Condensed Matter

   

High-Resolution Nanoparticle Surface

Authors: George Rajna

Using scanning tunneling microscopy (STM), extremely high resolution imaging of the molecule-covered surface structures of silver nanoparticles is possible, even down to the recognition of individual parts of the molecules protecting the surface. [36] A fiber optic sensing system developed by researchers in China and Canada can peer inside supercapacitors and batteries to observe their state of charge. [35] The idea of using a sound wave in optical fibers initially came from the team's partner researchers at Bar-Ilan University in Israel. Joint research projects should follow. [34] Researchers at the Technion-Israel Institute of Technology have constructed a first-of-its-kind optic isolator based on resonance of light waves on a rapidly rotating glass sphere. [33] The micro-resonator is a two-mirror trap for the light, with the mirrors facing each other within several hundred nanometers. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30] A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the topologies of core electron orbitals of organic molecules and their silicon analogues. [29] A University of Central Florida team has designed a nanostructured optical sensor that for the first time can efficiently detect molecular chirality—a property of molecular spatial twist that defines its biochemical properties. [28] UCLA scientists and engineers have developed a new process for assembling semiconductor devices. [27]

Comments: 60 Pages.

Download: PDF

Submission history

[v1] 2018-08-04 02:03:37

Unique-IP document downloads: 15 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus