[7] **viXra:1807.0532 [pdf]**
*submitted on 2018-07-31 08:39:29*

**Authors:** Edigles Guedes

**Comments:** 5 Pages.

I derive some finite product representations of gamma functions for the Pochhammer's symbol at rational argument.

**Category:** Functions and Analysis

[6] **viXra:1807.0475 [pdf]**
*submitted on 2018-07-28 20:40:47*

**Authors:** Edigles Guedes

**Comments:** 15 pages.

I derived identities for some surd numbers, involving gamma functions; thence, I have represented them as infinite products.

**Category:** Functions and Analysis

[5] **viXra:1807.0324 [pdf]**
*replaced on 2018-07-28 16:23:07*

**Authors:** Zaid Laadjal

**Comments:** 12 Pages.

In this paper, we studied an open problem, where using two different methods, we obtained several results for a Lyapunov-type and Hartman-Wintner-type inequalities for a Hadamard fractional differential equation on a general interval [a;b],(1≤a<b) with the boundary value conditions.

**Category:** Functions and Analysis

[4] **viXra:1807.0233 [pdf]**
*submitted on 2018-07-12 19:46:47*

**Authors:** Johan Aspegren

**Comments:** 2 Pages.

In this preprint we will prove that the isotropic constant depends only on the dimension of the domain. Thus we prove a result that implies the sharp isotropic constant conjecture.

**Category:** Functions and Analysis

[3] **viXra:1807.0228 [pdf]**
*submitted on 2018-07-11 05:35:49*

**Authors:** Edigles Guedes

**Comments:** 6 Pages.

We derive some identities for limit of the exponential for digamma function, k-power and exponential function, involving gamma functions and Pochhammer symbols.

**Category:** Functions and Analysis

[2] **viXra:1807.0227 [pdf]**
*submitted on 2018-07-11 05:38:23*

**Authors:** Edigles Guedes

**Comments:** 4 Pages.

I derive some news identities for limit of the exponential of Pi/8, involving Pochhammer symbols and secant function.

**Category:** Functions and Analysis

[1] **viXra:1807.0135 [pdf]**
*submitted on 2018-07-07 01:53:55*

**Authors:** Viktor Strohm

**Comments:** 4 Pages.

The motion of a point along an ellipse under the action of a generalized force is investigated.
Result: differential equation of second-order curves with respect to the focus, differential equation of curves of the second order with respect to the center, general differential equation of second order curves. Several examples of the application of these equations are proposed.

**Category:** Functions and Analysis