Condensed Matter

   

Dynamic Facilitation Theory

Authors: George Rajna

Multiple theoretical models have been developed to explain the relaxation dynamics of materials that form glasses. One such model is the dynamic facilitation theory, which predicts that the dynamics of systems are heterogeneous and relaxation displays parabolic behavior. [24] A glass is a curious material in between liquid and solid states of matter, but eventually glass always yields to its solid proclivity by settling into the ordered patterns of a crystal. Or so it was thought. [23] A new technique developed by MIT researchers reveals the inner details of photonic crystals, synthetic materials whose exotic optical properties are the subject of widespread research. [22] In experiments at SLAC, intense laser light (red) shining through a magnesium oxide crystal excited the outermost " valence " electrons of oxygen atoms deep inside it. [21] LCLS works like an extraordinary strobe light: Its ultrabright X-rays take snapshots of materials with atomic resolution and capture motions as fast as a few femtoseconds, or millionths of a billionth of a second. For comparison, one femtosecond is to a second what seven minutes is to the age of the universe. [20] A 'nonlinear' effect that seemingly turns materials transparent is seen for the first time in X-rays at SLAC's LCLS. [19] Leiden physicists have manipulated light with large artificial atoms, so-called quantum dots. Before, this has only been accomplished with actual atoms. It is an important step toward light-based quantum technology. [18] In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom-for this reason, such electron prisons are often called "artificial atoms". [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16] Optical quantum technologies are based on the interactions of atoms and photons at the single-particle level, and so require sources of single photons that are highly indistinguishable – that is, as identical as possible.

Comments: 39 Pages.

Download: PDF

Submission history

[v1] 2016-12-07 10:49:28

Unique-IP document downloads: 6 times

Articles available on viXra.org are pre-prints that may not yet have been verified by peer-review and should therefore be treated as preliminary and speculative. Nothing stated should be treated as sound unless confirmed and endorsed by a concensus of independent qualified experts. In particular anything that appears to include financial or legal information or proposed medical treatments should not be taken as such. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus