Condensed Matter

   

Quantum State in Insulating Materials

Authors: George Rajna

Researchers from Brown University have shown experimentally how a unique form of magnetism arises in an odd class of materials called Mott insulators. [17] Physicists from the Faculty of Physics at the University of Warsaw have developed a holographic atomic memory device capable of generating single photons on demand in groups of several dozen or more. The device, successfully demonstrated in practice, overcomes one of the fundamental obstacles towards the construction of a quantum computer. [16] Random number generators are crucial to the encryption that protects our privacy and security when engaging in digital transactions such as buying products online or withdrawing cash from an ATM. For the first time, engineers have developed a fast random number generator based on a quantum mechanical process that could deliver the world's most secure encryption keys in a package tiny enough to use in a mobile device. [15] Researchers at the University of Rochester have moved beyond the theoretical in demonstrating that an unbreakable encrypted message can be sent with a key that's far shorter than the message—the first time that has ever been done. [14] Quantum physicists have long thought it possible to send a perfectly secure message using a key that is shorter than the message itself. Now they've done it. [13] What once took months by some of the world's leading scientists can now be done in seconds by undergraduate students thanks to software developed at the University of Waterloo's Institute for Quantum Computing, paving the way for fast, secure quantum communication. [12] The artificial intelligence system's ability to set itself up quickly every morning and compensate for any overnight fluctuations would make this fragile technology much more useful for field measurements, said co-lead researcher Dr Michael Hush from UNSW ADFA. [11] Quantum physicist Mario Krenn and his colleagues in the group of Anton Zeilinger from the Faculty of Physics at the University of Vienna and the Austrian Academy of Sciences have developed an algorithm which designs new useful quantum experiments. As the computer does not rely on human intuition, it finds novel unfamiliar solutions. [10]

Comments: 28 Pages.

Download: PDF

Submission history

[v1] 2017-02-09 11:23:15

Unique-IP document downloads: 13 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus