Condensed Matter


Green Function Theory of Strongly Correlated Electron Systems

Authors: Tao Sun

A novel effective Hamiltonian in the subspace of singly occupied states is obtained by applying the Gutzwiller projection approach to a generalized Hubbard model with the interactions between two nearest-neighbor sites. This model provides a more complete description of the physics of strongly correlated electron systems. The system is not necessarily in a ferromagnetic state as temperature T->0 at any doping level. The system, however, must be in an antiferromagnetic state at the origin of the doping-temperature plane. Moreover, the model exhibits superconductivity in a doped region at sufficiently low temperatures. We summarize the studies and provide a phase diagram of the antiferromagnetism and the superconductivity of the model in the doping-temperature plane here. Details will be presented in subsequent papers.

Comments: 21 Pages.

Download: PDF

Submission history

[v1] 2017-03-02 19:56:35

Unique-IP document downloads: 52 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus