Number Theory

   

Proof that as the Standard Deviation of a Log Normal Distribution Approaches Zero the Distribution Becomes a Normal Distribution

Authors: Robert C. Hall

While it is fairly easy to prove that the Log Normal distribution becomes a Benford distribution as the standard deviation approaches infinity (see appendix A), it is a bit more difficult to prove that as the standard deviation approaches zero that the distribution becomes a Normal distribution with a mean of e^u where u is the mean of the natural logarithms of the data set values.

Comments: 5 Pages.

Download: PDF

Submission history

[v1] 2018-12-27 18:34:37

Unique-IP document downloads: 0 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary. In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution. Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

Add your own feedback and questions here:
You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.

comments powered by Disqus