Classical Physics


A Theoretical Study of Oam Light Beams Under Gravity

Authors: Calin Vasilescu

Here I study the behaviour of internal orbital angular momentum OAM light beams in a gravitational field. According to this study, such a beam will behave like a particle with rest mass, therefore the wavefront will slow down if the beam is pointed against the gravitational field and it will accelerate if pointed in the same direction as the gravitational field. This study is conducted in a classical context, intentionally ignoring Lorentz factors. However, the relativistic effects associated with these helical structures will emerge naturally. The paper will focus on a single relativistic phenomenon – naturally occurring velocity limitation of a spin ½ particle concept which poses a rest mass. However, this rest mass is also a redefined concept. It is interesting that if a beam is pointed against a gravitational field, the step length of the helical structure reduces which acts on increasing the detected frequency of the incoming beam (considering a stationary detector above the source and the gravitational filed direction pointing downward), but since the speed of the wavefront reduces, it acts as a reducing factor for the frequency that the detector will read. In other words, although the wavelength of the beam reduces as the wave-front advances, the speed of the wavefront reduces as well, resulting in a decreasing frequency. When the front-wave velocity tends to zero, this frequency tends to a positive number. It is clear that if the wavefront speed reduces under a gravitational field, it will eventually stop and reverse the direction, falling towards the source of the field. This behaviour is similar to a particle with rest mass. However, if photons don't have mass, then, my suggestion is that particles are helical structures that have similar construction to OAM |m| = 1 and therefore, we could say they don't have mass either.

Comments: 10 Pages.

Download: PDF

Submission history

[v1] 2017-02-07 03:09:04
[v2] 2017-02-07 07:43:45

Unique-IP document downloads: 79 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus