Condensed Matter

1901 Submissions

[18] viXra:1901.0407 [pdf] submitted on 2019-01-27 08:38:38

Perovskite Solar Cell Performance

Authors: George Rajna
Comments: 48 Pages.

Researchers at Tokai University report in Nano Letters a systematic study on the effects that using different forms of titanium oxide in planar perovskite solar cells has on the performance of the devices. [30] KU Leuven researchers from the Roeffaers Lab and the Hofkens Group have now put forward a very promising direct X-ray detector design, based on a rapidly emerging halide perovskite semiconductor, with chemical formula Cs2AgBiBr6. [29] Physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have proven that incoming light causes the electrons in warm perovskites to rotate, thus influencing the direction of the flow of electrical current. [28]
Category: Condensed Matter

[17] viXra:1901.0406 [pdf] submitted on 2019-01-27 09:26:33

Designing Tiny Semiconductor Particles

Authors: George Rajna
Comments: 48 Pages.

Now, engineers from the National University of Singapore (NUS) have developed a cost-effective and scalable strategy to synthesise TMD QDs. [30] Particles in solution can grow, transport, collide, interact, and aggregate into complex shapes and structures. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27]
Category: Condensed Matter

[16] viXra:1901.0405 [pdf] submitted on 2019-01-27 09:47:33

Graphene Easy to Shape

Authors: George Rajna
Comments: 77 Pages.

The team has turned graphene oxide (GO) into a soft, moldable and kneadable play dough that can be shaped and reshaped into free-standing, three-dimensional structures. [46] A team of researchers based at The University of Manchester have found a low cost method for producing graphene printed electronics, which significantly speeds up and reduces the cost of conductive graphene inks. [45] Graphene-based computer components that can deal in terahertz “could be used, not in a normal Macintosh or PC, but perhaps in very advanced computers with high processing rates,” Ozaki says. This 2-D material could also be used to make extremely high-speed nanodevices, he adds. [44]
Category: Condensed Matter

[15] viXra:1901.0398 [pdf] submitted on 2019-01-27 03:09:26

Microscope as a Shovel

Authors: George Rajna
Comments: 62 Pages.

Using a familiar tool in a way it was never intended to be used opens up a whole new method to explore materials, report UConn researchers in Proceedings of the National Academy of Science. [37] "We put the optical microscope under a microscope to achieve accuracy near the atomic scale," said NIST's Samuel Stavis, who served as the project leader for these efforts. [36] Researchers have designed an interferometer that works with magnetic quasiparticles called magnons, rather than photons as in conventional interferometers. [35]
Category: Condensed Matter

[14] viXra:1901.0358 [pdf] submitted on 2019-01-24 05:26:31

The Mysteries of Skyrmions

Authors: George Rajna
Comments: 56 Pages.

Scientists at the U.S. Department of Energy's Ames Laboratory have discovered the relaxation dynamics of a zero-field state in skyrmions, a spinning magnetic phenomenon that has potential applications in data storage and spintronic devices. [33] Skyrmions are formed in magnetic systems via a variety of mechanisms, some of which work together. [32] Unique physical properties of these "magic knots" might help to satisfy demand for IT power and storage using a fraction of the energy. [31]
Category: Condensed Matter

[13] viXra:1901.0354 [pdf] submitted on 2019-01-24 08:02:57

Static Electricity Charge our Electronics

Authors: George Rajna
Comments: 79 Pages.

The finding could ultimately help technology companies create more sustainable and longer-lasting power sources for small electronic devices. [46] Transparent electronics are the future, according to researchers including José A. Flores-Livas and Miglė Graužinytė from the research group headed by Stefan Goedecker, Professor of Computational Physics at the University of Basel. [45] For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. [44] One of the leading candidates, spintronics, is based on the idea of carrying information via the spin of electrons. [43] Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a polarization-insensitive metalens comprised of non-symmetric nanofins that can achromatically focus light across the visible spectrum without aberrations. [42]
Category: Condensed Matter

[12] viXra:1901.0352 [pdf] submitted on 2019-01-24 08:29:33

Nanocrystal Growth and Aggregation

Authors: George Rajna
Comments: 46 Pages.

Particles in solution can grow, transport, collide, interact, and aggregate into complex shapes and structures. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25]
Category: Condensed Matter

[11] viXra:1901.0325 [pdf] submitted on 2019-01-22 09:36:35

Transparent Electronics

Authors: George Rajna
Comments: 78 Pages.

Transparent electronics are the future, according to researchers including José A. Flores-Livas and Miglė Graužinytė from the research group headed by Stefan Goedecker, Professor of Computational Physics at the University of Basel. [45] For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. [44] One of the leading candidates, spintronics, is based on the idea of carrying information via the spin of electrons. [43] Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a polarization-insensitive metalens comprised of non-symmetric nanofins that can achromatically focus light across the visible spectrum without aberrations. [42]
Category: Condensed Matter

[10] viXra:1901.0315 [pdf] submitted on 2019-01-22 04:45:10

Negative Capacitance in Action

Authors: George Rajna
Comments: 77 Pages.

For the first time ever, an international team of researchers imaged the microscopic state of negative capacitance. [44] One of the leading candidates, spintronics, is based on the idea of carrying information via the spin of electrons. [43] Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a polarization-insensitive metalens comprised of non-symmetric nanofins that can achromatically focus light across the visible spectrum without aberrations. [42] A team led by Rice University scientists used a unique combination of techniques to observe, for the first time, a condensed matter phenomenon about which others have only speculated. The research could aid in the development of quantum computers. [41]
Category: Condensed Matter

[9] viXra:1901.0293 [pdf] submitted on 2019-01-20 05:07:08

Micro-Robots Adapt Surrounding

Authors: George Rajna
Comments: 68 Pages.

One day, hospital patients might be able to ingest tiny robots that deliver drugs directly to diseased tissue, thanks to research being carried out at EPFL and ETH Zurich. [40] A team of researchers at the Hebrew University of Jerusalem in Israel has now made such cascades in the lab by encapsulating three enzymes and enzyme cofactors in nanoreactors made from metal-organic framework nanoparticles. [39] Researchers have developed a new form of nanoparticle and associated imaging technique that can detect multiple disease biomarkers, including those for breast cancer, found in deep-tissue in the body. [38] Researchers at University of Utah Health developed a proof-of-concept technology using nanoparticles that could offer a new approach for oral medications. [37]
Category: Condensed Matter

[8] viXra:1901.0274 [pdf] submitted on 2019-01-19 08:37:29

Search of Weyl Semimetals

Authors: George Rajna
Comments: 39 Pages.

Now, a team of electrical engineers at the University of Delaware has discovered that novel semi-metallic materials, alloys of germanium and tin, have properties like Weyl semimetals. This has not been observed before by any other research group.
Category: Condensed Matter

[7] viXra:1901.0233 [pdf] submitted on 2019-01-16 08:48:40

Interaction of Plasmas with Solids

Authors: George Rajna
Comments: 69 Pages.

Atoms and molecules from the plasma can be deposited on the solid material, or energetic plasma ions can knock atoms out of the solid, and thereby deform or even destroy its surface. [40] A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University. [39] This "piezomagnetic" material changes its magnetic properties when put under mechanical strain. [38] Researchers have developed a new flexible sensor with high sensitivity that is designed to perform variety of chemical and biological analyses in very small spaces. [37]
Category: Condensed Matter

[6] viXra:1901.0223 [pdf] submitted on 2019-01-15 13:54:43

Global Topological Properties

Authors: George Rajna
Comments: 39 Pages.

Topology is an emerging field within many scientific disciplines, even leading to a Nobel Physics Prize in 2016. [26] Topology is a global aspect of materials, leading to fundamental new properties for compounds with large relativistic effects. [25] Weyl fermions are novel particles that were predicted to be seen in high-energy physics experiments but have not been observed. [24] The research shows that concentrated electrolytes in solution affect hydrogen bonding, ion interactions, and coordination geometries in currently unpredictable ways. [23]
Category: Condensed Matter

[5] viXra:1901.0213 [pdf] submitted on 2019-01-15 11:20:23

Nanolithography of Crystals

Authors: George Rajna
Comments: 57 Pages.

Optical properties of materials are based on their chemistry and the inherent subwavelength architecture, although the latter remains to be characterized in depth. [37] More than 100 years ago, Albert Einstein and Wander Johannes de Haas discovered that when they used a magnetic field to flip the magnetic state of an iron bar dangling from a thread, the bar began to rotate. [36] Researchers at the Max Born Institute have now generated directed currents at terahertz (THz) frequencies, much higher than the clock rates of current electronics. [35]
Category: Condensed Matter

[4] viXra:1901.0126 [pdf] submitted on 2019-01-09 09:48:56

Wireless Smartphone Charges

Authors: George Rajna
Comments: 89 Pages.

Researchers from the University of Tokyo developed a new system to charge electronic devices such as smartphones and smartwatches wirelessly. [51] The ultrathin digital camera offers a wide field of view and high resolution in a slimmer body compared to existing imaging systems. [50] The special feature of the Kiel system is its extremely high temporal resolution of 13 femtoseconds. [49] Physical systems with discrete energy levels are ubiquitous in nature and form fundamental building blocks of quantum technology. [48] In a similar vein, scientists are working to create twisting helical electromagnetic waves whose curvature allows more accurate imaging of the magnetic properties of different materials at the atomic level and could possibly lead to the development of future devices. [47] In a recent study, materials scientists Guojin Liang and his coworkers at the Department of Materials Science and Engineering, City University of Hong Kong, have developed a self-healing, electroluminescent (EL) device that can repair or heal itself after damage. [46] A team of researchers based at The University of Manchester have found a low cost method for producing graphene printed electronics, which significantly speeds up and reduces the cost of conductive graphene inks. [45] Graphene-based computer components that can deal in terahertz "could be used, not in a normal Macintosh or PC, but perhaps in very advanced computers with high processing rates," Ozaki says. This 2-D material could also be used to make extremely high-speed nanodevices, he adds. [44] Printed electronics use standard printing techniques to manufacture electronic devices on different substrates like glass, plastic films, and paper. [43] A tiny laser comprising an array of nanoscale semiconductor cylinders (see image) has been made by an all-A*STAR team. [42] A new instrument lets researchers use multiple laser beams and a microscope to trap and move cells and then analyze them in real-time with a sensitive analysis technique known as Raman spectroscopy. [41]
Category: Condensed Matter

[3] viXra:1901.0054 [pdf] submitted on 2019-01-04 07:39:51

Is Glass Liquid or Solid?

Authors: Philip Gibbs
Comments: 8 Pages. originally published in the Physics FAQ 1997, also in Glass Worldwide, 2007

It is sometimes said that glass in very old churches is thicker at the bottom than at the top because glass is a liquid, and so over several centuries it has flowed towards the bottom. This is not true. In Mediaeval times panes of glass were often made by the Crown glass process. A lump of molten glass was rolled, blown, expanded, flattened and finally spun into a disc before being cut into panes. The sheets were thicker towards the edge of the disc and were usually installed with the heavier side at the bottom. Other techniques of forming glass panes have been used but it is only the relatively recent float glass processes which have produced good quality flat sheets of glass. Nevertheless, the frequently asked question “Is glass liquid or solid?” is not so straightforward to answer. To do so we have to understand its thermodynamic and material properties.
Category: Condensed Matter

[2] viXra:1901.0034 [pdf] submitted on 2019-01-03 10:23:21

Big Nanoscale Discovery

Authors: George Rajna
Comments: 53 Pages.

His recent discovery with longtime collaborator Koblar Jackson, a professor in the Department of Physics at Central Michigan University, has the potential to dramatically impact the discipline of nanoscale science. [33] An inexpensive way to make products incorporating nanoparticles-such as high-performance energy devices or sophisticated diagnostic tests-has been developed by researchers. [32] Researchers from Empa and ETH Zurich, together with colleagues from IBM Research Zurich, have recently been able to create this effect with long-range ordered nanocrystal superlattices. [31] The optical tweezer is revealing new capabilities while helping scientists understand HYPERLINK "https://phys.org/tags/quantum+mechanics/" quantum mechanics, the theory that explains nature in terms of subatomic particles. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28] Self-assembly and crystallisation of nanoparticles (NPs) is generally a complex process, based on the evaporation or precipitation of NP-building blocks. [27] New nanoparticle-based films that are more than 80 times thinner than a human hair may help to fill this need by providing materials that can holographically archive more than 1000 times more data than a DVD in a 10-by-10-centimeter piece of film. [26] Researches of scientists from South Ural State University are implemented within this area. [25] Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable computers and all optic communication devices to run 100 times faster through terahertz microchips. [24]
Category: Condensed Matter

[1] viXra:1901.0033 [pdf] submitted on 2019-01-03 10:59:55

Nanoscale Cargo with Nanowrappers

Authors: George Rajna
Comments: 56 Pages.

Using a one-step chemical synthesis method, they engineered hollow metallic nanosized boxes with cube-shaped pores at the corners and demonstrated how these "nanowrappers" can be used to carry and release DNA-coated nanoparticles in a controlled way. [34] His recent discovery with longtime collaborator Koblar Jackson, a professor in the Department of Physics at Central Michigan University, has the potential to dramatically impact the discipline of nanoscale science. [33] An inexpensive way to make products incorporating nanoparticles—such as high-performance energy devices or sophisticated diagnostic tests—has been developed by researchers. [32] Researchers from Empa and ETH Zurich, together with colleagues from IBM Research Zurich, have recently been able to create this effect with long-range ordered nanocrystal superlattices. [31] The optical tweezer is revealing new capabilities while helping scientists understand HYPERLINK "https://phys.org/tags/quantum+mechanics/" quantum mechanics, the theory that explains nature in terms of subatomic particles. [30] In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. [29] Lawrence Livermore National Laboratory (LLNL) researchers are working to make better electronic devices by delving into the way nanocrystals are arranged inside of them. [28]
Category: Condensed Matter