Digital Signal Processing

1810 Submissions

[8] viXra:1810.0490 [pdf] submitted on 2018-10-29 11:29:58

Energy-Efficient Data Storage

Authors: George Rajna
Comments: 55 Pages.

Multiferroics are considered miraculous materials for future data storage – as long as their special properties can be preserved at computer operating temperatures. [36] In an international collaboration with IBM Research, the University of Oxford and the International Iberian Nanotechnology Laboratory, QNS scientists used advanced and novel techniques to measure the nuclear spin of individual atoms on surfaces for the first time. [35] A team of scientists led by Professor Richard Layfield at the University of Sussex has published breakthrough research in molecule-based magnetic information storage materials. [34] Just like their biological counterparts, hardware that mimics the neural circuitry of the brain requires building blocks that can adjust how they synapse, with some connections strengthening at the expense of others. [33] Faster and more compact memory storage devices will become a reality when physicists gain precise control of the spins of electrons. [32] UCLA biologists report they have transferred a memory from one marine snail to another, creating an artificial memory, by injecting RNA from one to another. [31] Scientists at the Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, have identified a new type of stem cell in the brain which they say has a high potential for repair following brain injury or disease. [30] A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. [29] A team of biologists has found an unexpected source for the brain's development, a finding that offers new insights into the building of the nervous system. [28] Researchers discover both the structure of specific brain areas and memory are linked to genetic activity that also play important roles in immune system function. [27] The inner workings of the human brain have always been a subject of great interest. Unfortunately, it is fairly difficult to view brain structures or intricate tissues due to the fact that the skull is not transparent by design. [26] But now there is a technology that enables us to "read the mind" with growing accuracy: functional magnetic resonance imaging (fMRI). [25]
Category: Digital Signal Processing

[7] viXra:1810.0412 [pdf] submitted on 2018-10-24 09:57:09

100 Times Faster Internet

Authors: George Rajna
Comments: 65 Pages.

This world-first nanophotonic device, just unveiled in Nature Communications, encodes more data and processes it much faster than conventional fiber optics by using a special form of 'twisted' light. [41] Purdue University researchers created a new technique that would increase the secret bit rate 100-fold, to over 35 million photons per second. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33] Researchers at the University of Sheffield have solved a key puzzle in quantum physics that could help to make data transfer totally secure. [32]
Category: Digital Signal Processing

[6] viXra:1810.0360 [pdf] submitted on 2018-10-23 04:29:41

Electronic Brain Building Blocks

Authors: George Rajna
Comments: 37 Pages.

University of Groningen (UG) physicists are working on memristors made from niobium-doped strontium titanate, which mimic the function of neurons. [23] IBM researchers are developing a new computer architecture, better equipped to handle increased data loads from artificial intelligence. [22] A computer built to mimic the brain's neural networks produces similar results to that of the best brain-simulation supercomputer software currently used for neural-signaling research, finds a new study published in the open-access journal Frontiers in Neuroscience. [21] The possibility of cognitive nuclear-spin processing came to Fisher in part through studies performed in the 1980s that reported a remarkable lithium isotope dependence on the behavior of mother rats. [20] And as will be presented today at the 25th annual meeting of the Cognitive Neuroscience Society (CNS), cognitive neuroscientists increasingly are using those emerging artificial networks to enhance their understanding of one of the most elusive intelligence systems, the human brain. [19] U.S. Army Research Laboratory scientists have discovered a way to leverage emerging brain-like computer architectures for an age-old number-theoretic problem known as integer factorization. [18] have come up with a novel machine learning method that enables scientists to derive insights from systems of previously intractable complexity in record time. [17] Quantum computers can be made to utilize effects such as quantum coherence and entanglement to accelerate machine learning. [16] Neural networks learn how to carry out certain tasks by analyzing large amounts of data displayed to them. [15] Who is the better experimentalist, a human or a robot? When it comes to exploring synthetic and crystallization conditions for inorganic gigantic molecules, actively learning machines are clearly ahead, as demonstrated by British Scientists in an experiment with polyoxometalates published in the journal Angewandte Chemie. [14]
Category: Digital Signal Processing

[5] viXra:1810.0221 [pdf] submitted on 2018-10-13 05:33:44

Piracy of Sports Broadcasting

Authors: George Rajna
Comments: 66 Pages.

Piracy poses an existential problem for broadcast rights holders but there are no signs that live sport is losing its glittering allure, according to Eleven Sports chief executive Marc Watson. [42] The Pentagon on Friday said there has been a cyber breach of Defense Department travel records that compromised the personal information and credit card data of U.S. military and civilian personnel. [41] Quantum secure direct communication transmits secret information directly without encryption. [40] Physicists at The City College of New York have used atomically thin two-dimensional materials to realize an array of quantum emitters operating at room temperature that can be integrated into next generation quantum communication systems. [39] Research in the quantum optics lab of Prof. Barak Dayan in the Weizmann Institute of Science may be bringing the development of such computers one step closer by providing the "quantum gates" that are required for communication within and between such quantum computers. [38] Calculations of a quantum system's behavior can spiral out of control when they involve more than a handful of particles. [37] Researchers from the University of North Carolina at Chapel Hill have reached a new milestone on the way to optical computing, or the use of light instead of electricity for computing. [36] The key technical novelty of this work is the creation of semantic embeddings out of structured event data. [35] The researchers have focussed on a complex quantum property known as entanglement, which is a vital ingredient in the quest to protect sensitive data. [34] Cryptography is a science of data encryption providing its confidentiality and integrity. [33]
Category: Digital Signal Processing

[4] viXra:1810.0196 [pdf] submitted on 2018-10-12 20:06:32

A Quality-aware View of Accessibility for Voice-based Interfaces

Authors: Zhixuan Zhou, Tianwei Chen
Comments: 4 Pages. extended abstract

Voice interfaces are giving people who have difficulty using graphic-based systems more access to information and services on the Internet. However, there hasn’t been a widely-acknowledged definition of accessibility in this research field. While progress in voice-interface technologies do improve people’s user experience, privacy issues arise and contradict with the nature of accessibility in many cases. In our extended abstract, we try to propose a definition of accessibility from a quality-aware perspective. Accessibility (as generally defined), usability, personalization, confidence and privacy are adopted as five metrics for evaluating quality-aware accessibility. Privacy issues are given special attention when we pursue better accessibility. Real-world experimental platforms can be built under this guidance later on.
Category: Digital Signal Processing

[3] viXra:1810.0125 [pdf] submitted on 2018-10-08 10:22:23

Nanoscale Pillars for the Future IT

Authors: George Rajna
Comments: 69 Pages.

Researchers from Linköping University and the Royal Institute of Technology in Sweden have proposed a new device concept that can efficiently transfer the information carried by electron spin to light at room temperature—a stepping stone toward future information technology. [39] Now writing in Light Science & Applications, Hamidreza Siampour and co-workers have taken a step forward in the field of integrated quantum plasmonics by demonstrating on-chip coupling between a single photon source and plasmonic waveguide. [38] Researchers at University of Utah Health developed a proof-of-concept technology using nanoparticles that could offer a new approach for oral medications. [37] Using scanning tunneling microscopy (STM), extremely high resolution imaging of the molecule-covered surface structures of silver nanoparticles is possible, even down to the recognition of individual parts of the molecules protecting the surface. [36] A fiber optic sensing system developed by researchers in China and Canada can peer inside supercapacitors and batteries to observe their state of charge. [35] The idea of using a sound wave in optical fibers initially came from the team's partner researchers at Bar-Ilan University in Israel. Joint research projects should follow. [34] Researchers at the Technion-Israel Institute of Technology have constructed a first-of-its-kind optic isolator based on resonance of light waves on a rapidly rotating glass sphere. [33] The micro-resonator is a two-mirror trap for the light, with the mirrors facing each other within several hundred nanometers. [32] "The realization of such all-optical single-photon devices will be a large step towards deterministic multi-mode entanglement generation as well as high-fidelity photonic quantum gates that are crucial for all-optical quantum information processing," says Tanji-Suzuki. [31] Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. [30]
Category: Digital Signal Processing

[2] viXra:1810.0069 [pdf] submitted on 2018-10-06 01:25:57

Revise on the State of the Art on Security Policies and Mechanisms Applicable to Vehicular Delay Torlant Network Context of Cooperation

Authors: Zeeshan Haider
Comments: 7 Pages.

This article revision the literature related to Vehicular Delay Tolerant Network with focus on Cooperation. It starts by examining definitions of some of the fields of research in VDTN on security policies. An overview of VDTN on security policies cooperative networks is presented. A security policy is a high-level specification of the security properties that a given system should possess. It is a means for designers domain experts and implementers to communicate with each other, and a blueprint that drives a project from design through implementation and validation. We offer a survey of the most significant security policy models in the literature showing security may mean very different things in different contexts and we review some of the mechanisms used to implement a gievn security policy.
Category: Digital Signal Processing

[1] viXra:1810.0012 [pdf] submitted on 2018-10-01 07:49:14

Defects Promise Quantum Communication

Authors: George Rajna
Comments: 33 Pages.

These qubits are based on silicon carbide in which molybdenum impurities create color centers. [23] Scientists at Radboud University discovered a new mechanism for magnetic storage of information in the smallest unit of matter: a single atom. [22] One of these are single-atom magnets: storage devices consisting of individual atoms stuck ("adsorbed") on a surface, each atom able to store a single bit of data that can be written and read using quantum mechanics. [21] Physicists have experimentally demonstrated 18-qubit entanglement, which is the largest entangled state achieved so far with individual control of each qubit. [20] University of Adelaide-led research has moved the world one step closer to reliable, high-performance quantum computing. [19] A team of researchers with members from IBM Research-Zurich and RWTH Aachen University has announced the development of a new PCM (phase change memory) design that offers miniaturized memory cell volume down to three nanometers. [18] Monatomic glassy antimony might be used as a new type of single-element phase change memory. [17] Physicists have designed a 3-D quantum memory that addresses the tradeoff between achieving long storage times and fast readout times, while at the same time maintaining a compact form. [16] Quantum memories are devices that can store quantum information for a later time, which are usually implemented by storing and re-emitting photons with certain quantum states. [15] The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. [14] Intel has announced the design and fabrication of a 49-qubit superconducting quantum-processor chip at the Consumer Electronics Show in Las Vegas.
Category: Digital Signal Processing