Quantum Gravity and String Theory

   

The Internal Structure of the Intermediate-Mass Black Hole in the Centre of the Globular Cluster 47 Tucanae

Authors: Sylwester Kornowski

B. Kiziltan et al. (9 February 2017) showed that pulsars in 47 Tuc imply a central black hole (BH) with a mass of about 2,200 solar masses (the upper limit is 3,700 solar masses whereas the lower limit is 1,400). Predictive power correlates with number of observed pulsars. The inference flattens with decreasing number of randomly selected pulsars. Here, applying the Scale-Symmetric Theory (SST), we suggest that the BH consists of 16 neutron black holes (NBH) entangled with 16 pulsars. With time, the set of 16 pulsars changes its constituents. SST shows that then mass of the central BH should be 2,536 solar masses. To such mass lead as well the observational data for 16 randomly selected pulsars. More precise observational data should show whether predicted within SST the exact mass of the central BH is correct.

Comments: 2 Pages.

Download: PDF

Submission history

[v1] 2017-02-14 09:21:47

Unique-IP document downloads: 19 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus