## Large Primes Obtained Concatenating the Numbers P-D(k) Where D(k) Are the Prime Factors of the Poulet Number P

**Authors:** Marius Coman

In this paper I conjecture that there are an infinity of primes which can be obtained concatenating the numbers P - d(1); P - d(2); ...; P – d(k); P, where d(1), ..., d(k) are the prime factors of the Poulet number P. Example: using the sign “//” with the meaning “concatenated to”, for the Poulet number 129921 (= 3*11*31*127), the number (129921 – 3)//(129921 – 11)//(129921 – 31)//(129921 – 127)//129921 = 129918129910129890129794129921 is prime. Note that such primes are obtained for 10 from the first 90 Poulet numbers!

**Comments:** 2 Pages.

**Download:** **PDF**

### Submission history

[v1] 2017-06-05 05:55:08

**Unique-IP document downloads:** 9 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*