Quantum Physics

   

Quantum Liquid Crystals

Authors: George Rajna

Physicists at the Institute for Quantum Information and Matter at Caltech have discovered the first three-dimensional quantum liquid crystal—a new state of matter that may have applications in ultrafast quantum computers of the future. [25] For the first time, an experiment has directly imaged electron orbits in a high-magnetic field, illuminating an unusual collective behavior in electrons and suggesting new ways of manipulating the charged particles. [24] Scientists can now detect magnetic behavior at the atomic level with a new electron microscopy technique developed by a team from the The researchers took a counterintuitive approach by taking advantage of optical distortions that they typically try to eliminate. [23] Researchers at the Nanoscale Transport Physics Laboratory from the School of Physics at the University of the Witwatersrand have found a technique to improve carbon superlattices for quantum electronic device applications. [22] The researchers have found that these previously underestimated interactions can play a significant role in preventing heat dissipation in microelectronic devices. [21] LCLS works like an extraordinary strobe light: Its ultrabright X-rays take snapshots of materials with atomic resolution and capture motions as fast as a few femtoseconds, or millionths of a billionth of a second. For comparison, one femtosecond is to a second what seven minutes is to the age of the universe. [20] A 'nonlinear' effect that seemingly turns materials transparent is seen for the first time in X-rays at SLAC's LCLS. [19] Leiden physicists have manipulated light with large artificial atoms, so-called quantum dots. Before, this has only been accomplished with actual atoms. It is an important step toward light-based quantum technology. [18] In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in free space. They can only occupy discrete energy levels, much like the electrons in an atom-for this reason, such electron prisons are often called "artificial atoms". [17] When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb a single photon. [16]

Comments: 42 Pages.

Download: PDF

Submission history

[v1] 2017-04-20 14:42:45

Unique-IP document downloads: 12 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus