Number Theory


A New Sufficient Condition by Euler Function for Riemann Hypothesis

Authors: Choe Ryong Gil

The aim of this paper is to show a new sufficient condition (NSC) by the Euler function for the Riemann hypothesis and its possibility. We build the NSC for any natural numbers ≥ 2 from well-known Robin theorem, and prove that the NSC holds for all odd and some even numbers while, the NSC holds for any even numbers under a certain condition, which would be called the condition (d).

Comments: 12 pages, 2 tables

Download: PDF

Submission history

[v1] 2017-06-21 02:28:55

Unique-IP document downloads: 27 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus