively stable oxidation and flash point in comparison with the 4 samples tested. The experiment result and data also showed that effect of continuous heating at 80ºC promotes oxidation process, higher Total Acid Number (TAN), lower flash point as well as increase in density and kinematic viscosity. Next, experimental investigations were carried out to evaluate the storage stabilities of various biodiesel fuels. The biodiesel fuels were palm methyl ester (PME), jatropha methyl ester (JME), coconut methyl ester (COME), 20% blends of PME with diesel fuel and 20% blends of JME with diesel fuel. The ordinary diesel fuel was used for comparison purposes. The biodiesel were tested in terms of density, kinematic viscosity, Total Acid Number (TAN), flash point and oxidation stability every week for 3 months. The results show that almost all fuel samples met the standard specifications regarding oxidation stability. The trends for density, viscosity and TAN increased due to oxidation. For the flash point, the trend also decreased, but the rate was very low. In overall consideration, among the biodiesel, COME was found to be better with respect to storage stabilities. The results of this investigation will be used for sustainable development of biodiesel fuel from various feedstocks

Comments: 13 pages. Paper presented at 2012 International Symposium on Energy Technology and Strategy, Tainan, Taiwan.

Download: PDF

Submission history

[v1] 2016-02-16 02:53:25

Unique-IP document downloads: 62 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus