Number Theory


Positivity of li Coefficients for N>10^24

Authors: Leonhard Schuster

In this paper, we prove the positivity of Li coefficients for n>10^24. We investigate the Riemann Zeta function, in the form (s-1)zeta(s), under the transformation s = 1/(1-z). We apply a generalised Poisson-Jensen formula to show that Riemann Zeta function has only a finite number of zeros not lying the critical line, and that the Li coefficients are positive for n>10^24. This implicitly proves the validity of Riemann Hypothesis.

Comments: 13 Pages.

Download: PDF

Submission history

[v1] 2018-01-01 12:02:19
[v2] 2018-01-02 13:45:30

Unique-IP document downloads: 26 times is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus