## Even FibBinary Numbers and the Golden Ratio

**Authors:** J Gregory Moxness

Previously, a determination of the relationship between the Natural numbers (N) and the n'th odd fibbinary number has been made using a relationship with the Golden ratio \phi=(Sqrt[5]+1}/2 and \tau=1/\phi. Specifically, if the n'th odd fibbinary equates to the j'th N, then j=Floor[n(\phi+1) - 1]. This note documents the completion of the relationship for the even fibbinary numbers, such that if the n'th even fibbinary equates to the j'th N, then j=Floor[n(\tau+1) + \tau].

**Comments:** 4 Pages.

**Download:** **PDF**

### Submission history

[v1] 2018-12-30 19:20:53

**Unique-IP document downloads:** 0 times

Vixra.org is a pre-print repository rather than a journal. Articles hosted may not yet have been verified by peer-review and should be treated as preliminary.
In particular, anything that appears to include financial or legal advice or proposed medical treatments should be treated with due caution.
Vixra.org will not be responsible for any consequences of actions that result from any form of use of any documents on this website.

**Add your own feedback and questions here:**

*You are equally welcome to be positive or negative about any paper but please be polite. If you are being critical you must mention at least one specific error, otherwise your comment will be deleted as unhelpful.*

*
*