Number Theory


Primes Obtained Concatenating the Numbers 30-D(k) Where D(1),...,d(k) Are the Digits of a Square of a Prime

Authors: Marius Coman

In this paper I make the following observation: for many squares of primes (I conjecture that for an infinity of them) the numbers obtained concatenating 30 – d(1), 30 – d(2),..., 30 – d(k), where d(1),..., d(k) are the digits of a square of a prime, are primes. Example: for 1369 (= 37^2) the number obtained concatenating 29 = 30 – 1 with 27 = 30 – 3 with 24 = 30 – 6 with 21 = 30 – 9, i.e. the number 29272421, is prime. Note that for 35 from the first 200 squares of primes the numbers obtained this way are primes!

Comments: 2 Pages.

Download: PDF

Submission history

[v1] 2017-06-04 11:53:02

Unique-IP document downloads: 6 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus