Chemistry

1608 Submissions

[24] viXra:1608.0378 [pdf] submitted on 2016-08-28 08:01:48

Impact of Modified Dmdheu and Copolymer Acrylic Resin Using Spraying Treatment Before and After an Enzymatic Washing on the Mechanical Properties of Denim Cotton Fabric

Authors: Nasr Litim, Ayda Baffoun, Saber Ben Abdessalem
Comments: 11 Pages. N Litim et al

In this paper, The principal purpose is to investigate the impact of modified DMDHEU and acrylic resin using spraying treatment of denim cotton fabric on mechanical properties loss (tear strength, grab strength loss and elongation loss) and others textile properties effect , such as, 3D rank evaluation and 3D thickness. All results are obtained for two of finishing process state; before and after an enzymatic washing and in warp and weft direction fabric. It has obtain that before and after washing, the modified DMDHEU resin effect more than acrylic resin the mechanical properties, (breaking strength, breaking elongation and tear strength) especially, for fabric 100% cotton compared to different fabric (weft composition contain Elasthanne 5% or Polyester). For the 3D rank of treated fabric with dissimilar resins, results clarify that enzymatic washing one of many factors cause increase of 3D rank level and more than their level before washing. It was established that the acrylic resin and resin spray application are significant factors in 3D thickness variation of treated fabrics.
Category: Chemistry

[23] viXra:1608.0377 [pdf] submitted on 2016-08-28 08:19:28

Investigation of Acrylic Resin Treatment and Evaluation of Cationic Additive Quality Impact on the Mechanical Properties of Finished Cotton Fabric

Authors: Nasr Litim, Ayda Baffoun
Comments: 9 Pages. N Litim et al

Statistical design of experiment (DOE) is an important tool to improve and developed of existing products or processes. This paper investigates the effect of essential finishing factors; curing temperature, curing time, resin, catalyst and cationic additive concentrations on the mechanical properties, especially on 3D ranks of cotton treated fabric with a copolymer acrylic resin. After that, it evaluates the impact of cationic additive class on 3D ranks and mechanical properties loss (breaking strength, breaking elongation and tear strength) of treated fabric with acrylic resin. The results, showed that cationic type effect; firstly (Electroprep) has the best quality on 3D rank of treated fabric and effect a little loss on mechanical properties, secondly (Easy stone super X), whereas (Easystone K) lead to a negatively loss on mechanical properties and gives undesired 3D rank. In order to investigate the causes of resin finish resumption and downgrading of garments in textile industry caused by ingredient concentration in bath resin. The main effect plot, interaction plot and contour plot method applied give to the textile engineer the possibility to predict the effect of resin treatment factors on the final quality desired of 3D rank and preserving the mechanical characteristics of treated fabric.
Category: Chemistry

[22] viXra:1608.0299 [pdf] submitted on 2016-08-23 21:34:23

Creation of Matter Waves with Water

Authors: Royan Rosche
Comments: 8 Pages.

Abstract: Water is shown to create two-dimensional matter waves with soluble chemicals via an alternate chemical dissolution method that is extremely simple and can be done instantaneously by anyone with water and a pure soluble chemical compounds. I have included many images because I know what I am disclosing sounds too good to be true or unbelievable to the modern world of science. Through experimentation of matter waves it is realized that they form opposite motion as opposed to dissolved ions in water indicating that water can hold two distinct phases of matter at once, I am calling these vertical (which is normal dissolved ions) and horizontal (matter waves) phases of matter in water. Matter waves are visible as a quantum fluid having quantum circles made out of what looks like very thin strings. Ions, vertical phase of matter, in water can mix with matter waves generating a new type of chemical reaction.
Category: Chemistry

[21] viXra:1608.0210 [pdf] submitted on 2016-08-19 00:05:44

Characterization of Physical, Thermal and Spectral Properties of Biofield Treated 2,6-Dichlorophenol

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

2,6-Dichlorophenol (2,6-DCP) is a compound used for the synthesis of chemicals and pharmaceutical agents. The present work is intended to evaluate the impact of Mr. Trivedi’s biofield energy treatment on physical, thermal and spectral properties of the 2,6-DCP. The control and treated 2,6-DCP were characterized by various analytical techniques such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and ultra violet-visible spectroscopy (UV-vis) analysis. The XRD results showed the increase in crystallite size of treated sample by 28.94% as compared to the control sample. However, the intensity of the XRD peaks of treated 2,6-DCP were diminished as compared to the control sample. The DTA analysis showed a slight increase in melting temperature of the treated sample. Although, the latent heat of fusion of the treated 2,6-DCP was changed substantially by 28% with respect to the control sample. The maximum thermal decomposition temperature (Tmax) of the treated 2,6-DCP was decreased slightly in comparison with the control. The FT-IR analysis showed a shift in C=C stretching peak from 1464→1473 cm-1 in the treated sample as compared to the control sample. However, the UV-vis analysis showed no changes in absorption peaks of treated 2,6-DCP with respect to the control sample. Overall, the result showed a significant effect of biofield energy treatment on the physical, thermal and spectral properties of 2,6-DCP. It is assumed that increase in crystallite size and melting temperature of the biofield energy treated 2,6-DCP could alleviate its reaction rate that might be a good prospect for the synthesis of pharmaceutical compounds.
Category: Chemistry

[20] viXra:1608.0209 [pdf] submitted on 2016-08-19 00:08:08

Physicochemical Characterization of Biofield Treated Orchid Maintenance/Replate Medium

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 9 Pages.

Orchids are used worldwide for indoor decoration, vanilla production, and beverage preparation. They are also reported for their therapeutic efficacy in brain-related problems. The in vitro micropropagation technique was used for their propagation using the orchid maintenance/replate (OMR) medium. The current study was based on analysing the effect of biofield energy treatment on the physicochemical properties of OMR medium. A part of the sample was treated with Mr. Trivedi’s biofield energy; various physicochemical properties were analyzed and compared with the untreated (control) part. The X-ray diffraction analysis revealed the decrease in crystallite size of treated sample (132.80 nm) as compared to the control (147.55 nm). The particle size analysis revealed 20.78% increase in average particle size and 39.29% increase in d99 (size below which 99% particles are present) of the treated OMR medium as compared to the control. Moreover, the surface area of the treated sample was reduced by 3.9%, supporting the data of particle size analysis. The thermal analysis studies revealed an increase in the thermal stability of the treated OMR medium as compared to the control. The analysis was done by using differential scanning calorimetry that showed increase in melting point (1.23%) and latent heat of fusion (135.7%); and thermogravimetric analysis that reported increase in onset temperature and maximum thermal degradation temperature of the treated sample as compared to the control. Besides, the CHNSO analysis revealed the increase in percentage of nitrogen (22.22%) as well as the presence of sulphur in the treated sample. The Fourier transform infrared and UV-visible spectroscopy also showed the differences in the spectra of the treated sample as compared to the control OMR medium. Hence, the overall data revealed the impact of biofield energy treatment on the physicochemical properties of the treated sample that might be used in better way in the in vitro culture techniques as compared to the control sample.
Category: Chemistry

[19] viXra:1608.0207 [pdf] submitted on 2016-08-19 00:12:28

Evaluation of Plant Growth Regulator, Immunity and DNA Fingerprinting of Biofield Energy Treated Mustard Seeds (Brassica Juncea)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Among the oilseeds grown around the world, mustard is one of the important crop worldwide due to its wide adaptability and high yielding capacity. Owing to the importance of its utilities as condiment, cooking oil and some medical aids, the demand for its seed production is too high. The present study was carried out to evaluate the impact of Mr. Trivedi’s biofield energy treatment on mustard (Brassica juncea) for its growth-germination of seedling, glutathione (GSH) content in leaves, indole acetic acid (IAA) content in shoots and roots and DNA polymorphism by random amplified polymorphic-DNA (RAPD). The sample of B. juncea was divided into two groups. One group was remained as untreated and coded as control, while the other group was subjected to Mr. Trivedi’s biofield energy treatment and referred as the treated sample. The growth-germination of B. juncea seedling data exhibited that the biofield treated seeds were germinated faster on day 5 as compared to the control (on day between 7-10). The shoot and root length of seedling were slightly increased in the treated seeds of 10 days old with respect to untreated seedling. Moreover, the major plant antioxidant i.e. GSH content in mustard leaves was significantly increased by 206.72% (p<0.001) as compared to the untreated sample. Additionally, the plant growth regulatory constituent i.e. IAA level in root and shoot was increased by 15.81% and 12.99%, respectively with respect to the control. Besides, the DNA fingerprinting data using RAPD revealed that the treated sample showed an average 26% of DNA polymorphism as compared to the control. The overall results envisaged that the biofield energy treatment on mustard seeds showed a significant improvement in germination, growth of roots and shoots, GSH and IAA content in the treated sample. In conclusion, the biofield energy treatment of mustard seeds could be used as an alternative way to increase the production of mustard.
Category: Chemistry

[18] viXra:1608.0170 [pdf] submitted on 2016-08-17 04:33:26

Determination of Isotopic Abundance Ratio of Biofield Energy Treated 1,4-Dichlorobenzene Using Gas Chromatography-Mass Spectrometry (GC-MS)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

The objective of the current study was to evaluate the effect of biofield energy treatment on the isotopic abundance ratios of P M+1/PM, PM+2/PM, PM+3/PMand PM+4/PM in p-DCB using gas chromatography-mass spectrometry (GC-MS). The p-DCB was divided into two parts - one part was control sample, and another part was considered as the treated sample which was subjected to biofield energy treatment (The Trivedi Effect®). T1, T2, T3, and T4 were referred the biofield treated p-DCB having analyzed at different time intervals. The GC-MS analysis of both the control and biofield treated p-DCB indicated the presence of the parent molecular ion peak at m/z 146 along with four major fragmentation peaks at m/z 111, 75, 55 and 50. The relative peak intensities of the fragmented ions in the biofield treated p-DCB were notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis using GC-MS revealed that the isotopic abundance ratio of PM+1/PM at T1, T2, T3, and T4 (biofield energy treated p-DCB) was significantly increased by 10.87, 83.90, 225.16, and 241.15%, respectively as compared to the control sample. Consequently, the percentage change in the isotopic abundance ratio of PM+2/PM at T1, T2, and T3 (biofield energy treated p-DCB) was enhanced by 4.55, 9.49, and 1.80%, respectively as compared to the control sample. Beside these, another two isotopic molecular ion peaks at m/z 149 and 150 were found in the GS-MS spectra due to arise from the contributions of various combinations of 2H, 13C, and 37Cl. The isotopic abundance ratios of PM+3/PM in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 15.14, 82.57, 192.43, and 218.31%, respectively as compared to the control sample. Similarly, the PM+4/PM in biofield energy treated sample at T1, T2, T3, and T4 was significantly increased by 13.80, 86.66, 186.13, and 204.29%, respectively as compared to the control sample. Overall, the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C), PM+2/PM (37Cl/35Cl), for PM+3/PM and PM+4/PM (the probable combinations of 2H/1H, 13C/12C, and 37Cl/35Cl) were significantly enhanced in the biofield energy treated p-DCB. The biofield treated p-DCB has shown improved isotopic abundance ratios that might have altered the physicochemical properties, thermal properties and rate of reaction. Biofield treated p-DCB might be useful in pharmaceutical and chemical industries as intermediates during the manufacturing of pharmaceuticals and chemicals by monitoring the rate of chemical reaction.
Category: Chemistry

[17] viXra:1608.0169 [pdf] submitted on 2016-08-17 04:35:05

Gas Chromatography-Mass Spectrometric Analysis of Isotopic Abundance of 13C, 2H, and 18o in Biofield Energy Treated P-Tertiary Butylphenol (PTBP)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 9 Pages.

p-tert-Butyphenol (PTBP) is a phenolic monomer used in the synthesis of numerous industrially useful chemicals. The current research work aimed to evaluate the effect of the biofield energy treatment on the isotopic abundance ratios of PM+1/PM and PM+2/PM in PTBP using gas chromatography - mass spectrometry (GC-MS). The sample, PTBP was distributed into two parts - one part was designated as control PTBP and another part was considered as biofield energy treated PTBP. The biofield energy treatment was achieved through unique biofield energy transmission process by Mr. Trivedi (also known as The Trivedi Effect®). T1, T2, T3, and T4 were indicated to the different time interval analysis of the biofield treated PTBP. The GC-MS spectra of the both control and biofield treated PTBP showed the presence of molecular ion peak [M+] at m/z 150 (calculated 150.10 for C10H14O) along with eight major fragmented peaks at m/z 135, 107, 95, 91, 77, 65, 41, and 39, which might be due to C10H15+, C7H7O+ or C8H11+, C6H7O+, C7H7+, C6H5+, C5H5+, C3H5+, and C3H3• •+ ions, respectively. The relative intensities of the parent molecule and other fragmented ions of the biofield treated PTBP were altered as compared to the control PTBP. The percentage in the isotopic abundance ratio of PM+1/PM was enhanced in the biofield treated PTBP at T2, T3 and T4 by 1.60%, 3.57%, and 120.13%, respectively while it was decreased by 4.14% in the treated sample at T1 with respect to the control PTBP. Consequently, the isotopic abundance ratio of PM+2/PM was increased in the biofield treated PTBP at T1, T3, and T4 by 1.28%, 2.56%, and 123.08%, respectively with respect to the control sample. On the other hand, it was reduced in the biofield treated sample at T2 by 1.28% as compared to the control PTBP. Concisely, 13C, 2H, and 17O contributions from (C10H14O)+ to m/z 151 and 18O contribution from (C10H14O)+ to m/z 152 in the biofield treated PTBP were changed with respect to the control sample and was found to have time dependent effect. The biofield energy treated PTBP might display isotope effects such as different physicochemical and thermal properties, rate of the reaction, selectivity and binding energy due to the changed isotopic abundance ratio as compared to the control sample. Biofield treated PTBP could be valuable for the designing new chemicals and pharmaceuticals through using its kinetic isotope effects.
Category: Chemistry

[16] viXra:1608.0168 [pdf] replaced on 2016-10-17 01:36:27

Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acid

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 8 Pages.

Toluic acid isomers are widely used as a chemical intermediate in manufacturing of dyes, pharmaceuticals, polymer stabilizers, insect repellent and other organic synthesis. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of ortho isomer of toluic acid (OTA). The OTA sample was divided into two groups, served as control and treated. The treated group received Mr. Trivedi’s biofield treatment. Subsequently, the control and treated samples were evaluated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis/ derivative thermogravimetry (TGA/DTG), Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy. XRD result showed 26.66% decrease in crystallite size in treated OTA sample as compared to control. Furthermore, DSC analysis result showed that latent heat of fusion was considerably reduced by 6.68% in treated OTA sample as compared to control. However, an increase in melting point was observed in treated sample. The melting point of treated OTA sample was found to be 107.96°C as compared to control (105.47°C) sample. Moreover, TGA/ DTG studies showed that Tmax (temperature, at which sample lost its maximum weight) was decreased by 1.21% in treated OTA sample as compared to control. It indicates that vaporisation of treated OTA sample might increase as compared to control. The FT-IR and UV-Vis spectra did not show any significant changes in spectral properties of treated OTA sample as compared to control. These findings suggest that biofield treatment has significantly altered the physical and thermal properties of OTA, which could make it more useful as chemical intermediate.
Category: Chemistry

[15] viXra:1608.0159 [pdf] submitted on 2016-08-16 00:11:55

Antibiogram of Multidrug-Resistant Isolates of Pseudomonas Aeruginosa After Biofield Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

In recent years, prevalence of multidrug resistance (MDR) in Pseudomonas aeruginosa (P. aeruginosa) has been noticed with high morbidity and mortality. Aim of the present study was to determine the impact of Mr. Trivedi’s biofield treatment on MDR clinical lab isolates (LS) of P. aeruginosa. Five MDR clinical lab isolates (LS 22, LS 23, LS 38, LS 47, and LS 58) of P. aeruginosa were taken and divided into two groups i.e. control and biofield treated. Control and treated group were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical study and biotype number using MicroScan Walk-Away® system. The analysis was done on day 10 after biofield treatment as compared with control group. Antimicrobial sensitivity assay showed 60% alteration in sensitivity of tested antimicrobials in MDR isolates of P. aeruginosa after biofield treatment. MIC results showed an alteration in 42.85% tested antimicrobials out of twenty eight after biofield treatment in five isolates of MDR P. aeruginosa. Biochemical study showed a 48.48% change in tested biochemical reactions out of thirty three as compared to control. A significant change in biotype numbers was reported in three clinical lab isolates of MDR P. aeruginosa out of five, after biofield treatment as compared to respective control. On the basis of changed biotype number (7302 0052) in biofield treated LS 23, new organism was identified as Citrobacter freundii as compared to control (0206 3336). A very rare biotype number (7400 4263) was found in biofield treated LS 38, as compared to control (0206 3736). Study results suggest that biofield treatment on lab isolates of MDR P. aeruginosa has significant effect on the antimicrobial sensitivity, MIC values, biochemical reactions and biotype number. Biofield treatment might prevent the emergence of absolute resistance pattern of useful antimicrobials against MDR isolates of P. aeruginosa.
Category: Chemistry

[14] viXra:1608.0157 [pdf] submitted on 2016-08-16 00:16:39

Gas Chromatography-Mass Spectrometry Based Isotopic Abundance Ratio Analysis of Biofield Energy Treated Methyl-2-napthylether (Nerolin)

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

Methyl-2-napthylether (nerolin) is an organic compound and has the applications in pharmaceutical, and perfume industry. The stable isotope ratio analysis is increasing importance in various field of scientific research. The objective of the current study was to evaluate the effect of the biofield energy treatment on the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C or 17O/16O) and PM+2/PM (18O/16O) in nerolin using the gas chromatography-mass spectrometry (GC-MS). The compound nerolin was divided into two parts - one part was control sample (untreated), and another part was considered as biofield energy treated sample which was received the biofield energy treatment through the unique biofield energy transmission process by Mr. Mahendra Kumar Trivedi (also known as The Trivedi Effect®). The biofield energy treated nerolin was analyzed at different time intervals and were represented as T1, T2, T3, and T4 in order to understand the effect of the biofield energy treatment on isotopic abundance ratio with respect to the time. From the GC-MS spectral analysis, the presence of the molecular ion peak C11H10O+(m/z 158) along with major fragmented peaks C10H7O- (m/z 143), C10H8 (m/z 128), C9H7+ (m/z 115), C7H5+ (m/z 89), C5H3+ (m/z 63), C4H3+ (m/z 51), and C3H3+ (m/z 39) were observed in both control and biofield treated samples. Only, the relative peak intensities of the fragmented ions in the biofield treated nerolin was notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis of nerolin using GC-MS revealed that the isotopic abundance ratio of PM+1/PM in the biofield energy treated nerolin at T1, T2, T3, and T4 was increased by 2.38, 138.10, 13.10, and 32.14%, as compared to the control sample. Likewise, the isotopic abundance ratio of PM+2/PM at T1, T2, T3, and T4 was increased by 2.38, 138.10, 13.10, and 32.14%, respectively in the biofield treated nerolin as compared to the control sample. Overall, the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C or 17O/16O) and PM+2/PM (18O/16O) were significantly increased in the biofield energy treated sample as compared to the control sample with respect to the time. It is concluded that Mr. Trivedi’s biofield energy treatment has the significant impact on alteration in isotopic abundance of nerolin as compared to the control sample. The biofield treated nerolin might display different altered physicochemical properties and rate of reaction and could be an important intermediate for the production of pharmaceuticals, chemicals, and perfumes in the industry.
Category: Chemistry

[13] viXra:1608.0156 [pdf] submitted on 2016-08-16 00:21:19

Determination of Isotopic Abundance of 13C/12C or 2H/1H and 18O/16O in Biofield Energy Treated 1-Chloro-3-Nitrobenzene (3-CNB) Using Gas Chromatography-Mass Spectrometry

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 10 Pages.

1-Chloro-3-nitrobenzene (3-CNB) is an aromatic halo-amine compound used as chemical intermediate for the production of several fine chemicals like pharmaceuticals, dyes, agricultural chemicals, etc. The stable isotope ratio analysis has drawn attention in numerous fields such as agricultural, food authenticity, biochemistry, etc. The objective of the current research was to investigate the impact of the biofield energy treatment on the isotopic abundance ratios of PM+1/PM, PM+2/PM and PM+3/PM in 3-CNB using gas chromatography - mass spectrometry (GC-MS). The sample, 3-CNB was divided into two parts - one part was denoted as control and another part was referred as biofield energy treated sample that was treated with biofield energy (The Trivedi Effect®). T1, T2, T3, and T4 were represented to different time interval analysis of the biofield treated 3-CNB. The GC-MS spectra of the both control and biofield treated 3-CNB indicated the presence of molecular ion peak [M+] at m/z 157 (calculated 156.99 for C6H4ClNO2) along with same pattern of fragmentation. The relative intensities of the parent molecule and other fragmented ions of the biofield treated 3-CNB were improved as compared to the control 3-CNB. The percentage change of the isotopic abundance ratio of PM+1/PM was significantly increased in the biofield treated 3-CNB at T1, T2 and T3 by 11.62, 18.50, and 29.82%, respectively with respect to the control 3-CNB. Accordingly, the isotopic abundance ratio of PM+2/PM in the biofield treated 3-CNB at T2 and T3 was significantly improved by 15.22 and 35.09%, respectively as compared to the control sample. The isotopic abundance ratios of PM+1/PM and PM+2/PM in the biofield treated 3-CNB at T1 and T4 were changed as compared to the control sample. The percentage change of the isotopic abundance ratio of PM+3/PM was enhanced in the biofield treated 3-CNB at T1, T2, T3, and T4 by 4.67, 18.69, 31.31 and 6.08%, respectively as compared to the control 3-CNB. The isotopic abundance ratios of PM+1/PM, PM+2/PM and PM+3/PM in the biofield treated 3-CNB changed with the time. So, the biofield energy treated 3-CNB might exhibit the altered isotope effects such as altered physicochemical and thermal properties, binding energy, and the rate of the chemical reaction as compared to the control sample. The biofield energy treated 3-CNB might assist in designing for the synthesis of pharmaceuticals, agricultural chemicals, dyes, corrosion inhibitors and other several useful industrial chemicals.
Category: Chemistry

[12] viXra:1608.0131 [pdf] submitted on 2016-08-13 01:41:21

Characterisation of Physical, Spectral and Thermal Properties of Biofield Treated Resorcinol

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 7 Pages.

Resorcinol is widely used in manufacturing of several drugs and pharmaceutical products that are mainly used for topical ailments. The main objective of this study is to use an alternative strategy i.e., biofield treatment to alter the physical, spectral and thermal properties of resorcinol. The resorcinol sample was divided in two groups, which served as control and treated group. The treated group was given biofield treatment and both groups i.e., control and treated were analysed using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, UV-Visible (UVVis) spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The results showed a significant decrease in crystallite size of treated sample i.e., 104.7 nm as compared to control (139.6 nm). The FTIR and UV-Vis spectra of treated sample did not show any change with respect to control. Besides, thermal analysis data showed 42% decrease in latent heat of fusion. The onset temperature of volatilization and temperature at which maximum volatilization happened was also decreased by 16% and 12.86%, respectively. The significant decrease in crystallite size may help to improve the spreadability and hence bioavailability of resorcinol in topical formulations. Also increase in volatilization temperature might increase the rate of reaction of resorcinol when used as intermediate. Hence, biofield treatment may alter the physical and thermal properties of resorcinol and make it more suitable for use in pharmaceutical industry.
Category: Chemistry

[11] viXra:1608.0120 [pdf] submitted on 2016-08-12 05:18:59

Evaluation of Biofield Treatment on Atomic and Thermal Properties of Ethanol

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

Ethanol is a polar organic solvent, and frequently used as a fuel in automobile industries, principally as an additive with gasoline due to its higher octane rating. It is generally produced from biomass such as corn, sugar and some other agriculture products. In the present study, impact of biofield treatment on ethanol was evaluated with respect to its atomic and thermal properties. The ethanol sample was divided into two parts i.e., control and treatment. Control part was remained untreated. Treatment part was subjected to Mr. Trivedi’s biofield treatment. Control and treated samples were characterized using Gas chromatography-mass Spectrometry (GC-MS), Differential scanning calorimetry (DSC), and High performance liquid chromatography (HPLC). GC-MS data revealed that isotopic abundance of 13C i.e., δ13C of treated ethanol was significantly changed from -199‰ upto 155‰ as compared to control. The DSC data exhibited that the latent heat of vaporization of treated ethanol was increased by 94.24% as compared to control, while no significant change was found in boiling point. Besides, HPLC data showed that retention time was 2.65 minutes in control, was increased to 2.76 minutes in treated ethanol sample. Thus, overall data suggest that biofield treatment has altered the atomic and thermal properties of ethanol.
Category: Chemistry

[10] viXra:1608.0119 [pdf] submitted on 2016-08-12 05:21:24

In vitro Evaluation of Biofield Treatment on Viral Load Against Human Immunodeficiency-1 and Cytomegalo Viruses

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Viral load quantification is the amount of particular viral DNA or RNA in a blood samples. It is one of the surrogate biomarker of AIDS. High viral load indicates that the immune system is failed to fight against viruses. The aim of this study was to evaluate the impact of biofield treatment on HIV-1 and HCMV in terms of viral loads as surrogate marker. The viral load assay was performed on stored stock cultures of HIV infected human plasma samples before and after 7 days of biofield treatment using Roche COBAS® AMPLICOR analyzer. Viral load (HIV-1 RNA and HCMV DNAaemia) was considered as surrogate marker for assessment of the impact of Mr. Trivedi’s biofield treatment in HIV infected stored plasma samples. The viral load quantification of HIV-1 RNA in infected stored plasma samples was significantly reduced by 65% in biofield treated group as compared to control. Additionally, viral load of HCMV DNAaemia in infected stored plasma samples was also reduced by 80% in the biofield treated group as compared to control. Because, children are more prone to HCMV infection and adults are generally liable to suffer from HIV-1 infection. As the biofield treatment has reduced HCMV DNAaemia, it could be beneficial for HIV infected children populations. Altogether, data suggest that biofield treatment has significantly reduced the viral load quantification in HIV-1 and HCMV infected stored plasma samples and could be a suitable alternative treatment strategy for AIDS patients in near future.
Category: Chemistry

[9] viXra:1608.0105 [pdf] submitted on 2016-08-10 04:48:21

Physicochemical and Spectroscopic Characterization of P-Chlorobenzaldehyde: an Impact of Biofield Energy Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

p-Chlorobenzaldehyde (p-CBA) is used as an important chemical intermediate for the preparation of pharmaceuticals, agricultural chemicals, dyestuffs, optical brighteners, and metal finishing products. The study aimed to evaluate the effect of biofield energy treatment on the physicochemical and spectroscopic properties of p-CBA. The study was accomplished in two groups i.e. control and treated. The control group was remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. Finally, both the samples (control and treated) were evaluated using various analytical techniques. The surface area analysis showed a substantial increase in the surface area by 23.06% after biofield treatment with respect to the control sample. The XRD analysis showed the crystalline nature of both control and treated samples. The X-ray diffractogram showed the significant alteration in the peak intensity in treated sample as compared to the control. The XRD analysis showed the slight increase (2.31%) in the crystallite size of treated sample as compared to the control. The TGA analysis exhibited the decrease (10%) in onset temperature of thermal degradation form 140°C (control) to 126°C in treated sample. The Tmax (maximum thermal degradation temperature) was slightly decreased (2.14%) from 157.09°C (control) to 153.73°C in treated sample of p-CBA. This decrease in Tmax was possibly due to early phase of vaporization in treated sample as compared to the control. The FT-IR spectrum of treated p-CBA showed the increase in wavenumber of C=C stretching as compared to the control. The UV spectroscopic study showed the similar pattern of wavelength in control and treated samples.
Category: Chemistry

[8] viXra:1608.0089 [pdf] submitted on 2016-08-09 04:13:56

Characterization of Biofield Energy Treated 3-Chloronitrobenzene: Physical, Thermal, and Spectroscopic Studies

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

The chloronitrobenzenes are widely used as the intermediates in the production of pharmaceuticals, pesticides and rubber processing chemicals. However, due to their wide applications, they are frequently released into the environment thereby creating hazards. The objective of the study was to use an alternative strategy i.e. biofield energy treatment and analysed its impact on the physical, thermal and spectral properties of 3-chloronitrobenzene (3-CNB). For the study, the 3-CNB sample was taken and divided into two groups, named as control and treated. The analytical techniques used were X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), UV-Visible (UV-Vis), and Fourier transform infrared (FT-IR) spectroscopy. The treated group was subjected to the biofield energy treatment and analysed using these techniques against the control sample. The XRD data showed an alteration in relative intensity of the peak along with 30% decrease in the crystallite size of the treated sample as compared to the control. The TGA studies revealed the decrease in onset temperature of degradation from 140ºC (control) to 120°C, while maximum thermal degradation temperature was changed from 157.61ºC (control) to 150.37ºC in the treated sample as compared to the control. Moreover, the DSC studies revealed the decrease in the melting temperature from 51°C (control) →47°C in the treated sample. Besides, the UV-Vis and FT-IR spectra of the treated sample did not show any significant alteration in terms of wavelength and frequencies of the peaks, respectively from the control sample. The overall study results showed the impact of biofield energy treatment on the physical and thermal properties of 3-CNB that can further affect its use as a chemical intermediate and its fate in the environment.
Category: Chemistry

[7] viXra:1608.0088 [pdf] submitted on 2016-08-09 04:16:11

Evaluation of Thermal and Physical Properties of Magnesium Nitride Powder: Impact of Biofield Energy Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Magnesium nitride (Mg3N2 ) has gained extensive attention due to its catalytic and optoelectronic properties. The present investigation was aimed to evaluate the effect of biofield energy treatment on physical and thermal properties of Mg3N2 powder. The Mg3N2 powder was divided into two parts i.e. control and treated. The control part was remained as untreated and the treated part was subjected to the Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated Mg3N2 samples were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The DSC results showed the specific heat capacity of 2.24 Jg-1°C-1 in control, which increased upto 5.55 Jg-1°C-1 in treated Mg3N2 sample. The TGA data revealed that the onset temperature for the formation of magnesium oxide, possibly due to oxidation of Mg3N2 in the presence of air and moisture, was reduced from 421.0°C (control) to 391.33°C in treated sample. Besides, the XRD data revealed that the lattice parameter and unit cell volume of treated Mg3N2 samples were increased by 0.20 and 0.61% respectively, as compared to the control. The shifting of all peaks toward lower Bragg angle was observed in treated sample as compared to the control. The XRD diffractogram also showed that the relative intensities of all peaks were altered in treated sample as compared to control. In addition, the density of treated Mg3N2 was reduced by 0.60% as compared to control. Furthermore, the crystallite size was significantly increased from 108.05 nm (control) to 144.04 nm in treated sample as compared to the control. Altogether data suggest that biofield energy treatment has substantially altered the physical and thermal properties of Mg3N2 powder. Thus, the biofield treatment could be applied to modulate the catalytic and optoelectronic properties of Mg3N2 for chemical and semiconductor industries.
Category: Chemistry

[6] viXra:1608.0075 [pdf] submitted on 2016-08-08 04:18:21

Characterization of Physical, Thermal and Spectral Properties of Biofield Treated O-Aminophenol

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

O-aminophenol has extensive uses as a conducting material and in electrochemical devices. The objective of this research was to investigate the influence of biofield energy treatment on the physical thermal and spectral properties of o-aminophenol. The study was performed in two groups; the control group was remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated o-aminophenol samples were characterized by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, and Ultra violet-visible spectroscopy analysis (UV-vis). The XRD analysis showed an increase in peak intensity of the treated o-aminophenol with respect to the control. Additionally, the crystallite size of the treated o-aminophenol was increased by 34.51% with respect to the control sample. DSC analysis showed a slight increase in the melting temperature of the treated sample as compared to the control. However, a significant increase in the latent heat of fusion was observed in the treated o-aminophenol by 162.24% with respect to the control. TGA analysis showed an increase in the maximum thermal decomposition temperature (Tmax) in treated o-aminophenol (178.17ºC) with respect to the control (175ºC). It may be inferred that the thermal stability of o-aminophenol increased after the biofield treatment. The surface area analysis using BET showed a substantial decrease in the surface area of the treated sample by 47.1% as compared to the control. The FT-IR analysis showed no changes in the absorption peaks of the treated sample with respect to the control. UV-visible analysis showed alteration in the absorption peaks i.e. 211→203 nm and 271→244 nm of the treated o-aminophenol as compared to the control. Overall, the results showed that the biofield treatment caused an alteration in the physical, thermal and spectral properties of the treated o-aminophenol.
Category: Chemistry

[5] viXra:1608.0072 [pdf] submitted on 2016-08-07 16:03:58

Chemical Equilibrium in Stellar Metamorphosis

Authors: Jeffrey Joseph Wolynski
Comments: 1 Page.

In stellar metamorphosis stars are not in chemical equilibrium, because their pressures, temperatures and concentrations of their chemical components change greatly during their evolution.
Category: Chemistry

[4] viXra:1608.0051 [pdf] submitted on 2016-08-05 05:05:31

Characterization of Physicochemical and Thermal Properties of Chitosan and Sodium Alginate After Biofield Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 9 Pages.

Chitosan (CS) and sodium alginate (SA) are two widely popular biopolymers which are used for biomedical and pharmaceutical applications from many years. The objective of present study was to study the effect of biofield treatment on physical, chemical and thermal properties of CS and SA. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated polymers were characterized by Fourier transform infrared (FT-IR) spectroscopy, CHNSO analysis, X-ray diffraction (XRD), particle size analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). FT-IR of treated chitosan showed increase in frequency of –CH stretching (2925→2979 cm- 1) vibrations with respect to control. However, the treated SA showed increase in frequency of –OH stretching (3182→3284 cm-1) which may be correlated to increase in force constant or bond strength with respect to control. CHNSO results showed significant increase in percentage of oxygen and hydrogen of treated polymers (CS and SA) with respect to control. XRD studies revealed that crystallinity was improved in treated CS as compared to control. The percentage crystallite size was increased significantly by 69.59% in treated CS with respect to control. However, treated SA showed decrease in crystallite size by 41.04% as compared to control sample. The treated SA showed significant reduction in particle size (d50 and d99) with respect to control SA. DSC study showed changes in decomposition temperature in treated CS with respect to control. A significant change in enthalpy was observed in treated polymers (CS and CA) with respect to control. TGA results of treated CS showed decrease in Tmax with respect to control. Likewise, the treated SA also showed decrease in Tmax which could be correlated to reduction in thermal stability after biofield treatment. Overall, the results showed that biofield treatment has significantly changed the physical, chemical and thermal properties of CS and SA.
Category: Chemistry

[3] viXra:1608.0050 [pdf] submitted on 2016-08-05 05:07:41

Thermal, Spectroscopic and Chemical Characterization of Biofield Energy Treated Anisole

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

The objective of the present study was to evaluate the impact of biofield energy treatment on the thermal, spectroscopic, and chemical properties of anisole by various analytical methods such as gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy. The anisole sample was divided into two parts, control and treated. The control part was remained same while the other part was treated with Mr. Trivedi’s unique biofield energy treatment. Mass spectra showed the molecular ion peak with five fragmented peaks in control and all treated samples. The isotopic abundance ratio of 2H/1H, and 13C/12C [(PM+1)/PM] in treated sample was increased by 154.47% (T1) as compared to the control [where, PM- primary molecule, (PM+1)-isotopic molecule either for 13C or 2H]. The HPLC chromatogram showed retention time of treated anisole was slightly decreased as compared to the control. Moreover, the heat change in the sharp endothermic transition of treated anisole was increased by 389.07% in DSC thermogram as compared to the control. Further, C-C aromatic stretching frequency of treated sample was shifted by 2 cm-1 to low energy region in FT-IR spectroscopy. The UV-Vis spectra of control sample showed characteristic absorption peaks at 325 nm, which was red shifted and appeared as shoulder in the treated sample. These results suggested that biofield treatment has significantly altered the physical and spectroscopic properties of anisole, which could make them stable solvent for organic synthesis and as a suitable reaction intermediate in industrial applications.
Category: Chemistry

[2] viXra:1608.0027 [pdf] submitted on 2016-08-03 04:30:09

Potential Impact of Biofield Energy Treatment on the Atomic, Physical and Thermal Properties Indium Powder

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 6 Pages.

Indium has gained significant attention in the semiconductor industries due to its unique thermal and optical properties. The objective of this research was to investigate the influence of the biofield energy treatment on the atomic, physical and thermal properties of the indium. The study was performed in two groups (control and treated). The control group remained as untreated, and treated group received Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated indium samples were characterized by the X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The XRD diffractogram showed the shifting of peaks toward higher Bragg’s angles in the treated indium sample as compared to the control. The crystallite size of treated indium sample were substantially changed from -80% to 150.2% after biofield energy treatment, as compared to control. In addition, the biofield energy treatment has altered the lattice parameter (-0.56%), unit cell volume (-0.23%), density (0.23%), atomic weight (-0.23), and nuclear charge per unit volume (1.69%) of the treated indium sample with respect to the control. The DSC showed an increase in the latent heat of fusion up to 3.23% in the treated indium sample with respect to control. Overall, results suggest that biofield energy treatment has substantially altered the atomic, physical, and thermal properties of treated indium powder. Therefore, the treated indium could be utilized in thermal interface material in semiconductor industries.
Category: Chemistry

[1] viXra:1608.0026 [pdf] submitted on 2016-08-03 04:39:08

Antimicrobial Sensitivity, Biochemical Characteristics and Biotyping of Staphylococcus Saprophyticus: an Impact of Biofield Energy Treatment

Authors: Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
Comments: 5 Pages.

Staphylococcus saprophyticus (S. saprophyticus) is a frequent cause of urinary tract infection in the young women. The current study was designed to analyze the effect of biofield energy treatment on S. saprophyticus for evaluation of its antibiogram profile, biochemical reactions pattern and biotyping characteristics. Two sets of ATCC samples were taken in this experiment and denoted as A and B. Sample A was revived and divided into two parts Group (Gr.I) (control) and Gr.II (revived); likewise, sample B was labeled as Gr.III (lyophilized). Gr. II and III were given with Mr. Trivedi’s biofield energy treatment. The control and treated groups of S. saprophyticus cells were tested with respect to antimicrobial susceptibility, biochemical reactions pattern and biotype number using MicroScan Walk-Away® system. The 50% out of twenty-eight tested antimicrobials showed significant alteration in susceptibility and 36.67% out of thirty antimicrobials showed an alteration in minimum inhibitory concentration (MIC) value of S. saprophyticus in revived treated cells (Gr. II, day 10), while no alteration was found in lyophilized treated cells (Gr. III, day 10) as compared to the control. It was also observed that overall 14.81%, out of twenty-seven biochemical reactions were altered in the revived treated group with respect to the control. Moreover, biotype number was changed in Gr. II, on day 5 (246076) and in Gr. III, on day 10 (242066), while organism along-with biotype number was also changed in Gr. II, on day 10 (342066, Staphylococcus hominis subsp. novobiosepticus) as compared to the control (242076, S. saprophyticus). The result suggested that biofield treatment has the significant impact on S. saprophyticus in revived treated cells with respect to the antimicrobial susceptibility, MIC, biochemical reactions pattern and biotype.
Category: Chemistry