Number Theory

   

On Fermat's Last Theorem

Authors: John Smith

In 1986 AndrewWiles published a ground-breaking proof of Fermat's Last Theorem. But in spite of the rarity and the significance of the achievement, the underlying reasoning is so convoluted that it would be be extremely difficult -if not impossible- for any but a tiny minority of specialists to understand it. Most must simply take the word of Wiles and his fellow experts that Fermat's Last Theorem has been proved. But the conjecture itself -that no 3 positive integers can satisfy the equation x^n + y^n = z^n for any positive-integer value of n greater than 2- is so simple that a school child could understand it, and Fermat himself claimed that he possessed a proof, one that -if it existed- must have been expressed in the language of 17th century mathematics, and the language of 21st century high school mathematics. Ye there can be no such proof: this note outlines a complimentary but alternative argument to that employed by Wiles that shows why no 17th century proof of the theorem is possible.

Comments: 2 Pages.

Download: PDF

Submission history

[v1] 2017-09-27 14:15:31

Unique-IP document downloads: 26 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus