Functions and Analysis

1003 Submissions

[1] viXra:1003.0166 [pdf] replaced on 20 Mar 2010

A Self-Recurrence Method for Generalizing Known Scientific Results

Authors: Florentin Smarandache
Comments: 7 pages

A great number of articles widen known scientific results (theorems, inequalities, math/physics/chemical etc. propositions, formulas), and this is due to a simple procedure, of which it is good to say a few words: Let suppose that we want to generalizes a known mathematical proposition P(a) , where a is a constant, to the proposition P(n) , where n is a variable which belongs to subset of N . To prove that P is true for n by recurrence means the following: the first step is trivial, since it is about the known result P(a) (and thus it was already verified before by other mathematicians!). To pass from P(n) to P(n + 1) , one uses too P(a) : therefore one widens a proposition by using the proposition itself, in other words the found generalization will be paradoxically proved with the help of the particular case from which one started! We present below the generalizations of Hölder, Minkovski, and respectively Tchebychev inequalities.
Category: Functions and Analysis