Artificial Intelligence


Topological Clustering as a Method of Control for Certain Critical-Point Sensitive Systems

Authors: Martin J. Dudziiak

New methods can provide more sensitive modeling and more reliable control, through use of dynamically-alterable local neighborhood clusters comprised of of the state-space parameters most disposed to be influential in non-linear systemic changes. Particular attention is directed to systems with extreme non-linearity and uncertainty in measurement and in control communications (e.g., micro-scalar, remote and inaccessible to real-time control). An architecture for modeling based upon topological similarity mapping principles is introduced as an alternative to classical Turing machine models including new “quantum computers.”

Comments: 6 Pages. submitted to CoDIT 2018 (Thessaloniki, Greece, April 2018)

Download: PDF

Submission history

[v1] 2017-12-05 14:07:08

Unique-IP document downloads: 14 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus