Quantum Gravity and String Theory

   

General Relativity Incorrectly Describes the Expansion of the Universe

Authors: Sylwester Kornowski

Here, applying the Scale-Symmetric Theory (SST), we derived formula that converts the SST spatial distance to the SST light travel time that for redshift up to 0.6415 is about 14 - 17% longer than the General Relativity (GR) light travel time. It causes that the Type Ia supernovae are fainter than they should be - it leads to an illusion of acceleration of the expansion of the Universe about 6 - 7 Gyr ago. SST shows that in reality, to describe correctly the expansion of the Universe, we must take into account the initial conditions for the expansion, the mechanisms of creation of photons and the quantum entanglement of photons in pairs of them. We showed that there is a stepwise change in the light travel time for redshift about 0.64 - it suggests that there is not a smooth transition from the near Universe to distant Universe - it is inconsistent with GR. The GR formula correctly describes galaxies in the same spatial distance moving with different recessional velocities i.e. concerns the distant Universe.

Comments: 3 Pages.

Download: PDF

Submission history

[v1] 2017-01-25 17:22:50

Unique-IP document downloads: 14 times

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus