Condensed Matter

1809 Submissions

[24] viXra:1809.0588 [pdf] submitted on 2018-09-29 07:53:03

Tiny Vortices Driven by Magnetic Fields

Authors: George Rajna
Comments: 47 Pages.

The vortices could one day be used in lab-on-a-chip designs to move particles, like blood cells, from one place to another, or to build materials with self-healing properties. [29] Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have proven that incoming light causes the electrons in warm perovskites to rotate, thus influencing the direction of the flow of electrical current. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20]
Category: Condensed Matter

[23] viXra:1809.0586 [pdf] submitted on 2018-09-29 09:07:14

3-D Mesostructures

Authors: George Rajna
Comments: 60 Pages.

Microelectromechanical systems (MEMS) have expansive applications in biotechnology and advanced engineering with growing interest in materials science and engineering due to their potential in emerging systems. [35] Researchers at Griffith University working with Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) have unveiled a stunningly accurate technique for scientific measurements which uses a single atom as the sensor, with sensitivity down to 100 zeptoNewtons. [34] Researchers at the Center for Quantum Nanoscience within the Institute for Basic Science (IBS) have made a major breakthrough in controlling the quantum properties of single atoms. [33] A team of researchers from several institutions in Japan has described a physical system that can be described as existing above "absolute hot" and also below absolute zero. [32] A silicon-based quantum computing device could be closer than ever due to a new experimental device that demonstrates the potential to use light as a messenger to connect quantum bits of information—known as qubits—that are not immediately adjacent to each other. [31] Researchers at the University of Bristol's Quantum Engineering Technology Labs have demonstrated a new type of silicon chip that can help building and testing quantum computers and could find their way into your mobile phone to secure information. [30] Theoretical physicists propose to use negative interference to control heat flow in quantum devices. [29] Particle physicists are studying ways to harness the power of the quantum realm to further their research. [28] A fundamental barrier to scaling quantum computing machines is "qubit interference." In new research published in Science Advances, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference. [26]
Category: Condensed Matter

[22] viXra:1809.0494 [pdf] submitted on 2018-09-23 07:42:03

Perovskite Semiconductors

Authors: George Rajna
Comments: 46 Pages.

KU Leuven researchers from the Roeffaers Lab and the Hofkens Group have now put forward a very promising direct X-ray detector design, based on a rapidly emerging halide perovskite semiconductor, with chemical formula Cs2AgBiBr6. [29] Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have proven that incoming light causes the electrons in warm perovskites to rotate, thus influencing the direction of the flow of electrical current. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20]
Category: Condensed Matter

[21] viXra:1809.0480 [pdf] submitted on 2018-09-24 03:52:23

Phase Transition-Induced Electrical Voltage

Authors: Yuanjie Huang
Comments: 14 Pages.

Non-uniform phase transitions are widespread phenomena in nature. Previous conventional investigations gave pressure and temperature dependence of phase regions and phase transitions, i.e. P-T phase diagrams. At interfaces of different phases, here we reveal an electrical potential named after Haiyan Zang potential which arises from Fermi level alterations upon phase transitions. This potential may be a key for phase transition dynamics. It can induce a strong intrinsic electric field at interfaces, and the related electrical energy may cancel interfacial energy of nucleus so that they could stably exist and grow. The induced intrinsic electric field may act as another dimension, and the conventional P-T phase diagrams should be changed to be pressure-temperature-electric field (P-T-E) phase diagrams. These findings that Haiyan Zang potential and its induced intrinsic electric field at interface may offer people new understandings on phase diagrams and phase transition dynamics.
Category: Condensed Matter

[20] viXra:1809.0475 [pdf] submitted on 2018-09-22 07:39:54

Graphene Control of Spins

Authors: George Rajna
Comments: 32 Pages.

University of Groningen physicists in collaboration with a theoretical physics group from Universität Regensburg have built an optimized bilayer graphene device that displays both long spin lifetimes and electrically controllable spin-lifetime anisotropy. [20] Researchers working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) coupled graphene, a monolayer form of carbon, with thin layers of magnetic materials like cobalt and nickel to produce exotic behavior in electrons that could be useful for next-generation computing applications. [19]
Category: Condensed Matter

[19] viXra:1809.0457 [pdf] submitted on 2018-09-20 08:52:04

Electrons in Perovskite Crystals

Authors: George Rajna
Comments: 45 Pages.

Nürnberg (FAU) have proven that incoming light causes the electrons in warm perovskites to rotate, thus influencing the direction of the flow of electrical current. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient.
Category: Condensed Matter

[18] viXra:1809.0456 [pdf] submitted on 2018-09-20 09:24:14

Fiber Optic Sensor

Authors: George Rajna
Comments: 45 Pages.

Researchers have developed a light-based technique for measuring very weak magnetic fields, such as those produced when neurons fire in the brain. [29] have demonstrated a 4000 kilometre fibre-optical transmission link using ultra low-noise, phase-sensitive optical amplifiers. [28] Researchers at the University of York have shown that a new quantum-based procedure for distributing secure information along communication lines could be successful in preventing serious security breaches. [27] In the new study, Bomantara and Gong have developed a method for harnessing the unique properties of time crystals for quantum computing that is based on braiding. [26] An Aalto University study has provided new evidence that time crystals can physically exist – a claim currently under hot debate. [25] Yale physicists have uncovered hints of a time crystal—a form of matter that "ticks" when exposed to an electromagnetic pulse—in the last place they expected: a crystal you might find in a child's toy. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20]
Category: Condensed Matter

[17] viXra:1809.0434 [pdf] replaced on 2018-10-19 14:27:52

Controlling the Gravitational Mass of a Metallic Lamina, and the Gravity Acceleration Above It.

Authors: Fran De Aquino
Comments: 7 Pages.

It is proposed a very simple device for controlling the gravitational mass of a metallic lamina, and the gravity acceleration above it. These effects are obtained when a specific extra-low frequency current passes through a specially designed metallic lamina.
Category: Condensed Matter

[16] viXra:1809.0325 [pdf] submitted on 2018-09-15 07:38:16

Laser Study of Ice Sheets

Authors: George Rajna
Comments: 73 Pages.

NASA counted down Saturday to the launch of its $1 billion ICESat-2 mission, using advanced lasers to uncover the true depth of the melting of Earth's ice sheets. [44] Printed electronics use standard printing techniques to manufacture electronic devices on different substrates like glass, plastic films, and paper. [43] A tiny laser comprising an array of nanoscale semiconductor cylinders (see image) has been made by an all-A*STAR team. [42] A new instrument lets researchers use multiple laser beams and a microscope to trap and move cells and then analyze them in real-time with a sensitive analysis technique known as Raman spectroscopy. [41] All systems are go for launch in November of NASA's Global Ecosystem Dynamics Investigation (GEDI) mission, which will use high-resolution laser ranging to study Earth's forests and topography from the International Space Station (ISS). [40] Scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) in Berlin combined state-of-the-art experiments and numerical simulations to test a fundamental assumption underlying strong-field physics. [39] Femtosecond lasers are capable of processing any solid material with high quality and high precision using their ultrafast and ultra-intense characteristics. [38] To create the flying microlaser, the researchers launched laser light into a water-filled hollow core fiber to optically trap the microparticle. Like the materials used to make traditional lasers, the microparticle incorporates a gain medium. [37] Lasers that emit ultrashort pulses of light are critical components of technologies, including communications and industrial processing, and have been central to fundamental Nobel Prize-winning research in physics. [36] A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. [35] The unique platform, which is referred as a 4-D microscope, combines the sensitivity and high time-resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy. [34]
Category: Condensed Matter

[15] viXra:1809.0262 [pdf] submitted on 2018-09-12 07:23:05

Magnetization in Small Components

Authors: George Rajna
Comments: 50 Pages.

Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have now refined an electron microscope-based technique to capture static images of these components and to film the high-speed switching processes. [30] A new material created by Oregon State University researchers is a key step toward the next generation of supercomputers. [29] Magnetic materials that form helical structures—coiled shapes comparable to a spiral staircase or the double helix strands of a DNA molecule—occasionally exhibit exotic behavior that could improve information processing in hard drives and other digital devices. [28] In a new study, researchers have designed "invisible" magnetic sensors—sensors that are magnetically invisible so that they can still detect but do not distort the surrounding magnetic fields. [27] At Carnegie Mellon University, Materials Science and Engineering Professor Mike McHenry and his research group are developing metal amorphous nanocomposite materials (MANC), or magnetic materials whose nanocrystals have been grown out of an amorphous matrix to create a two phase magnetic material that exploits both the attractive magnetic inductions of the nanocrystals and the large electrical resistance of a metallic glass. [26] The search and manipulation of novel properties emerging from the quantum nature of matter could lead to next-generation electronics and quantum computers. [25] A research team from Lab) has found the first evidence that a shaking motion in the structure of an atomically thin (2-D) material possesses a naturally occurring circular rotation. [24] Topological effects, such as those found in crystals whose surfaces conduct electricity while their bulk does not, have been an exciting topic of physics research in recent years and were the subject of the 2016 Nobel Prize in physics. [23] A new technique developed by MIT researchers reveals the inner details of photonic crystals, synthetic materials whose exotic optical properties are the subject of widespread research. [22]
Category: Condensed Matter

[14] viXra:1809.0261 [pdf] submitted on 2018-09-12 08:52:02

Bismuth Topological Conductor

Authors: George Rajna
Comments: 15 Pages.

A team of international scientists including Maia G. Vergniory, Ikerbasque researcher at DIPC and UPV/EHU associate, has discovered a new class of materials, higher-order topological insulators. [29] A team of researchers from Japan, the U.S. and China, has identified a topological superconducting phase for possible use in an iron-based material in quantum computers. [28] Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27] This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron's spin also, building the bridge between the Classical and Quantum Theories. The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Category: Condensed Matter

[13] viXra:1809.0260 [pdf] submitted on 2018-09-12 09:43:52

Leidenfrost Effect

Authors: George Rajna
Comments: 30 Pages.

A team of researchers at Physique et Mécanique des Milieux Hétérogènes in France has found that Leidenfrost effect drops move around on a hot pan because they are self-propelled. [30] The researchers, led by Hans-Jurgen Bütt at the Max Planck Institute for Polymer Research in Mainz, Germany, have published a paper on their experimental results in a recent issue of Physical Review Letters. [29] 400 kilometers above Earth, researchers examined waves in complex plasma under microgravity conditions and found that the microparticles behaved in nonuniform ways in the presence of varying electrical fields. [28] In nature, the nuclear reactions that form stars are often accompanied by astronomically high amounts of energy, sometimes over billions of years. [27] Dark matter halos are theoretical bodies inside which galaxies are suspended; the halo's mass dominates the total mass. [26] An international team of researchers extended their results from a previous study to directly measure the cosmic-ray all-electron (electron + positron) spectrum in an energy range from 11 GeV to 4.8 TeV with the Calorimetric Electron Telescope (CALET). [25] Mysterious radiation emitted from distant corners of the galaxy could finally be explained with efforts to recreate a unique state of matter that blinked into existence in the first moments after the Big Bang. [24] Researchers at Oregon State University have confirmed that last fall's union of two neutron stars did in fact cause a short gamma-ray burst. [23] Quark matter – an extremely dense phase of matter made up of subatomic particles called quarks – may exist at the heart of neutron stars. [22] When a massive astrophysical object, such as a boson star or black hole, rotates, it can cause the surrounding spacetime to rotate along with it due to the effect of frame dragging. [21] Rotating black holes and computers that use quantum-mechanical phenomena to process information are topics that have fascinated science lovers for decades, but even the most innovative thinkers rarely put them together. [20]
Category: Condensed Matter

[12] viXra:1809.0243 [pdf] submitted on 2018-09-11 11:56:34

Insulator Becomes Conductor

Authors: George Rajna
Comments: 25 Pages.

Physicists from Leiden University have now found that the charging process of ionic liquids depends purely on opposite charges attracting each other. [36] Physicists at the University of Zurich are researching a new class of materials: Higher-order topological insulators. [35] One can also imagine making a superconducting transistor out of graphene, which you can switch on and off, from superconducting to insulating. That opens many possibilities for quantum devices." [34] A team of scientists has detected a hidden state of electronic order in a layered material containing lanthanum, barium, copper, and oxygen (LBCO). [33] Now in a new study, researchers have discovered the existence of a positive feedback loop that gratly enhances the superconductivity of cuprates and may shed light on the origins of high-temperature cuprate superconductivity— considered one of the most important open questions in physics. [33] Using ultracold atoms, researchers at Heidelberg University have found an exotic state of matter where the constituent particles pair up when limited to two dimensions. [32] Neutron diffraction at the Australian Centre for Neutron Scattering has clarified the absence of magnetic order and classified the superconductivity of a new next-generation of superconductors in a paper published in Europhysics Letters. [31] A potential new state of matter is being reported in the journal Nature, with research showing that among superconducting materials in high magnetic fields, the phenomenon of electronic symmetry breaking is common. [30] Researchers from the University of Geneva (UNIGE) in Switzerland and the Technical University Munich in Germany have lifted the veil on the electronic characteristics of high-temperature superconductors. Their research, published in Nature Communications, shows that the electronic densities measured in these superconductors are a combination of two separate effects. As a result, they propose a new model that suggests the existence of two coexisting states rather than competing ones postulated for the past thirty years, a small revolution in the world of superconductivity. [29]
Category: Condensed Matter

[11] viXra:1809.0174 [pdf] submitted on 2018-09-10 03:55:27

Electromagnetic Waves Interact with Materials

Authors: George Rajna
Comments: 21 Pages.

The tool allows engineers to design new classes of radio frequency-based components that are able to transport large amounts of data more rapidly, and with less noise interference. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Condensed Matter

[10] viXra:1809.0162 [pdf] submitted on 2018-09-07 07:43:02

Symmetry Breaking of Nanostructures

Authors: George Rajna
Comments: 69 Pages.

A recent study proposes that the thermodynamic factor plays a key role for the symmetry breaking of bimetal nano-heterostructures during seed-mediated growth. [41] This study shows the potential for engineered nanoparticles to magnetically control terahertz beams. [40] A new cancer therapy using nanoparticles to deliver a combination therapy direct to cancer cells could be on the horizon, thanks to research from the University of East Anglia. [39] Researchers have developed a new form of nanoparticle and associated imaging technique that can detect multiple disease biomarkers, including those for breast cancer, found in deep-tissue in the body. [38] Researchers at University of Utah Health developed a proof-of-concept technology using nanoparticles that could offer a new approach for oral medications. [37] Using scanning tunneling microscopy (STM), extremely high resolution imaging of the molecule-covered surface structures of silver nanoparticles is possible, even down to the recognition of individual parts of the molecules protecting the surface. [36] A fiber optic sensing system developed by researchers in China and Canada can peer inside supercapacitors and batteries to observe their state of charge. [35] The idea of using a sound wave in optical fibers initially came from the team's partner researchers at Bar-Ilan University in Israel. Joint research projects should follow. [34] Researchers at the Technion-Israel Institute of Technology have constructed a first-of-its-kind optic isolator based on resonance of light waves on a rapidly rotating glass sphere. [33] The micro-resonator is a two-mirror trap for the light, with the mirrors facing each other within several hundred nanometers. [32]
Category: Condensed Matter

[9] viXra:1809.0143 [pdf] submitted on 2018-09-08 03:22:11

Nanoparticle Supercrystals

Authors: George Rajna
Comments: 44 Pages.

Nanoparticle Supercrystals Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24] When the energy efficiency of electronics poses a challenge, magnetic materials may have a solution. [23] An exotic state of matter that is dazzling scientists with its electrical properties, can also exhibit unusual optical properties, as shown in a theoretical study by researchers at A*STAR. [22] The breakthrough was made in the lab of Andrea Alù, director of the ASRC's Photonics Initiative. Alù and his colleagues from The City College of New York, University of Texas at Austin and Tel Aviv University were inspired by the seminal work of three British researchers who won the 2016 Noble Prize in Physics for their work, which teased out that particular properties of matter (such as electrical conductivity) can be preserved in certain materials despite continuous changes in the matter's form or shape. [21] Researchers at the University of Illinois at Urbana-Champaign have developed a new technology for switching heat flows 'on' or 'off'. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18]
Category: Condensed Matter

[8] viXra:1809.0135 [pdf] submitted on 2018-09-06 09:14:22

Impossibility of the Continuous Persistent-Current in a Superconductor

Authors: Gokaran Shukla
Comments: 6 Pages.

Presence of \textit{``persistent"}, \textit{``directional-current"} in a superconducting states is a direct \textit{``threat"} to the $2^{nd}$ law of thermodynamics. In this paper we will show that there will never be a \textit{directional, (either clockwise, or anti-clockwise)} \textit{``persistent-current"} for \textit{``infinite-time"} in any superconductor (or in any material at any pressure or temperature), otherwise $2^{nd}$ law of thermodynamics will break down! We will show that the presence of very small, \textit{non-zero}, finite, electrical resistance below the critical temperature and critical magnetic field in a superconductor is the clear \textit{``signature"} of finite life-time of circulating-current, and thus, direct experimental \textit{``validation"} of $2^{nd}$ law of thermodynamics at quantum-mechanical level.
Category: Condensed Matter

[7] viXra:1809.0131 [pdf] submitted on 2018-09-06 11:48:21

Prime Numbers in Crystal

Authors: George Rajna
Comments: 35 Pages.

A new analysis by Princeton University researchers has uncovered patterns in primes that are similar to those found in the positions of atoms inside certain crystal-like materials. [21] Using computer simulations for the mineral lead telluride on the CSCS supercomputer Piz Daint, ETH researchers have resolved a long-standing controversy. [20] Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. [19] A team of researchers with the University of California and SRI International has developed a new type of cooling device that is both portable and efficient. [18] Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas. [17] Researchers from the Theory Department of the MPSD have realized the control of thermal and electrical currents in nanoscale devices by means of quantum local observations. [16] Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, by taking advantage of quantum fluctuations and quantum superposition. [15] Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics. [14] For more than a century and a half of physics, the Second Law of Thermodynamics, which states that entropy always increases, has been as close to inviolable as any law we know. In this universe, chaos reigns supreme. [13] Physicists have shown that the three main types of engines (four-stroke, twostroke, and continuous) are thermodynamically equivalent in a certain quantum regime, but not at the classical level. [12] For the first time, physicists have performed an experiment confirming that thermodynamic processes are irreversible in a quantum system—meaning that, even on the quantum level, you can't put a broken egg back into its shell.
Category: Condensed Matter

[6] viXra:1809.0118 [pdf] submitted on 2018-09-07 03:23:26

Terahertz Beams with Nanoparticle

Authors: George Rajna
Comments: 68 Pages.

This study shows the potential for engineered nanoparticles to magnetically control terahertz beams. [40] A new cancer therapy using nanoparticles to deliver a combination therapy direct to cancer cells could be on the horizon, thanks to research from the University of East Anglia. [39] Researchers have developed a new form of nanoparticle and associated imaging technique that can detect multiple disease biomarkers, including those for breast cancer, found in deep-tissue in the body. [38] Researchers at University of Utah Health developed a proof-of-concept technology using nanoparticles that could offer a new approach for oral medications. [37] Using scanning tunneling microscopy (STM), extremely high resolution imaging of the molecule-covered surface structures of silver nanoparticles is possible, even down to the recognition of individual parts of the molecules protecting the surface. [36] A fiber optic sensing system developed by researchers in China and Canada can peer inside supercapacitors and batteries to observe their state of charge. [35] The idea of using a sound wave in optical fibers initially came from the team's partner researchers at Bar-Ilan University in Israel. Joint research projects should follow. [34] Researchers at the Technion-Israel Institute of Technology have constructed a first-of-its-kind optic isolator based on resonance of light waves on a rapidly rotating glass sphere. [33] The micro-resonator is a two-mirror trap for the light, with the mirrors facing each other within several hundred nanometers. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31]
Category: Condensed Matter

[5] viXra:1809.0104 [pdf] submitted on 2018-09-06 02:09:55

Remark on Lehnert's Revised Quantum Electrodynamics (Rqed) as an Alternative to Francesco Celani's et Al's Maxwell-Clifford Equations: with an Outline of Chiral Cosmology Model and Its Role to CMNS

Authors: Victor Christianto, Florentin Smarandache, Yunita Umniyati
Comments: 15 Pages. This paper has been submitted to a journal (JCMNS). Comments are welcome

In a recent paper published in JCMNS 2017, Francesco Celani, Di Tommaso & Vassalo argued that Maxwell equations rewritten in Clifford algebra are sufficient to describe electron and also ultradense deuterium reaction process as proposed by Homlid et al. Apparently, Celani et al. believed that their Maxwell-Clifford equations are quite excellent candidate to surpass both Classical Electromagnetic and Zitterbewegung QM. Meanwhile, in a series of papers, Bo Lehnert proposed a novel and revised version of Quantum Electrodynamics (RQED) based on Proca equations. Therefore, in this paper, we gave an outline of Lehnert’s RQED, as an alternative framework to Celani et al’s Zitterbewegung-Classical EM.. Moreover, in a rather old paper, Mario Liu described a hydrodynamic Maxwell equations. While he also discussed potential implications of these new approaches to superconductors, such a discussion of electrodynamics of superconductors is made only after Tajmar’s paper. Therefore, in this paper we present for the first time a derivation of fluidic Maxwell-Proca equations. The name of fluidic Maxwell-Proca is proposed because the equations were based on modifying MaxwellProca and Hirsch’s theory of electrodynamics of superconductor. It is hoped that this paper may stimulate further investigations and experiments in superconductor. It may be expected to have some impact to cosmology modeling too, for instance we consider a hypothetical argument that photon mass can be origin of gravitation. Then, after combining with the so-called chiral modification of Maxwell equations (after Spröessig), then we consider chiral Maxwell-Proca equations as possible alternative of gravitation theory. Such a hypothesis has never considered in literature to the best of our knowledge. In the last section, we discuss plausible role of chiral Maxwell-Proca (RQED) in CMNS process. It is hoped that this paper may stimulate further investigations and experiments in particular for finding physics of LENR and UDD reaction from classical electromagnetics
Category: Condensed Matter

[4] viXra:1809.0094 [pdf] submitted on 2018-09-04 11:26:01

“Rydberg Polarons, Instanton Tunnel Effect and Graphene Spatial Conformation Like the Quantum Mirror Reflex of Walter Christaller Hexagonal Localization by the Central Place Theory and Pseudohexagonal Biotite of Granodiorite Type Brno KRÁLOVO POLE“

Authors: Imrich Krištof
Comments: 15 Pages.

I report a spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose–Einstein condensate. First experiments are described on the impact of additive noise on the ionization of Rb Rydberg atoms in microwave fields. Dynamical localization and its gradual destruction by noise are observed. The atoms surviving in Rydberg states are detected by ionization in a static electric field. First, we count the number of atoms initially laser excited to Rydberg states. The ionization signal includes atoms excited to the continuum as well as atoms which are excited to principal quantum numbers higher than ne. Instanton tunnel effect is theoretically based on pseudoparticle Instanton, known like a classical solution of kinematic equations in classical theory of fields in Eucleides Spacetime. Typically events of quantum mechanics is condition of a quantum interference. Graphene is the most favourite material model with simply hexagonal structure and simply chemical composition, it’s the clear mono–layer of hexagonal polygons of carboneum with kovalent bonds and electron–electron gas. The Walter Christaller’s Theory of Central Places (hexagonal settlements structure) is the most illustrative sight to express the graphene chemical bond structure in macro–dimensions. It’s possibly to say that graphene has a structure of microcosmos, and Christaller’s Theory of Central Places is a mirror reflex of this microcosmos to extradimensional MACROCOSMOS (STRUCTURE OF HUMAN CONURBATION, CITIES, TOWNS, VILLAGES AND THEIR CONNECTIONS LIKE A NANO–CHEMICAL KOVALENT BONDS OF CARBONEUM / GRAPHENE). In the ending part of this text, the Author dedicated attention to a mafic silicar mineral biotite with its typical hexagonal space–structure like a space–point super density of hexagonal layers of this rock–forming mineral.
Category: Condensed Matter

[3] viXra:1809.0074 [pdf] submitted on 2018-09-05 03:33:09

Electron Pulses for Material Studies

Authors: George Rajna
Comments: 21 Pages.

Konstanz physicist Professor Peter Baum and his team have succeeded in spatially and temporally directing and controlling ultrashort electron pulses directly by using the light cycles of laser light instead of microwaves. [14] In new research, scientists at the University of Minnesota used a first-of-its-kind device to demonstrate a way to control the direction of the photocurrent without deploying an electric voltage. [13] Brown University researchers have demonstrated for the first time a method of substantially changing the spatial coherence of light. [12] Researchers at the University of Central Florida have generated what is being deemed the fastest light pulse ever developed. [11] Physicists at Chalmers University of Technology and Free University of Brussels have now found a method to significantly enhance optical force. [10] Nature Communications today published research by a team comprising Scottish and South African researchers, demonstrating entanglement swapping and teleportation of orbital angular momentum 'patterns' of light. [9] While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information. In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories. The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry. The diffraction patterns and the locality of the self-maintaining electromagnetic potential explains also the Quantum Entanglement, giving it as a natural part of the Relativistic Quantum Theory and making possible to build the Quantum Computer with the help of Quantum Information.
Category: Condensed Matter

[2] viXra:1809.0067 [pdf] submitted on 2018-09-05 09:09:40

Impossibility of the Persistent-Current in a Superconductor

Authors: Gokaran Shukla
Comments: 3 Pages.

Presence of \textit{``persistent"}, \textit{``directional-current"} in a superconducting states is a direct \textit{``threat"} to the $2^{nd}$ law of thermodynamics. In this paper we will show that there will never be a \textit{directional, (either clockwise, or anti-clockwise)} \textit{``persistent-current"} for \textit{``infinite-time"} in any superconductor (or in any material at any pressure or temperature), otherwise $2^{nd}$ law of thermodynamics will break down! We will show that the presence of very small, \textit{non-zero}, finite, electrical resistance below the critical temperature and critical magnetic field in a superconductor is the clear \textit{``signature"} of finite life-time of circulating-current, and thus, direct experimental \textit{``validation"} of $2^{nd}$ law of thermodynamics at quantum-mechanical level.
Category: Condensed Matter

[1] viXra:1809.0047 [pdf] submitted on 2018-09-02 13:08:14

Autocannibalistic Materials

Authors: George Rajna
Comments: 39 Pages.

Scientists at the Department of Energy's Oak Ridge National Laboratory induced a two-dimensional material to cannibalize itself for atomic "building blocks" from which stable structures formed. [26] This novel technology could be used to produce molecular junctions in a scalable fashion – allowing millions of them to be manufactured in parallel. [25] Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have successfully generated controlled electron pulses in the attosecond range. [24]
Category: Condensed Matter