Number Theory


Prime Numbers as a Function of a Geometric Progression

Authors: Leif R. Uppström, Daniel Uppström

In mathematical literature it is asked for a computable function or efficient algorithm to find all, or at least a large subset, of the prime numbers. This paper shows that all primes can be characerised by their reciprocal period length L and its figure value R. These parameters are given for each prime after inversion to an infinitely repeated period and are used to group all primes into disjoint sets that arise as a function of a geometric progression. This theory suggests new ways to enumerate and find large primes.

Comments: 9 Pages.

Download: PDF

Submission history

[v1] 2017-10-18 15:14:30

Unique-IP document downloads: 97 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus