Quantum Physics

   

Quantum Cryptography, Quantum Communication, and Quantum Computer in a Noisy Environment

Authors: Koji Nagata, Tadao Nakamura

First, we study several information theories based on quantum computing in a desirable noiseless situation. (1) We present quantum key distribution based on Deutsch's algorithm using an entangled state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum communication including an error correction. Finally, we discuss the main result. We study the Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless function. Here we consider the case that the function has an environmental noise. We introduce a noise term into the function $f(x)$. So we have another noisy function $g(x)$. The relation between them is $ g(x)=f(x)\pm O(\epsilon). $ Here $O(\epsilon)\ll 1$ is the noise term. The goal is to determine the noisy function $g(x)$ with a success probability. The algorithm overcomes classical counterpart by a factor of $N$ in a noisy environment.

Comments: 9 Pages. International Journal of Theoretical Physics, (2017), DOI 10.1007/s10773-017-3352-4

Download: PDF

Submission history

[v1] 2017-04-03 01:19:04

Unique-IP document downloads: 8 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus