Biochemistry

1609 Submissions

[25] viXra:1609.0428 [pdf] submitted on 2016-09-29 23:33:55

Effect of Biofield Treatment on Antimicrobials Susceptibility Pattern of Acinetobacter Baumannii an Experimental Study

Authors: Mahendra Kumar Trivedi
Comments: 5 Pages.

Global emergence of Acinetobacter baumannii (A. baumannii) displays a mechanism of resistance to all existing antimicrobials. Objective of this study was to investigate the effect of biofield treatment on antimicrobial sensitivity pattern, minimum inhibitory concentration (MIC), biochemical reactions and biotype number of A. baumannii. A. baumannii cells were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 19606) number and stored according to the recommended storage protocols until needed for experiments. Two sets of ATCC samples were taken in this experiment and denoted as A and B. ATCC-A sample was revived and divided into two parts i.e. Gr.I (control) and Gr.II (revived) analyzed on day 5 and 10, respectively; likewise, ATCC-B was labeled as Gr.III (lyophilized) and was assessed on day 10. Gr.II and III were treated with Mr. Trivedi’s biofield and were analyzed for its antimicrobial sensitivity, MIC value, biochemical reactions and biotype number with respect to control. Experimental results showed the impact of biofield treatment directly onto the revived and lyophilized form of A. baumannii and found alteration both in qualitative and quantitative aspect as compared with untreated groups. These results showed altered sensitivity pattern of antimicrobials in biofield treated group as compared to control. Apart from altered MIC values, changes were also observed in biotype number of revived treated group as compared to control. These findings suggest that biofield treatment can prevent the emergence of absolute resistance of existing antimicrobials to A. baumannii.
Category: Biochemistry

[24] viXra:1609.0427 [pdf] submitted on 2016-09-29 23:35:08

Antimicrobial Susceptibility of Proteus Mirabilis: Impact of Biofield Energy Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

Proteus mirabilis (P. mirabilis) is widespread in nature, mainly found in soil, water, and the flora of human gastrointestinal tract. The current study was attempted to investigate the effects of Mr. Trivedi’s biofield energy treatment on P. mirabilis both in lyophilized as well as revived state for antimicrobial susceptibility, biochemical characteristics, and biotype. P. mirabilis cells were procured from MicroBioLogics Inc., USA, in a sealed pack bearing the American Type Culture Collection (ATCC 25933) number and stored according to the recommended storage protocol until needed for experiments. Two sets of ATCC samples were taken in this experiment and denoted as A and B. The ATCC A sample was revived and divided into two parts Gr.I (control) and Gr.II (revived); likewise, the ATCC B was labeled as Gr.III (lyophilized). Group II and III were given with biofield treatment. All experimental parameters were studied using automated MicroScan Walk-Away® system. The result of antimicrobial susceptibility and minimum inhibitory concentration showed 6.67% and 9.38% alteration, respectively in treated cells of P. mirabilis as compared to the control. In addition, the overall biochemical reactions were significantly altered (42.42%) in the treated groups with respect to the control. Moreover, biotype number was changed in the treated cells, Gr. II, day 5 (40061546) and day 10 (77365764), while without alteration of organism as compared to the control (40061544; Proteus mirabilis). The results suggested that biofield treatment has an impact on P. mirabilis in revived state predominately.
Category: Biochemistry

[23] viXra:1609.0413 [pdf] submitted on 2016-09-29 02:24:59

In Vitro Evaluation of Antifungal Sensitivity Assay of Biofield Energy Treated Fungi

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 4 Pages.

Fungi are the group of eukaryotic organisms such as yeast, mold, and mushrooms. The present work investigated the impact of biofield treatment on different pathogenic species of fungi in relation to antifungal sensitivity pattern. Each fungal sample was divided into three parts: C, control; T1, treatment (revived); T2 treatment (lyophilized). Treatment groups received the biofield treatment, and control group was remained as untreated. Mini-API ID32C strip employed for evaluation of antifungal sensitivity and minimum inhibitory concentration (MIC). The results showed that sensitivity of Candida albicans in T1 cells was changed against itraconazole from intermediate (I) to resistance (R) on day 10. The Candida kefyr exhibited a change in susceptibility against itraconazole in T2 cell from S→I, on day 10. Likewise, Candida krusei showed the alterations in sensitivity against two antifungal drugs: fluconazole from S→I (T1 on day 10) and itraconazole S→I (T1 and T2 on all assessment days). The Cryptococcus neoformans changed from S→I in T1 cell on day 5 and 10, against itraconazole. Sensitivity of Candida tropicalis was also altered from I→R against flucytosine (T1 and T2, on all assessment days). Similarly, Saccharomyces cerevisae altered from S→I (T1) and S→R (T2) on day 10. The MIC values of antifungal drugs were altered in the range of 2-8 folds, as compared to the control. Fungal identification data showed the significant changes in species similarity of few tested fungi as C. albicans changed from 91.9% to 98.5 and 99.9% in T1 and T2 cells, respectively on day 10. C. krusei was changed from 97.9% to 85.9% (T2 day 10), and C. tropicalis was altered from 88.7% to 99.6% (T1 day 5) and 99.0% (T2). These findings suggest that biofield treatment could be applied to alter the susceptibility pattern of antifungal drug therapy in future.
Category: Biochemistry

[22] viXra:1609.0391 [pdf] submitted on 2016-09-27 07:36:35

Worlds in Collision and the Origin of Life

Authors: Rainer W. Kühne
Comments: 8 Pages. Published in: Proceedings of the Conference "On the Origin of Life", 7 August 2015, London, United Kingdom

Earth and Moon were formed 4.6 billion years ago by the collision of the two protoplanets Gaia and Theia. Afterwards the Earth formed a crust where colliding comets provided the water of the oceans. This Hadean Eon was terminated 3.9 billion years ago during the Late Heavy Bombardment when an eccentric orbit of Jupiter caused a bombardment of the Earth by asteroids. Soon thereafter, 3.8 billion years ago, there is geochemical evidence of terrestrial life which performed photosynthesis. The terrestrial life witnessed and survived several cataclysms including the snowball Earth 760 to 580 million years ago, an ice age 440 million years ago which was possibly caused by a gamma-ray burst, and an asteroid impact 65 million years ago which generated the Chicxulub crater and contributed to the extinction of the dinosaurs. The 1908 Tunguska explosion was caused by a small stony asteroid. Amino acids, purines, pyrimidines and sugars, but no proteins, nucleotides or extraterrestrial unicellular organisms were detected in meteorites. This argues against the hypothesis of panspermia. The synthesis of amino acids, small peptides, purines and pyrimidine ribonucleotides under conditions of the primitive Earth (Stanley Miller experiments) and the polymerization of RNA nucleotides on clay minerals suggests that viroids and an RNA world could have existed during the Hadean Eon.
Category: Biochemistry

[21] viXra:1609.0328 [pdf] submitted on 2016-09-22 23:36:31

Antimicrobial Sensitivity Pattern of Pseudomonas Fluorescens After Biofield Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

Global emergence of Pseudomonas fluorescens (P. fluorescens) displays a mechanism of resistance to all existing antimicrobials. Due to its strong ability to acquire resistance, there is a need of some alternative treatment strategy. Objective of this study was to investigate the effect of biofield treatment on antimicrobial sensitivity pattern of P. fluorescens. P. fluorescens cells were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 49838) number. Two sets of ATCC samples were taken in this experiment and denoted as A and B. ATCC-A sample was revived and divided into two groups (Gr) i.e. Gr.I (control) and Gr.II (revived); likewise, ATCC-B was labeled as Gr.III (lyophilized). Gr.II and III were given biofield treatment and were measured by MicroScan Walk-Away® system before and after treatment. Parameters studied in experiment were antimicrobial sensitivity, minimum inhibitory concentration (MIC), biochemical reactions, and biotype number of both control and treatment groups using MicroScan Walk-Away® system. Experimental results showed antimicrobials such as cefepime, cefotaxime, ceftazidime, ceftriaxone, ciprofloxacin, piperacillin, tetracycline, and tobramycin showed altered sensitivity and MIC values in treated group as compared to control. Biochemical reactions showed positive reaction in malonate, melibiose, nitrate, galactosidase, ornithine, raffinose, sorbitol, sucrose, tobramycin and Voges-Proskauer in Gr.II. Arabinose, colistin, glucose, and rhaminose also showed positive reactions in Gr.II on day 10 while arginine and cetrimide showed negative reaction in Gr.III as compared to control. Biochemical tests results revealed a change in biotype number in Gr.II (34101173, day 5), (77103177, a very rare biotype on day 10) and Gr.III (40000043) as compared to control (02041722). Organism was identified as Enterobacter cloacae (GrII, day 10) and Vibrio fluvialis (Gr.III, day 10) with respect to control. These findings suggest that biofield treatment made significant alteration in sensitivity pattern, MIC values, and biotype number of P. fluorescens.
Category: Biochemistry

[20] viXra:1609.0327 [pdf] submitted on 2016-09-22 23:37:48

An Effect of Biofield Treatment on Multidrug-resistant Burkholderia Cepacia: A Multihost Pathogen

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

Burkholderia cepacia (B. cepacia) is an opportunistic, Gram negative pathogen which causes infection mainly in immunocompromised population and associated with high rate of morbidity and mortality in cystic fibrosis patients. Aim of the present study was to analyze the impact of biofield treatment on multidrug resistant B. cepacia. Clinical sample of B. cepacia was divided into two groups i.e. control and biofield treated. The analysis was done after 10 days of treatment and compared with control group. Control and treated group were analyzed for susceptibility pattern, MIC value, biochemical studies and biotype number using MicroScan Walk-Away® system.Sensitivity assay results showed a change in pattern from resistant to intermediate in aztreonam, intermediate to resistant in ceftazidime, ciprofloxacin, imipenem, and levofloxacin while sensitive to resistant in meropenem and piperacillin/ tazobactam.The biofield treatment showed an alteration in MIC values of aztreonam, ceftazidime, chloramphenicol, ciprofloxacin, imipenem, levofloxacin, meropenem, piperacillin/tazobactam and tetracycline. Biochemical reactions of treated group showed negative reaction in colistin, lysine, and ornithine while positive reactions to acetamide,arginine, and malonate as compared to control. Overall results showed an alteration of 38.9% in susceptibility pattern, 30% in MIC values of tested antimicrobials and 18.2% change in biochemical reaction after biofield treatment. A significant change in biotype number (02063736) was reported with green pigment as special characteristics after biofield treatment as compared to control (05041776) group with yellow pigment. In treated group, a new species was identified as Pseudomonas aeruginosa, as compared to control. Study findings suggest that biofield treatment has a significant effect on the phenotypic character and biotype number of multidrug resistant strain of B. cepacia.
Category: Biochemistry

[19] viXra:1609.0326 [pdf] submitted on 2016-09-22 23:39:13

Evaluation of Biofield Modality on Viral Load of Hepatitis B and C Viruses

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Study background: Nowadays, hepatitis is a major challenge for clinical research, regulatory bodies, and clinicians who are trying to assess the more effectiveness of antiviral therapy against patients. Viral load count is the amount of particular viral DNA or RNA in a blood samples. It is one of the surrogate biomarker of hepatitis. High viral load indicates that the immune system is failed to fight against viruses. The aim of this study was to evaluate the impact of biofield modality on hepatitis B virus (HBV) and hepatitis C virus (HCV) in terms of viral load as surrogate marker. Method: The viral load assay was performed on stock human plasma samples of HBV and HCV before and after 7 days of biofield treatment using Roche COBAS® AMPLICOR analyzer according to manufacturer’s instructions. Viremia (viral DNA for HBV, RNA for HCV) was considered as surrogate marker for assessment of the impact of Mr. Trivedi’s biofield treatment. Result: The viral load of HBV DNA in infected plasma samples showed a significant alteration in the biofield treated group as compared to control. Additionally, viral load count of HCV RNA in infected plasma samples was significantly reduced by 67% in the biofield treated group as compared to control. As the biofield treatment has significantly reduced HCV RNA, it could be beneficial for particularly HCV infected populations. Conclusion: Altogether, data suggest that biofield treatment has significantly alteration in HBV and reduced the viral load count in HCV infected plasma samples and could be a suitable alternative treatment strategy for hepatitis patients in near future.
Category: Biochemistry

[18] viXra:1609.0325 [pdf] submitted on 2016-09-22 23:40:30

Impact of Biofield Treatment on Yield, Quality and Control of Nematode in Carrots

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 4 Pages.

This study tested the Null Hypothesis for the effect of biofield treatment when used for control of nematode on carrot crops, Daucus carota , under typical growing conditions in year 2012 at Guadalupe, California, USA. Following biofield treatment, carrot seeds were planted in replicate plots with mechanical seeder and their development was recorded compared to control seed growth from untreated plots and plots treated with the commercial standard nematicide, further Vydate L was applied three times at rates of 1 and 0.5 gal/A, at 1, 18 and 35 days after seeding, respectively. At 70 and 109 days after the first application root galling severity in biofield treated crops was reduced by 54% and 22% respectively as compared to untreated while the Vydate response showed 0% and 25% control, respectively. Plots planted with biofield treated seeds resulted in the greatest number and weight of marketable carrot roots. Total yield and gross return were greatest in biofield treated group producing an approximately 33% increase over the untreated controls and 15% increase over those treated with the commercial standard, Vydate L. Vitamin A (beta carotene) was significantly greater (6512 IU/100 g) in biofield treated carrots compared with both the untreated controls (4941) and the commercial standard (5143). The results concluded that, Biofield treatment caused the numerical improvement in yield along with nematode control in carrots however, caused statistically significant increase in Vitamin A content.
Category: Biochemistry

[17] viXra:1609.0289 [pdf] submitted on 2016-09-20 00:09:49

Impact of an External Energy on Yersinia Enterocolitica [atcc "23715] in Relation to Antibiotic Susceptibility and Biochemical Reactions: an Experimental Study

Authors: Mahendra Kumar Trivedi
Comments: 6 Pages.

Background : While spiritual and mental energies are known to man, their impact has never been scientifically measurable in the material world and they remain outside the domain of science. The present experiments on Yersinia enterocolitica [ATCC -23715], report the effects of such energy transmitted through a person, Mr. Mahendrakumar Trivedi, which has produced an impact measurable in scientifically rigorous manner. Methods: Yersinia enterocolitica strains in revived and lyophilized state were subjected to spiritual energy transmitted through thought intervention and/or physical touch of Mr. Trivedi to the sealed tubes containing strain and were analyzed within 10 days after incubation. Results: The results indicated that Mr.Trivedi's energy has changed 20 of 33 biochemical characteristics of Yersinia enterocolitica along with significant changes in susceptibility pattern in 15 of 32 antibiotics. The Biotype number has changed from the original control strain giving rise to 2 different biotypes in treated samples while the external energy /treatment given was the same for all treated samples suggestive of random polymorphism as analyzed through an automated machine. Conclusions: These results cannot be explained by current theories of science, and indicate a potency in Mr.Trivedi's energy, providing a model for science to be able to investigate the impact of spiritual energy in a rigorous manner. In lyophilized state, biochemical and enzymatic characteristics could be altered.
Category: Biochemistry

[16] viXra:1609.0288 [pdf] submitted on 2016-09-20 00:26:28

Impact of an External Energy on Enterococcus Faecalis [atcc – 51299] in Relation to Antibiotic Susceptibility and Biochemical Reactions – an Experimental Study

Authors: Mahendra Kumar Trivedi
Comments: 14 Pages.

Background: While spiritual and mental energies are known to man, their impact has never been scientifically measurable in the material world and they remain outside the domain of science. The present experiments on Enterococcus faecalis [ATCC –51299], report the effects of such energy transmitted through a person, Mahendra Trivedi, which has produced an impact measurable in scientifically rigorous manner. Methods: Enterococcus faecalis strains in revived and lyophilized state were subjected to spiritual energy transmitted through thought intervention and/or physical touch of Mr. Trivedi to the sealed tubes containing strain, the process taking about 3 minutes and were analyzed within 10 days after incubation. All tests were performed with the help of automation on the Microscan Walkaway System in Microbiology Laboratory – accredited by The College of American Pathologists. Results: The results indicated that Mr.Trivedi’s energy has changed 9 of 27 biochemical characteristics of Enterococcus faecalis along with significant changes in susceptibility pattern in 5 of 31 antibiotics. The Biotype number has changed from the original control strain giving rise to 2 different biotypes in treated samples while the external energy /treatment given was the same for all treated samples suggestive of random polymorphism as analyzed through the automated machine. Conclusions: These results cannot be explained by current theories of science, and indicate a potency in Mr.Trivedi’s energy, providing a model for science to be able to investigate the impact of spiritual energy in a rigorous manner. In lyophilized state, biochemical and enzymatic characteristics could be altered.
Category: Biochemistry

[15] viXra:1609.0280 [pdf] submitted on 2016-09-19 01:12:07

Effect of a Biofield Treatment on Plant Growth and Adaptation (Benth.)

Authors: Gopal Nayak, Trivedi Science
Comments: 9 Pages.

Quantum mechanics was developed when human energies of consciousness were found to influence observations at the scale of elementary particles, here referred as non-contact biofield treatment or biofield energies . Quantum mechanics has also proved efficacious in biological processes. The present experiments found an enhanced and significant impact of the biofield treatment on adaptive micropropagation response and callus induction of two plant species, Withania somnifera and Amaranthus dubius. The enhancement was perhaps due to greater focus on adaptation rather than specific mechanisms, showing high potential including at biochemical and genetic levels. Possible reasons for the enhancement are discussed and a possible model is presented, consistent with current scientific theory.
Category: Biochemistry

[14] viXra:1609.0279 [pdf] submitted on 2016-09-19 01:16:55

Impact of an External Energy on Staphylococcus Epidermis [atcc –13518] in Relation to Antibiotic Susceptibility and Biochemical Reactions – an Experimental Study

Authors: Mahendra Kumar Trivedi
Comments: 10 Pages.

While spiritual and mental energies are known to man, their impact has never been scientifically measurable in the material world and they remain outside the domain of science. The present experiment on Staphylococcus epidermis [ATCC –13518], validate the effects of such energy transmitted through a person, Mahendra Trivedi, which has produced an impact measurable in scientifically rigorous manner.
Category: Biochemistry

[13] viXra:1609.0257 [pdf] submitted on 2016-09-17 04:52:25

Biofield and Fungicide Seed Treatment Influences on Soybean Productivity, Seed Quality and Weed Community

Authors: Trivedi Science
Comments: 6 Pages.

Soybean production in Iowa USA is among the most productive for raínfed regions in the world. Despite generally having excellent soils, growing season temperatures and rainfall, soybean yields are decreased by weed interference and inadequate available soil water at key stages of crop development. A field study was conducted at two locations in lowa in 2012 to determine if seed-applied fungicide or biofield treatments influenced weed community, soil volumetric water concentration and soybean yield and quality. Application of biofield treatment resulted in lower density of tall waterhemp density, greater soybean stand density at R8 stage and greater seed pod-1 compared to the absence of seed fungicide and biofield­ Soil volumetric water content varied by seed fungicide x biofield x date interaction but differences were not consistent among treatment combinations. Overall, seed fungicide and biofield treatments had similar effects on soybean productivity, however additional research is necessary to determine if biofield treatment is a suitable replacement for seed fungicide application.
Category: Biochemistry

[12] viXra:1609.0256 [pdf] submitted on 2016-09-17 04:56:55

Impact of Biofield Treatment on Ginseng and Organic Blueberry Yield

Authors: Frank Sances, Eric Flora, Shrikant Patil, Amy Spence, Vishal Shinde, Mahendra Trivedi
Comments: 8 Pages.

This study tested the Null Hypothesis for the effect of BioField Energy applied to two separate crops under typical growing conditions, namely ginseng and organic blueberry in commercial plantings in Wisconsin and California, respectively. Following treatment to replicated plots in standard experimental design, data were collected at harvest for yield quantity and quality. Ginseng plants treated both pre-harvest and a combination of pre- and post-harvest showed market grade increases of 33.3% and 40.0%, respectively. Point of sale gross return for this crop is dependent upon tuber quality, and from these data the economics of these treatments were calculated. Based on stand adjusted yields and quality values, a combination of pre- and post-harvest treatment increased gross income by 57.4%. The second crop showed similar trends in positive responses. In the two blueberry varieties studied, Emerald treated plants showed 96% statistical increase in yield, while Jewel showed 31% increase. At the time of treatment, each variety was in a different stage of flowering. The Emerald variety was in the flowering stage, and Jewel was predominately in the fruiting stage. Both treated cultivars however demonstrated increased yield quantity and quality. The specific mechanisms that lead to these preliminary results need further investigation.
Category: Biochemistry

[11] viXra:1609.0254 [pdf] submitted on 2016-09-17 05:05:15

Effect of Biofield Treatment on the Physical and Thermal Characteristics of Aluminium Powders

Authors: Mahendra Kumar Trivedi
Comments: 5 Pages.

Aluminium powders are used in a wide range from propelling rockets to improving personal hygiene. More popular industrial applications include manufacture of silver metallic pigments, paints, inks, plastics, packaging, textiles and aerospace industry. As thick film pastes used in the manufacture of silicon solar cells, and as reducing agent and sources of heat, used in alumina thermic and exothermic applications. In the present investigation, Aluminium powders were exposed to non-contact Biofield treatment. Both the exposed and unexposed powders were later characterized by various techniques. The average particle size, after a slight initial decrease was found to increase after 80 days of treatment substantially, which suggested the operation of competing mechanisms fracture and sintering (micro welding). The BET surface area monotonically decreased which was consistent with increase in particle size. SEM photographs showed that samples exposed to Biofield after 38 days showed growth in particle size and particles joined at inter and intra particle boundaries. X-ray diffraction of the powder samples indicated both increase and decrease in crystallite size, unit cell volume, change in nuclear charge per unit volume of atom and atomic weight of samples exposed to Biofield even after 106 days. These results indicated that properties of Aluminium powders could be changed even up to atomic level by exposure to Biofield.
Category: Biochemistry

[10] viXra:1609.0240 [pdf] submitted on 2016-09-16 05:22:30

Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol and P-Tertiary Butyl Phenol

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

Phenolic compounds are commonly used for diverse applications such as in pharmaceuticals, chemicals, rubber, dyes and pigments. The objective of present research was to study the impact of Mr. Trivedi’s biofield treatment on physical and thermal properties of phenol derivatives such as o-nitrophenol (ONP), m-nitrophenol (MNP) and p-tertiary butyl phenol (TBP). The study was performed in two groups (control and treated). The control and treated compounds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and surface area analysis. XRD analysis showed increase in crystallite size by 16.05% in treated ONP as compared to control. However, the treated MNP showed decrease in crystallite size by 16.17% as compared to control. The treated TBP showed increase in crystallite size by 5.20% as compared to control. DSC of treated MNP exhibited increase in melting temperature with respect to control, which may be correlated to higher thermal stability of treated sample. However, the treated TBP exhibited no significant change in melting temperature with respect to control. TGA analysis of treated ONP and TBP showed an increase in maximum thermal decomposition temperature (Tmax) as compared to control. However, the treated MNP showed slight decrease in Tmax in comparison with control sample. Surface area analysis of treated ONP showed decrease in surface area by 65.5%. However, surface area was increased by 40.7% in treated MNP as compared to control. These results suggest that biofield treatment has significant effect on physical and thermal properties of ONP, MNP and TBP.
Category: Biochemistry

[9] viXra:1609.0229 [pdf] submitted on 2016-09-15 04:43:35

Antimicrobial Susceptibility Pattern and Biochemical Characteristics of Staphylococcus Aureus: Impact of Bio Field Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 4 Pages.

Study background: Staphylococci are widespread in nature, mainly found on the skin and mucous membranes. Staphylococcus aureus (S. aureus) is the key organism for food poisoning due to massive production of heat stable exotoxins. The current study was attempted to investigate the effect of biofield treatment on antimicrobial susceptibility pattern and biochemical characteristics of S. aureus (ATCC 25923). Methods: S. aureus cells were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 25923) number and stored according to the recommended storage protocols until needed for experiments. Revived and lyophilized state of ATCC strains of S. aureus were selected for the study. Both revived (Group; Gr. II) and lyophilized (Gr. III) strain of S. aureus were subjected to Mr. Trivedi’s biofield treatment. Revived treated cells were assessed on day 5 and day 10 while lyophilized treated cells on day 10 only. After biofield treatment both treated cells were analysed for its antimicrobial sensitivity, minimum inhibitory concentration value, biochemical reactions and biotype number with respect to control (Gr. I). Results: The antimicrobial susceptibility and minimum inhibitory concentration of S. aureus showed significant (86.67%) alteration in lyophilized cells while no alteration was found in revived treated cells as compared to control. It was observed that overall 37.93% (eleven out of twenty nine) biochemical reactions were altered in the treated groups with respect to control. Moreover, biotype numbers were substantially changed in revived treated cells, Gr. II (303137, Staphylococcus capitis subsp. ureolyticus) on day 5 and in lyophilized treated cells, Gr. III (767177, S. cohnii subsp. urealyticum) on day 10 as compared to control (307016, S. aureus). Conclusion: The result suggested that biofield treatment has significant impact on S. aureus in lyophilized treated cells with respect to antimicrobial susceptibility, MIC values and biochemical reactions pattern. Apart from these, biotype numbers with new species were observed in revived treated group on day 5 as Staphylococcus capitis subsp. ureolyticus and in lyophilized cells as Staphylococcus cohnii subsp. urealyticum with respect to control, i.e., S. aureus.
Category: Biochemistry

[8] viXra:1609.0148 [pdf] submitted on 2016-09-11 23:45:15

Physicochemical and Atomic Characterization of Silver Powder After Biofield Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

Silver is widely utilized as antimicrobial agent and wound dressing, where its shape, size, surface area, and surface charge play an important role. The aim of present study was to evaluate the impact of biofield treatment on physicochemical and atomic properties of silver powder. The silver powder was divided into two groups, coded as control and treatment. The treatment group received Mr. Trivedi’s biofield treatment. Subsequently, control and treated samples were characterized using particle size analyzer, X-ray diffraction (XRD) and surface area analyser. Particle size data exhibited that particle sizes d10, d50, d90, and d99 (Size, below which 10, 50, 90, and 99% particle are present, respectively) of treated silver powder were substantially reduced up to 95.8, 89.9, 83.2, and 79.0% on day 84 as compared to control. XRD results showed that lattice parameter, unit cell volume, and atomic weight were reduced, whereas density and nuclear charge per unit volume were found to be increased as compared to control. In addition, the crystallite size was significantly reduced up to 70% after biofield treatment on day 105 as compared to control. Furthermore, the surface area of treated silver powder was substantially enhanced by 49.41% on day 68 as compared to control. These findings suggest that biofield treatment has significantly altered the atomic and physicochemical properties which could make silver more useful in antimicrobial applications.
Category: Biochemistry

[7] viXra:1609.0146 [pdf] submitted on 2016-09-12 02:53:24

Extraterrestrial Microfossils in Meteorites and the Panspermia Hypothesis

Authors: Rainer W. Kühne
Comments: 3 Pages. published in: Proceedings of the Conference "On the Origin of Life", London, United Kingdom, 7 August 2015

I review the experiments by Stanley Miller and Sidney Fox on the production of amino acids and unicellular forms under primitive terrestrial atmosphere conditions. I continue with a review of the evidence for and against unicellular organisms in the Orgueil meteorite and the ALH84001 martian meteorite. I conclude that the evidence argues against the panspermia hypothesis of Fred Hoyle and Nalin Chandra Wickramasinghe.
Category: Biochemistry

[6] viXra:1609.0128 [pdf] submitted on 2016-09-10 04:11:29

Molecular Analysis of Biofield Treated Eggplant and Watermelon Crops

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

Eggplant and watermelon, as one of the important vegetative crops have grown worldwide. The aim of the present study was to analyze the overall growth of the two inbreed crops varieties after the biofield energy treatment. The plots were selected for the study, and divided into two parts, control and treated. The control plots were left as untreated, while the treated plots were exposed with Mr. Trivedi’s biofield energy treatment. Both the crops were cultivated in different fields and were analyzed for the growth contributing parameters as compared with their respective control. To study the genetic variability in both plants after biofield energy treatment, DNA fingerprinting was performed using RAPD method. The eggplants were reported to have uniform colored, glossy, and greener leaves, which are bigger in size. The canopy of the eggplant was larger with early fruiting, while the fruits have uniform shape and the texture as compared with the control. However, the watermelon plants after the biofield treatment showed higher survival rate, with larger canopy, bright and dark green leaves compared with the untreated plants. The percentage of true polymorphism observed between control and treated samples of eggplant and watermelon seed samples were an average value of 18% and 17%, respectively. Overall, the data suggest that Mr. Trivedi’s biofield energy treatment has the ability to alter the plant growth rate, and can be utilized in better way as compared with the existing agricultural crop improvement techniques to improve the overall crop yield.
Category: Biochemistry

[5] viXra:1609.0109 [pdf] submitted on 2016-09-08 23:37:05

Assessment of Antibiogram of Biofield Energy Treated Serratia Marcescens

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

Serratia marcescens (S. marcescens) has become an important nosocomial pathogens and increased resistant isolates were reported. The current study evaluates the impact of an alternate energy medicine i.e. Mr. Trivedi’s biofield energy treatment on S. marcescens for changes in sensitivity pattern of antimicrobial, biochemical characteristics, and biotype number. S. marcescens cells were procured from MicroBioLogics Inc., USA in sealed pack bearing the American Type Culture Collection (ATCC 13880) number and divided into two groups, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two sub-groups, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, while Gr. IIB was stored and analyzed on day 159 (Study I). After retreatment on day 159, the sample (Study II) was divided into three separate tubes as first, second and third tube, which were analyzed on day 5, 10 and 15 respectively. All experimental parameters were studied using the automated MicroScan Walk-Away® system. Antimicrobial susceptibility results showed that 42.85% of tested antimicrobials results in altered sensitivity pattern, while decreased minimum inhibitory concentration values in 40.62% tested antimicrobials as compared to the control after biofield treatment on S. marcescens. The biochemical study showed that 12 out of 33 tested biochemicals (36.36%) were reported for alteration of biochemical reactions pattern as compared to the control. Biotype study showed an alteration in biotype number in all the experimental treated groups as compared to the control. These results suggested that biofield energy treatment has a significant impact on S. marcescens. Overall, it is expected that Mr. Trivedi’s biofield energy treatment as an integrative medicine could be better therapy approach in near future.
Category: Biochemistry

[4] viXra:1609.0096 [pdf] submitted on 2016-09-08 04:36:55

Effect of Biofield Energy Treatment on Chlorophyll Content, Pathological Study, and Molecular Analysis of Cashew Plant (Anacardium Occidentale L.)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 11 Pages.

In the world scenario, India occupies a premier position contributing to about 43 per cent production of the cashew nut (Anacardium occidentale L.) along with export and processing. The aim is to study the impact of biofield energy treatment on selected farms for cashew farming. The control and biofield treated farms were divided as control and treated farms, and Mr. Trivedi provided the biofield energy treatment to the treated farms. Further, the plants and fruits were analyzed for overall growth of plants, chlorophyll content, productivity, pathological study, and shelf life using UN specifications for International Trade, biophoton emission study, and DNA fingerprinting using RAPD method. No chemicals, fertilizers, were used on the treated plot, although regular practices were followed on control farms such as fertilizers, pesticides and fungicides due to the high incidence of disease and the requirement of nutritional supplements in the region. The analysis showed that biofield treated farm plants have thicker and stronger branches with more secondary and tertiary branches, flowering pattern, and canopy of plants was improved than trees of the same variety along with height of the plants, as compared with the control. The results showed that chlorophyll a and b content in biofield treated lands plants were increased by approximately 30% and 93% respectively, while total chlorophyll content by 45% as compared with the control. The pathological examination showed the presence of fungi namely Colletotrichum gloeosporioides and Botryodiplodia theobromae in control, which were absent in treated plants. Biophoton study suggested that the cashew fruits were bigger in size with high density, strength, and vitality as compared with the control. The shelf life analysis reflected that the biofield treated cashews showed sweet taste, and can be stored for longer duration due to less moisture, and altered minerals content, such as high iodine, and low p-anisidine level. RAPD analysis showed a high level of polymorphism among control and treated samples, while level of true polymorphism among V4 variety of cashew was ranges from 0 to 100%, and in V7 variety, it ranged from 25 to 91% using different set of RAPD primers. Overall, study results suggest that Mr. Trivedi’s biofield energy treatment on land planted with cashew could be an alternative approach to improve the overall growth of plant, and fruit yield.
Category: Biochemistry

[3] viXra:1609.0061 [pdf] submitted on 2016-09-06 03:36:43

Solid Lipid Nanoparticles for Delivery of Calendula Officinalis Extract

Authors: 6L. Arana, C. Salado, S. Vega, O. Aizpurua-Olaizola, I. de la Arada, T. Suarez, A. Usobiaga, J.R. Arrondo, A. Alonso, FM Goni, Et Al
Comments: 9 Pages.

Solid lipid nanoparticles (SLN) composed of long-chain fatty acids (palmitic acid, stearic acid or arachidicacid), Epikuron 200 (purified phosphatidylcholine), and bile salts (cholate, taurocholate or taurodeoxy-cholate) have been prepared by dilution of a microemulsion. A total of five different systems wereprepared, and characterized by photon correlation spectroscopy, transmission electron microscopy,differential scanning calorimetry, and infrared spectroscopy. The SLN formulation showing optimal prop-erties (lowest size and polydispersity index and highest zeta potential) was obtained with stearic acidand taurodeoxycholate as cosurfactant. This formulation was loaded with Calendula officinalis extract, anatural compound used on ophthalmic formulations given its anti-inflammatory, emollient, and woundrepairing activity. Calendula-loaded SLN preparations were characterized in order to determine loadingcapacity and entrapment efficiency. In vitro cytotoxicity and wound healing efficacy of Calendula-loadedSLN compared to that of a free plant extract were evaluated on a conjunctival epithelium cell line WKD.Our results suggest that this SLN formulation is a safe and solvent-free Calendula extract delivery sys-tem which could provide a controlled therapeutic alternative for reducing disease-related symptoms andimproving epithelium repair in ocular surface.
Category: Biochemistry

[2] viXra:1609.0060 [pdf] submitted on 2016-09-06 03:38:35

Targeting the Endocannabinoid System: Future Therapeutic Strategies

Authors: O. Aizpurua-Olaizola, I. Elezgarai, I. Rico-Barrio, I. Zarandona, N. Etxebarria, A. Usobiaga
Comments: 6 Pages.

The endocannabinoid system (ECS) is involved in many physiological regulation pathways in the human body, which makes this system the target of many drugs and therapies. In this review, we highlight the latest studies regarding the role of the ECS and the drugs that target it, with a particular focus on the basis for the discovery of new cannabinoid-based drugs. In addition, we propose some key steps, such as the creation of a cannabinoid–receptor interaction matrix (CRIM) and the use of metabolomics, toward the development of improved and more specific drugs for each relevant disease.
Category: Biochemistry

[1] viXra:1609.0018 [pdf] submitted on 2016-09-02 01:25:23

Physicochemical Characterization of Biofield Energy Treated Calcium Carbonate Powder

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

Calcium carbonate (CaCO3) is widely used in pharmaceutical industries and as a supplement in probiotics. The present study was designed to evaluate the effect of biofield energy treatment on the physicochemical properties of the CaCO3. The CaCO3 powder was divided into two parts and referred as control and treated. The control part was remained untreated, whereas treated part was subjected to Trivedi’s biofield treatment. The control and biofield treated samples were characterized using X-ray diffraction (XRD), particle size analyzer, surface area analyzer, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR).
Category: Biochemistry