Quantum Physics

   

Quantum Rayleigh Criterion

Authors: George Rajna

A team of researchers with the National University of Singapore has found a way to get around what they describe as 'Rayleigh's curse'—a phenomenon that happens when two light sources appear to coalesce as they grow closer together, limiting the ability to measure the distance between them. In their paper published in the journal Physical Review Letters, the team describes how they applied a quantum mechanics technique to solve the problem. [14] Quantum mechanics wreaks even more havoc with conventional ideas of causality than some have suspected – according to a team of researchers based in Australia, with collaborators in Scotland and Germany. They have shown that even allowing causality to be nonlocal – so that an event in one place can have an influence on another, distant place – is not enough to explain how quantum objects behave. [13] A research team led by a Heriot-Watt scientist has shown that the universe is even weirder than had previously been thought. Quantum correlations do not imply instant causation. [12] Quantum systems are extremely hard to analyze if they consist of more than just a few parts. It is not difficult to calculate a single hydrogen atom, but in order to describe an atom cloud of several thousand atoms, it is usually necessary to use rough approximations. The reason for this is that quantum particles are connected to each other and cannot be described separately. [11] Quantum coherence and quantum entanglement are two landmark features of quantum physics, and now physicists have demonstrated that the two phenomena are "operationally equivalent"—that is, equivalent for all practical purposes, though still conceptually distinct. This finding allows physicists to apply decades of research on entanglement to the more fundamental but less-well-researched concept of coherence, offering the possibility of advancing a wide range of quantum technologies. [10] The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the relativistic quantum theory. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter.

Comments: 23 Pages.

Download: PDF

Submission history

[v1] 2016-09-06 09:29:09

Unique-IP document downloads: 193 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus