Biochemistry

   

Impact of Biofield Energy Treated Herbomineral Formulation (The Trivedi Effect®) on Mouse Dendritic and Splenocyte Cells for Modulation of Pro-inflammatory Cytokines

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Aileen Carol Lee, Aksana Hancharuk, Carola Marina Sand, Debra Jane Schnitzer, Rudina Thanasi, Eileen Mary Meagher, Faith Ann Pyka, Gary Richard Gerber, Johanna Catharina Stromsnas, Judith Marian Shapiro, Laura Nelson Streicher, Lorraine Marie Hachfeld, Matthew Charles Hornung, Patricia M. Rowe, Sally Jean Henderson, Sheila Maureen Benson, Shirley Theresa Holmlund, Stephen P. Salters, Mayank Gangwar, Snehasis Jana

The use of herbomineral formulation in the healthcare sector for different chronic diseases is gaining popularity due to its fewer side effects, high safety profile, and cost effectiveness. A new proprietary herbomineral formulation was formulated, consisting of four essential ingredients viz. herbal root extract (ashwagandha), and minerals (zinc, magnesium, and selenium). The study aims to evaluate the in vitro effect of Biofield Energy Healing (The Trivedi Effect®) on the test formulation using murine dendritic (DCs) and splenocyte cells. The herbomineral formulation was divided into two parts; one was represented as control, while the other part was treated with the Biofield Energy Healing Treatment remotely by eighteen renowned Biofield Energy Healers (The Trivedi Effect®) and defined as the Biofield Treated formulation. The effect of the test formulation on these cells were monitored by an estimation of pro-inflammatory cytokines level such as tumor necrosis factor (TNF-α), macrophage inflammatory protein (MIP-1α), and interleukin (IL-1β) in cell culture supernatants at the non-cytotoxic concentrations of the test formulation using MTT assay. The DCs were treated with the Biofield Energy Treated test formulation at different concentrations (i.e. 1.05 to 1052.5 µg/mL) for 24 hours, and the results showed significant (p≤0.001) suppression of TNF-α levels at all the tested concentrations with a maximum percentage decrease by 43.64% at 5.2 µg/mL concentration in the Biofield Treated formulation as compared with the untreated test formulation. Further, the Biofield Treated formulation also demonstrated inhibition of MIP-1α and IL-1β at a concentration range of 0.0000105 to 10.5 µg/mL in LPS stimulated splenocyte cells. There was a significant (p≤0.001) inhibition of MIP-1α (26.52%) and IL-1β (35.28%) in the Biofield Treated test formulation at concentration 0.000105 µg/mL and 0.0000105 µg/mL, respectively in comparison to the untreated test formulation. Overall, these results suggest that the Biofield Energy Healing based herbomineral formulation (The Trivedi Effect®) significantly down-regulated the tested cytokines expression in DCs and splenocyte cells as compared to the untreated formulation. Therefore, the Biofield Healing based formulation might be useful as a better anti-inflammatory product for many chronic and acute inflammatory disease conditions and autoimmune disorders. The Biofield Energy Treatment based formulation can also be effectively applied in cases of organ transplants, stress management and anti-aging by improving overall health.

Comments: 11 Pages.

Download: PDF

Submission history

[v1] 2016-12-17 04:05:44

Unique-IP document downloads: 10 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus