Condensed Matter


Dynamic Stimulation of Superconductivity with Resonant Terahertz Ultrasonic Waves

Authors: Alan M. Kadin, Steven B. Kaplan

An experiment is proposed to stimulate a superconducting thin film with terahertz (THz) acoustic waves, which is a regime not previously tested. For a thin film on a piezoelectric substrate, this can be achieved by coupling the substrate to a tunable coherent THz electromagnetic source. Suggested materials for initial tests are a niobium film on a quartz substrate, with a BSCCO intrinsic Josephson junction (IJJ) stack. This will create acoustic standing waves on the nm scale in the thin film. A properly tuned standing wave will enable electron diffraction across the Fermi surface, leading to electron localization perpendicular to the substrate. This is expected to reduce the effective dimensionality, and enhance the tendency for superconducting order parallel to the substrate, even well above the superconducting critical temperature. This enhancement can be observed by measuring the in-plane critical current and the perpendicular tunneling gap. A similar experiment may be carried out for a cuprate thin film, although the conduction electrons might be more responsive to spin waves than to acoustic waves. These experiments address a novel regime of large momentum transfer to the electrons, which should be quite distinct from the more traditional regime of large energy transfer obtained from direct electromagnetic stimulation. The experiments are also motivated in part by novel theories of the superconducting state involving dynamic charge-density waves and spin-density waves. Potential device applications are discussed.

Comments: 5 Pages. Submitted to Applied Superconductivity Conference, Denver, Colorado, USA, Sept. 2016

Download: PDF

Submission history

[v1] 2016-08-28 10:36:21

Unique-IP document downloads: 47 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus