Astrophysics

   

FRB 150418 Confirms Predictions Made by New Tired Light

Authors: Lyndon Ashmore

For the first time, in April 2015, both the Dispersion Measure (DM) of a fast radio burst, FRB 150418, and the redshift of the host galaxy were measured. This gave the opportunity to test the New Tired Light Theory and its predictions. DM in mainstream physics is found from the time delay between the arrival of different frequencies from a short, sharp cosmological source (FRB or pulsar). DM is related to the mean free electron density along the path, n, and the distance from source to observer, d, by the formula DM=nd. New Tired Light (NTL) is an alternative cosmological theory to the Big Bang. In NTL the universe is static and redshifts are caused by photons of light interacting with the electrons in the plasma of the intergalactic medium (IGM). Energy is transferred from the photon to the recoiling electron on absorption and re-emission resulting in a reduction in frequency of the photon and an increase in the wavelength. The redshift distance relation is z=exp(Hd⁄c) -1 where c is the speed of light and H the Hubble constant. In NTL the Hubble constant is derived in terms of, n, the plank constant, h,and m and r the rest mass and classical radius of the electron giving H=(2nhr⁄m). Making, d, the subject of both equations from DM and NTL gives us the SI equation DM=(mc⁄2hr)LN(1+z). Substituting the measured redshift, z, and values for m,c,h and r as well as converting from SI units to those used in radio astronomy (pc cm^-3 ) gives a predicted DM of DM=949 pc cm^-3. This compares well with the observed DM of FRB 150418 of 776.2 pc cm -3 – a difference of just 22%. It is noted that a DM is produced for all electron number densities whilst in NTL redshifts only occur in the sparsely populated plasma of the IGM since in dense plasma, strong electromagnetic forces reduce or even prevent the electrons from recoiling. Consequently it is possible to have a DM but no redshift if the plasma density is too high. It is possible that denser plasma along the path may have resulted in the predicted DM being a little higher than the measured one - though the agreement is close and gives strong support to NTL.

Comments: 4 Pages.

Download: PDF

Submission history

[v1] 2016-10-31 12:53:01

Unique-IP document downloads: 30 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus