Geometry

   

Iterative Computation of Moment Forms for Subdivision Surfaces

Authors: Jan Hakenberg, Ulrich Reif

The derivation of multilinear forms used to compute the moments of sets bounded by subdivision surfaces requires solving a number of systems of linear equations. As the support of the subdivision mask or the degree of the moment grows, the corresponding linear system becomes intractable to construct, let alone to solve by Gaussian elimination. In the paper, we argue that the power iteration and the geometric series are feasible methods to approximate the multilinear forms. The tensor iterations investigated in this work are shown to converge at favorable rates, achieve arbitrary numerical accuracy, and have a small memory footprint. In particular, our approach makes it possible to compute the volume, centroid, and inertia of spatial domains bounded by Catmull-Clark and Loop subdivision surfaces.

Comments: 5 Pages.

Download: PDF

Submission history

[v1] 2017-03-28 08:30:43

Unique-IP document downloads: 15 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus