High Energy Particle Physics


Disconnectedness Experiments Negating the Validity of the Standard Model

Authors: Bowen Liu

In the history of physics it has no precedent the disconnectedness experiment that verifies physical object being outside of our geometry. The purpose of this paper is to provide crucial experiments to show that absolute connectedness assumption the Standard Model relied on is invalid, and to negate the validity of the Standard Model. The disconnectedness experiment negates the nonempty intersection between current geometry and micro-geometry in the depth direction and transitional region between them, and shows that micro-geometry disconnects to current geometry in the depth direction, micro-geometry is the other geometry outside current geometry, and the relationship between the two geometries can only be non-one-one mapping instead of evolution. The logical procedure of negating the validity of SM is as follows. (1) To give the definition of spatial disconnectedness in the depth direction and to determine the elements of the nonempty intersection. (2) To reduce every quantum experiment to reprocess disconnectedness experiment to prove that there is no non-empty intersection between the two geometries, i.e., they are not connected. (3) The spatial connectedness, among all geometrical concepts, is one of the most primitive topological concepts; once the spatial connectedness is invalid, all physical theories based on the connectedness are invalid, and the geometric foundation of SM is invalid. We complete the proof of the invalidity of the Standard Model. Our proof shows that all kinds of micro-forms (including Higgs particles) are secondary existing form of matter in current geometry, but not primitive form. The Standard Model, as a theory of extrinsic particles, is not the ultimate model of the universe physicists have coveted, but is idealist theory based on distorted idealization.

Comments: 12 Pages.

Download: PDF

Submission history

[v1] 2018-07-10 08:06:45

Unique-IP document downloads: 7 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus