**Previous months:**

2010 - 1003(11) - 1004(4) - 1005(2) - 1006(7) - 1007(2) - 1008(5) - 1009(7) - 1010(5) - 1011(1)

2011 - 1101(4) - 1102(3) - 1103(6) - 1104(18) - 1106(2) - 1107(4) - 1108(1) - 1110(2) - 1111(1)

2012 - 1201(2) - 1202(1) - 1203(2) - 1204(2) - 1205(3) - 1208(1) - 1209(1) - 1211(4)

2013 - 1301(1) - 1303(3) - 1304(1) - 1305(2) - 1306(9) - 1307(2) - 1308(2) - 1309(2) - 1310(2) - 1311(2) - 1312(5)

2014 - 1401(2) - 1404(3) - 1405(5) - 1406(2) - 1407(3) - 1408(4) - 1409(3) - 1410(2) - 1411(3)

2015 - 1502(5) - 1504(2) - 1507(2) - 1508(8) - 1510(1) - 1511(4) - 1512(4)

2016 - 1601(1) - 1602(6) - 1604(1) - 1605(4) - 1606(2) - 1607(26) - 1608(4) - 1609(2) - 1610(3) - 1611(2) - 1612(1)

2017 - 1701(1) - 1702(1) - 1703(3) - 1704(3) - 1706(3) - 1707(7) - 1708(7) - 1709(4) - 1710(7) - 1711(2) - 1712(3)

2018 - 1801(7) - 1802(8) - 1803(4) - 1804(5) - 1805(1) - 1806(1) - 1807(3) - 1808(3) - 1809(3) - 1810(8) - 1811(5) - 1812(6)

2019 - 1901(3)

Any replacements are listed farther down

[335] **viXra:1901.0195 [pdf]**
*submitted on 2019-01-14 11:16:25*

**Authors:** Antoine Balan

**Comments:** 1 pages, written in english

We define a closed 2-form for any spinorial manifold. We deduce characteristic classes.

**Category:** Geometry

[334] **viXra:1901.0162 [pdf]**
*submitted on 2019-01-11 17:27:46*

**Authors:** Hiroshi Okumura

**Comments:** 3 Pages.

We generalize several Archimedean circles, which are the incircles of special triangles.

**Category:** Geometry

[333] **viXra:1901.0152 [pdf]**
*submitted on 2019-01-11 06:31:41*

**Authors:** Edgar Valdebenito

**Comments:** 63 Pages.

Esta nota muestra una colección de fractales.

**Category:** Geometry

[332] **viXra:1812.0226 [pdf]**
*submitted on 2018-12-12 06:35:09*

**Authors:** Edgar Valdebenito

**Comments:** 108 Pages.

This note presents a collection of elementary fractals.

**Category:** Geometry

[331] **viXra:1812.0206 [pdf]**
*submitted on 2018-12-11 21:37:57*

**Authors:** James A. Smith

**Comments:** 5 Pages.

Because the shortage of worked-out examples at introductory levels is an obstacle to widespread adoption of Geometric Algebra (GA), we use GA to solve one of the beautiful \emph{sangaku} problems from 19th-Century Japan. Among the GA operations that prove useful is the rotation of vectors via the unit bivector i.

**Category:** Geometry

[330] **viXra:1812.0090 [pdf]**
*submitted on 2018-12-05 19:29:23*

**Authors:** Colin James III

**Comments:** 3 Pages. © Copyright 2016-2018 by Colin James III All rights reserved. Updated abstract at ersatz-systems.com . Respond to the author by email at: info@ersatz-systems dot com.

We evaluate the axioms of the title. The axiom of identity of betweenness and axiom Euclid are tautologous, but the others are not. The commonplace expression of the axiom of Euclid does not match its other two variations which is troubling. This effectively refutes the planar R-geometry.

**Category:** Geometry

[329] **viXra:1812.0085 [pdf]**
*submitted on 2018-12-04 07:19:40*

**Authors:** Hannes Hutzelmeyer

**Comments:** 93 Pages.

Geometries of O adhere to Ockham's principle of simplest possible ontology: the only individuals are points, there are no straight lines, circles, angles etc. , just as it was was laid down by Tarski in the 1920s, when he put forward a set of axioms that only contain two relations, quaternary congruence and ternary betweenness. However, relations are not as intuitive as functions when constructions are concerned. Therefore the planar geometries of O contain only functions and no relations to start with. Essentially three quaternary functions occur: appension for line-joining of two pairs of points, linisection representing intersection of straight lines and circulation corresponding to intersection of circles. Functions are strictly defined by composition of given ones only. Both, Euclid and Lobachevsky planar geometries are developed using a precise notation for object-language and metalanguage, that allows for a very broad area of mathematical systems up to theory of types. Some astonishing results are obtained, among them: (A) Based on a special triangle construction Euclid planar geometry can start with a less powerful ontological basis than Lobachevsky geometry. (B) Usual Lobachevsky planar geometry is not complete, there are nonstandard planar Lobachevsky geometries. One needs a further axiom, the 'smallest' system is produced by the proto-octomidial-axiom. (C) Real numbers can be abandoned in connection with planar geometry. A very promising conjecture is put forward stating that the Euclidean Klein-model of Lobachevsky planar geometry does not contain all points of the constructive Euclidean unit-circle.

**Category:** Geometry

[328] **viXra:1812.0061 [pdf]**
*submitted on 2018-12-03 06:42:06*

**Authors:** Edgar Valdebenito

**Comments:** 119 Pages.

This note presents a collection of elementary Fractals.

**Category:** Geometry

[327] **viXra:1811.0435 [pdf]**
*submitted on 2018-11-26 06:16:16*

**Authors:** Edgar Valdebenito

**Comments:** 101 Pages.

This note presents a collection of elementary Fractals.

**Category:** Geometry

[326] **viXra:1811.0324 [pdf]**
*submitted on 2018-11-20 06:38:27*

**Authors:** Edgar Valdebenito

**Comments:** 113 Pages.

This note presents a collection of elementary Fractals.

**Category:** Geometry

[325] **viXra:1811.0214 [pdf]**
*submitted on 2018-11-13 06:40:17*

**Authors:** Edgar Valdebenito

**Comments:** 109 Pages.

This note presents a collection of elementary fractals.

**Category:** Geometry

[324] **viXra:1811.0132 [pdf]**
*submitted on 2018-11-08 20:40:58*

**Authors:** Hiroshi Okumura

**Comments:** 5 Pages.

We generalize two sangaku problems involving an arbelos proposed by Izumiya and Nait\=o, and show the existence of six non-Archimedean congruent circles.

**Category:** Geometry

[323] **viXra:1811.0103 [pdf]**
*submitted on 2018-11-06 09:20:05*

**Authors:** Adham Ahmed Mohamed Ahmed

**Comments:** 1 Page.

this paper talks about a hypothesis between the cube and the sphere which is inside the cube and the excess volume of the cube than the sphere and the excess volume of the sphere where the cube is inside of the sphere
What If you spin a cube around an axis passing through its midpoint of the cube would the cylinder formed have an excess in volume than the sphere equal to the excess in volume of the cylinder than he cube?

**Category:** Geometry

[322] **viXra:1810.0421 [pdf]**
*submitted on 2018-10-26 02:32:17*

**Authors:** Martin Peter Neuenhofen

**Comments:** 16 Pages.

We present an NLP solver for nonlinear optimization with quadratic penalty terms and logarithmic barrier terms. The method is suitable for large sparse problems. Each iteration has a polynomial time-complexity. The method has global convergence and local quadratic convergence, with a convergence radius that depends little on our method but rather on the geometry of the problem.

**Category:** Geometry

[321] **viXra:1810.0379 [pdf]**
*submitted on 2018-10-24 03:13:11*

**Authors:** Франц Герман

**Comments:** 9 Pages.

Что такое след проективной плоскости и как можно его увидеть рассказывается в этой заметке.

**Category:** Geometry

[320] **viXra:1810.0324 [pdf]**
*submitted on 2018-10-21 03:08:17*

**Authors:** Hongbing Zhang

**Comments:** 18 Pages. Please Indicate This Source From Hongbing Zhang When Cite the Contents in Works of Sience or Popular Sience

Why does a half-angle-rotation in quaternion space or spin space correspond to a whole-angle-rotation in normal 3D space? The question is equivalent to why a half angle in the representation of SU(2) corresponds to a whole angle in the representation of SO(3). Usually we use the computation of the abstract mathematics to answer the question. But now I will give an exact and intuitive geometry-explanation on it in this paper.

**Category:** Geometry

[319] **viXra:1810.0295 [pdf]**
*submitted on 2018-10-18 09:47:40*

**Authors:** Франц Герман

**Comments:** Pages.

В данной заметке мы покажем представление дельта-функции Дирака, которое будем назвать естественным. Существующие способы представления дельта-функции Дирака носят в общем-то искусственный характер.

**Category:** Geometry

[318] **viXra:1810.0283 [pdf]**
*submitted on 2018-10-17 05:53:48*

**Authors:** Jan Hakenberg

**Comments:** 10 Pages.

Geodesic averages have been used to generalize curve subdivision and Bézier curves to Riemannian manifolds and Lie groups. We show that geodesic averages are suitable to perform smoothing of sequences of data in nonlinear spaces. In applications that produce temporal uniformly sampled manifold data, the smoothing removes high-frequency components from the signal. As a consequence, discrete differences computed from the smoothed sequence are more regular. Our method is therefore a simpler alternative to the extended Kalman filter. We apply the smoothing technique to noisy localization estimates of mobile robots.

**Category:** Geometry

[317] **viXra:1810.0171 [pdf]**
*submitted on 2018-10-10 13:28:08*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in english

By similarity with the Seiberg-Witten equations, we propose a set of two equations, depending of a spinor and a vector field.

**Category:** Geometry

[316] **viXra:1810.0068 [pdf]**
*submitted on 2018-10-06 02:12:13*

**Authors:** Johan Noldus

**Comments:** 11 Pages.

We introduce the reader to the problematic aspects of formulating in concreto a suitable notion of geometry. Here, we take the canonical approach and give some examples.

**Category:** Geometry

[315] **viXra:1810.0057 [pdf]**
*submitted on 2018-10-04 09:55:33*

**Authors:** Франц Герман

**Comments:** Pages.

Сформулирована и доказана теорема, ранее не встречавшаяся в литературе по проективной геометрии.
На основании «теоремы о поляре трёхвершинника» открывается целый класс задач на построение.
Теорема может быть полезна студентам математических факультетов педагогических вузов, а также учителям математики средней школы для проведения факультативных занятий.

**Category:** Geometry

[314] **viXra:1809.0515 [pdf]**
*submitted on 2018-09-24 07:45:56*

**Authors:** Edgar Valdebenito

**Comments:** 15 Pages.

En esta nota mostramos algunos fractales del tipo Newton asociados al polinomio: p(z)=z^9+3z^6+3z^3-1,z complejo.

**Category:** Geometry

[313] **viXra:1809.0472 [pdf]**
*submitted on 2018-09-22 12:54:37*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in english

We define here a generalization of the well-know Levi-Civita connection. We choose an automorphism and define a connection with help of a (non-symmetric) bilinear form.

**Category:** Geometry

[312] **viXra:1809.0323 [pdf]**
*submitted on 2018-09-15 09:41:12*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in english

We propose here a generalization of the Clifford algebra by mean of two endomorphisms. We deduce a generalized Lichnerowicz formula for the space of modified spinors.

**Category:** Geometry

[311] **viXra:1808.0595 [pdf]**
*submitted on 2018-08-25 08:47:43*

**Authors:** Somsikov A.I.

**Comments:** 2 Pages.

One of initial or primary concepts which is considered to the "protozoa" (who aren't expressed through other concepts) is considered. The structure of this concept is revealed. Algebraic and geometrical consequences are found.
Рассмотрено одно из исходных или первичных понятий, считающееся «простейшим» (не выражаемым через другие понятия). Выявлена структура этого понятия. Найдены алгебраические и геометрические следствия.

**Category:** Geometry

[310] **viXra:1808.0208 [pdf]**
*submitted on 2018-08-15 11:10:29*

**Authors:** Andrei Lucian Dragoi

**Comments:** 15 Pages.

This paper brings to attention the intrinsic paradox of the geometric point (GP) definition, a paradox solved in this paper by using Stéphane Lupasco’s Included Middle Logic (IML) (which was stated by Basarab Nicolescu as one of the three pillars of transdisciplinarity [TD]) and its extended form: based on IML, a new “t-metamathematics” (tMM) (including a t-metageometry[tMG]) is proposed, which may explain the main cause of Euclid’s parallel postulate (EPP) “inaccuracy”, allowing the existence not only of non-Euclidean geometries (nEGs), but also the existence of new EPP variants. tMM has far-reaching implications, including the help in redefining the basics of Einstein’s General relativity theory (GRT), quantum field theory (QFT), superstring theories (SSTs) and M-theory (MT).
KEYWORDS (including a list of main abbreviations): geometric point (GP); Stéphane Lupasco’s Included Middle Logic (IML); Basarab Nicolescu, transdisciplinarity (TD); “t-metamathematics” (tMM); t-metageometry (tMG); Euclid’s parallel postulate (EPP); non-Euclidean geometries; new EPP variants; Einstein’s General relativity theory (GRT); quantum field theory (QFT); superstring theories (SSTs); M-theory (MT);

**Category:** Geometry

[309] **viXra:1808.0206 [pdf]**
*submitted on 2018-08-15 12:34:49*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in english

We define here the notion of Balan-Killing manifolds which are solutions of differential equations over the metrics of spin manifolds.

**Category:** Geometry

[308] **viXra:1807.0463 [pdf]**
*submitted on 2018-07-26 06:25:03*

**Authors:** Jan Hakenberg

**Comments:** 6 Pages.

We demonstrate that curve subdivision in the special Euclidean group SE(2) allows the design of planar curves with favorable curvature. We state the non-linear formula to position a point along a geodesic in SE(2). Curve subdivision in the Lie group consists of trigonometric functions. When projected to the plane, the refinement method reproduces circles and straight lines. The limit curves are designed by intuitive placement of control points in SE(2).

**Category:** Geometry

[307] **viXra:1807.0298 [pdf]**
*submitted on 2018-07-17 17:10:18*

**Authors:** Yeray Cachón Santana

**Comments:** 10 Pages.

This paper covers a first approach study of the angles and modulo of vectors in spaces of Hilbert considering a riemannian metric where, instead of taking the usual scalar product on space of Hilbert, this will be extended by the tensor of the geometry g. As far as I know, there is no a study covering space of Hilbert with riemannian metric. It will be shown how to get the angle and modulo on Hilbert spaces with a tensor metric, as well as vector product, symmetry and rotations. A section of variationals shows a system of differential equations for a riemennian metric.

**Category:** Geometry

[306] **viXra:1807.0234 [pdf]**
*submitted on 2018-07-12 16:30:22*

**Authors:** James A. Smith

**Comments:** 18 Pages.

As a demonstration of the coherence of Geometric Algebra's (GA's) geometric and algebraic concepts of bivectors, we add three geometric bivectors according to the procedure described by Hestenes and Macdonald, then use bivector identities to determine, from the result, two bivectors whose outer product is equal to the initial sum. In this way, we show that the procedure that GA's inventors dened for adding geometric bivectors is precisely that which is needed to give results that coincide with those obtained by calculating outer products of vectors that are expressed in terms of a 3D basis. We explain that that accomplishment is no coincidence: it is a consequence of the attributes that GA's designers assigned (or didn't) to bivectors.

**Category:** Geometry

[305] **viXra:1806.0116 [pdf]**
*submitted on 2018-06-09 15:36:41*

**Authors:** Antoine Balan

**Comments:** 1 page, written in english

In the case of a manifold which is a Lie group, a Dirac operator can be defined acting over the vector fields of the Lie group instead of the spinors.

**Category:** Geometry

[304] **viXra:1805.0030 [pdf]**
*submitted on 2018-05-01 00:29:25*

**Authors:** Johan Aspegren

**Comments:** 7 Pages.

One theme of this paper is to extend known results from polygons and balls to the general convex bodies in n− dimensions. An another theme stems from approximating a convex surface with polytope surface. Our result gives a sufficient and necessary condition for an natural approximation method to succeed (in principle) in the case of surfaces of convex bodies. Thus, Schwartz`s paradox does not affect our method. This allows us to denefine certain surface measures on surfaces of convex bodies in a novel and simple way.

**Category:** Geometry

[303] **viXra:1804.0397 [pdf]**
*submitted on 2018-04-27 03:22:51*

**Authors:** Zhenghan Shen, Wen Wang, Pan Zhang

**Comments:** 9 Pages.

In this paper, by the method of heat flow and the
method of exhaustion, we prove an existence theorem of Hermitian-Yang-Mills-Higgs metrics on holomorphic line bundle over a class of non-compact Gauduchon manifold.

**Category:** Geometry

[302] **viXra:1804.0363 [pdf]**
*submitted on 2018-04-24 20:34:14*

**Authors:** James A. Smith

**Comments:** 54 Pages.

Because the shortage of worked-out examples at introductory levels is an obstacle to widespread adoption of Geometric Algebra (GA), we use GA to calculate Solar azimuths and altitudes as a function of time via the heliocentric model. We begin by representing the Earth's motions in GA terms. Our representation incorporates an estimate of the time at which the Earth would have reached perihelion in 2017 if not affected by the Moon's gravity. Using the geometry of the December 2016 solstice as a starting point, we then employ GA's capacities for handling rotations to determine the orientation of a gnomon at any given latitude and longitude during the period between the December solstices of 2016 and 2017. Subsequently, we derive equations for two angles: that between the Sun's rays and the gnomon's shaft, and that between the gnomon's shadow and the direction ``north" as traced on the ground at the gnomon's location. To validate our equations, we convert those angles to Solar azimuths and altitudes for comparison with simulations made by the program Stellarium. As further validation, we analyze our equations algebraically to predict (for example) the precise timings and locations of sunrises, sunsets, and Solar zeniths on the solstices and equinoxes. We emphasize that the accuracy of the results is only to be expected, given the high accuracy of the heliocentric model itself, and that the relevance of this work is the efficiency with which that model can be implemented via GA for teaching at the introductory level. On that point, comments and debate are encouraged and welcome.

**Category:** Geometry

[301] **viXra:1804.0360 [pdf]**
*submitted on 2018-04-25 02:11:06*

**Authors:** Hiroshi Okumura

**Comments:** 2 Pages. This paper will be submitted to Sangaku Journal of Mathematics.

A problem involving an isosceles triangle with a square and three congruent circles is generalized.

**Category:** Geometry

[300] **viXra:1804.0132 [pdf]**
*submitted on 2018-04-10 11:52:50*

**Authors:** Arturo Tozzi, James Peters

**Comments:** 6 Pages.

The first definition (prior to the well-known five postulates) of Euclid describes the point as “that of which there is no part”. Here we show how the Euclidean account of manifolds is untenable in our physical realm and that the concepts of points, lines, surfaces, volumes need to be revisited, in order to allow us to be able to describe the real world. Here we show that the basic object in a physical context is a traversal of spacetime via tiny subregions of spatial regions, rather than the Euclidean point. We also elucidate the psychological issues that lead our mind to think to points and lines as really existing in our surrounding environment.

**Category:** Geometry

[299] **viXra:1804.0032 [pdf]**
*submitted on 2018-04-03 04:56:49*

**Authors:** Ryan Haddad

**Comments:** 1 Page.

This conjecture may be a tool in defining the indefinite tangent of 90 degrees, and is a (new) mathematical coincidence that is indeed strange; why would the tangent of angles near 90 degrees be equal to the angle of the radian multiplied by powers of 10? In fact, if there is no geometrical explanation in current mathematics, it may resides in metamathematics.

**Category:** Geometry

[298] **viXra:1803.0463 [pdf]**
*submitted on 2018-03-22 09:24:56*

**Authors:** Gerasimos T. Soldatos

**Comments:** Published in: FORUM GEOMETRICORUM, VOL. 18, PAGES 93-97

A doubling of the cube is attempted as a problem equivalent to the doubling of a horn torus. Both doublings are attained through the circle of Apollonius.

**Category:** Geometry

[297] **viXra:1803.0242 [pdf]**
*submitted on 2018-03-16 18:19:17*

**Authors:** Prashanth R. Rao

**Comments:** 3 Pages.

The Playfair’s axiom is considered an equivalent of Euclid’s fifth postulate or parallel postulate in Euclidean planar geometry. It states that in a given plane, with a line in the plane and a point outside the line that is also in the same plane, one and only one line passes through that point that is also parallel to the given line. Previous proofs of Euclid’s postulate or the Playfair’s axiom have unintentionally assumed parallel postulate to prove it. Also, these axioms have different results in hyperbolic and spherical geometries. We offer proof for the Playfair’s axiom for subset of cases in the context of plane Euclidean geometry and describe another subset of cases that cannot be proven by the same approach.

**Category:** Geometry

[296] **viXra:1803.0119 [pdf]**
*submitted on 2018-03-08 13:22:17*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in french

Following the definition of the flow of Ricci, we construct a flow of hermitian metrics for the spinors fiber bundle.

**Category:** Geometry

[295] **viXra:1803.0050 [pdf]**
*submitted on 2018-03-04 11:55:15*

**Authors:** Antoine Balan

**Comments:** 1 page, written in french

The flow of Ricci is defined for the hermitian metric of a fiber bundle.

**Category:** Geometry

[294] **viXra:1802.0196 [pdf]**
*submitted on 2018-02-15 23:59:18*

**Authors:** Hiroshi Okumura

**Comments:** 3 Pages. This is a paper considering a problem in Wasan geometry.

A problem involving a square in the curvilinear triangle made by two touching congruent circles and their common tangent is generalized.

**Category:** Geometry

[293] **viXra:1802.0123 [pdf]**
*submitted on 2018-02-10 09:10:18*

**Authors:** Prashanth R. Rao

**Comments:** 1 Page.

Proposition 23 states that two parallel lines in a plane never intersect. We use this definition with first and second postulate of Euclid to prove that two distinct lines through a single point cannot be parallel.

**Category:** Geometry

[292] **viXra:1802.0092 [pdf]**
*submitted on 2018-02-08 07:24:07*

**Authors:** Jesús Álvarez Lobo

**Comments:** 1 Page. Revista Escolar de la Olimpiada Iberoamericana de Matemática. Volume 18. Spanish.

A very simple solution to a geometric problem (proposed by Alex Sierra Cardenas, Medellin, Colombia) that involves a cevian, two perpendicular bisectors and a median in an isosceles triangle.

**Category:** Geometry

[291] **viXra:1802.0091 [pdf]**
*submitted on 2018-02-08 07:47:03*

**Authors:** Jesús Álvarez Lobo

**Comments:** 47 Pages. https://arxiv.org/abs/1110.1299

This work presents for the first time a solution to the 1821 unsolved Sawa
Masayoshi's problem, giving an explicit and algebraically exact solution for
the symmetric case (particular case b = c, i.e., for ABC isosceles right-angled triangle), see (1.60) and (1.61).
Despite the isosceles triangle restriction is not necessary, in view of the complexity of the explicit algebraic solution for the symmetric case, one can guessing the impossibility of achieving an explicit relationship for the
asymmetric case (the more general case: ABC right-angled scalene triangle). For this case is given a proof of existence and uniqueness of
solution and a proof of the impossibility of getting such a relationship, even
implicitly, if the sextic equation (2.54) it isn't solvable.
Nevertheless, in (2.56) - (2.58) it is shown the way to solve the asymmetric case under the condition that (2.54) be solvable.
Furthermore, it is proved that with a slight
modification in the final set of variables (F), it is still possible to establish a relation between them, see (2.59) and (2.61), which provides a bridge that connects the primitive relationship by means of numerical methods,
for every given right-angled triangle ABC.
And as the attempt to solve Fermat's conjecture (or Fermat's last theorem), culminated more than three centuries later by Andrew Wiles, led to the development of powerful theories of more general scope, the attempt to solve
the Masayoshi's problem has led to the development of the Theory of Overlapping
Polynomials (TOP), whose application to this problem reveals a great potential
that might be extrapolated to other frameworks.

**Category:** Geometry

[290] **viXra:1802.0079 [pdf]**
*submitted on 2018-02-08 06:28:49*

**Authors:** Jesús Álvarez Lobo

**Comments:** 11 Pages.

Sacred Mathematics: Japanese Temple Geometry. Fukagawa Hidetoshi - Tony Rothman.
Still Harder Temple Geometry Problems:
Chapter 6 - Problem 3.

**Category:** Geometry

[289] **viXra:1802.0071 [pdf]**
*submitted on 2018-02-07 07:09:05*

**Authors:** Abdelmajid Ben Hadj Salem

**Comments:** 13 Pages. In French.

This paper gives the elements of definition of the Bonne's map projection. It was used for the ancient cartography at 1/50000 scale in Tunisia and Algeria.

**Category:** Geometry

[288] **viXra:1802.0047 [pdf]**
*submitted on 2018-02-05 08:51:37*

**Authors:** James A. Smith

**Comments:** 14 Pages.

We express a problem from visual astronomy in terms of Geometric (Clifford) Algebra, then solve the problem by deriving expressions for the sine and cosine of the angle between projections of two vectors upon a plane. Geometric Algebra enables us to do so without deriving expressions for the projections themselves.

**Category:** Geometry

[287] **viXra:1802.0036 [pdf]**
*submitted on 2018-02-03 13:17:15*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in french

Studying the flow of Kaehler-Ricci, a flow is defined for a manifold which is HyperKaehler.

**Category:** Geometry

[286] **viXra:1801.0347 [pdf]**
*submitted on 2018-01-25 14:50:11*

**Authors:** Antoine Balan

**Comments:** 1 page, written in french

The flow of Ricci-Schrödinger is defined from the flow of Ricci, like the Schrödinger equation is a twist of the heat equation.

**Category:** Geometry

[285] **viXra:1801.0309 [pdf]**
*submitted on 2018-01-23 19:52:26*

**Authors:** Songting Yin, Pan Zhang

**Comments:** 9 Pages.

In this paper, we give a gradient estimate of positive solution to the equation
$$\Delta u=-\lambda^2u, \ \ \lambda\geq 0$$
on a complete non-compact Finsler manifold. Then we obtain the corresponding Liouville-type theorem and Harnack inequality for the solution.
Moreover, on a complete non-compact Finsler manifold we also prove a Liouville-type theorem for a $C^2$-nonegative function $f$ satisfying
$$\Delta f\geq cf^d, c>0, d>1, $$
which improves a result obtained by Yin and He.

**Category:** Geometry

[284] **viXra:1801.0292 [pdf]**
*submitted on 2018-01-22 15:19:04*

**Authors:** Philip Gibbs

**Comments:** 21 Pages.

The universal covering problem as posed by Henri Lebesgue in 1914 seeks to find the convex planar shape of smallest area that contains a subset congruent to any point set of unit diameter in the Euclidean plane. Methods used previously to construct such a cover can be refined and extended to provide an improved upper bound for the optimal area. An upper bound of 0.8440935944 is found.

**Category:** Geometry

[283] **viXra:1801.0156 [pdf]**
*submitted on 2018-01-13 21:02:25*

**Authors:** Xu Chen

**Comments:** 13 Pages.

In this article, we will discuss a localization formulas of equlvariant cohomology about two Killing vector fields on the set of zero points
${\rm{Zero}}(X_{M}-\sqrt{-1}Y_{M})=\{x\in M \mid |Y_{M}(x)|=|X_{M}(x)|=0 \}.$ As application, we use it to get formulas about characteristic numbers and to get a Duistermaat-Heckman type formula on symplectic manifold.

**Category:** Geometry

[282] **viXra:1801.0155 [pdf]**
*submitted on 2018-01-13 21:07:54*

**Authors:** Xu Chen

**Comments:** 7 Pages.

We extend the reslut about Poincar\'e-Hopf type formula for the difference of the Chern character numbers (cf.[3]) to the non-isolated singularities, and establish a Poincar\'e-Hopf type formula for a pair of vector field with the function $h^{T_{\mathbb{C}}M}(\cdot,\cdot)$ has non-isolated zero points over a closed, oriented smooth manifold
of dimension $2n$.

**Category:** Geometry

[281] **viXra:1801.0146 [pdf]**
*submitted on 2018-01-13 01:53:56*

**Authors:** Sennimalai Kalimuthu

**Comments:** 03 Pages. Interested people may contact k,me at any time. Tha

The 5th Euclidean postulate is 2300 years old mathematical impossibility. I have worked on this problem for nearly b35 years and found a number of consistent solutions. My findings have been appeared in international peer reviewed research journals.
Generation of power freely from space, space Bombs, Lion’s Tonic and Lemurian Yoga are my ambitious scientific projects.
Interested researchers and people may contact me at +91 8508991577.
My email is math.kalimuthu@gmail.com and arutperunjothi@outlook.com

**Category:** Geometry

[280] **viXra:1801.0056 [pdf]**
*submitted on 2018-01-05 09:56:59*

**Authors:** Carlos Alejandro Chiappini

**Comments:** 7 Pages.

Leonhard Euler demostró que en un poliedro regular convexo hay tres números ue cumplen una ley, expresada en una ecuación conocida como fórmula de Euler. Son el número de caras, el número de vértices y el número de aristas.
Este documento presenta algunas fórmulas más, obtenidas por ensayo y error a partir de una tabla que contiene los datos de los 5 poliedros regulares convexos. Estas fórmulas indemostradas tienen rasgos verosímiles. Buscar el modo de demostrar la invalidez o la validez de esas fórmulas podría ser, para las personas amantes de la topología, una tarea interesante.

**Category:** Geometry

[279] **viXra:1712.0524 [pdf]**
*submitted on 2017-12-19 13:56:07*

**Authors:** James A. Smith

**Comments:** 8 Pages.

We show how to calculate the projection of a vector, from an arbitrary direction, upon a given plane whose orientation is characterized by its normal vector, and by a bivector to which the plane is parallel. The resulting solutions are tested by means of an interactive GeoGebra construction.

**Category:** Geometry

[278] **viXra:1712.0393 [pdf]**
*submitted on 2017-12-11 16:46:30*

**Authors:** James A. Smith

**Comments:** 29 Pages. Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vectors and Bivectors in Geometric (Clifford) Algebra

We show how to express the representations of single, composite, and ``rotated" rotations in GA terms that allow rotations to be calculated conveniently via spreadsheets. Worked examples include rotation of a single vector by a bivector angle; rotation of a vector about an axis; composite rotation of a vector; rotation of a bivector; and the ``rotation of a rotation". Spreadsheets for doing the calculations are made available via live links.

**Category:** Geometry

[277] **viXra:1711.0317 [pdf]**
*submitted on 2017-11-14 17:32:57*

**Authors:** Giordano Colò

**Comments:** 22 Pages.

We try to give a formulation of Strominger-Yau-Zaslow conjecture
on mirror symmetry by studying the singularities of special Lagrangian
submanifolds of 3-dimensional Calabi-Yau manifolds. In this
paper we’ll give the description of the boundary of the moduli space
of special Lagrangian manifolds.
We do this by introducing special Lagrangian cones in the more
general Kähler manifolds. Then we can focus on the almost Calabi-
Yau manifolds. We consider the behaviour of the Lagrangian manifolds
near the conical singular points to classify them according to
the way they are approximated from the asymptotic cone. Then we
analyze their deformations in Calabi-Yau manifolds.

**Category:** Geometry

[276] **viXra:1711.0306 [pdf]**
*submitted on 2017-11-14 06:43:32*

**Authors:** Edgar Valdebenito

**Comments:** 8 Pages.

This note presents some fractals.

**Category:** Geometry

[275] **viXra:1710.0264 [pdf]**
*submitted on 2017-10-23 07:56:01*

**Authors:** Edgar Valdebenito

**Comments:** 7 Pages.

This note presents some fractals related with the function: f(z)=((1-z^5)^2/(1+z^10))-z

**Category:** Geometry

[274] **viXra:1710.0241 [pdf]**
*submitted on 2017-10-22 16:40:29*

**Authors:** Paris Samuel Miles-Brenden

**Comments:** 5 Pages. None.

None.

**Category:** Geometry

[273] **viXra:1710.0147 [pdf]**
*submitted on 2017-10-14 08:51:55*

**Authors:** James A. Smith

**Comments:** 13 Pages.

We show how to express the representation of a composite rotation in terms that allow the rotation of a vector to be calculated conveniently via a spreadsheet that uses formulas developed, previously, for a single rotation. The work presented here (which includes a sample calculation) also shows how to determine the bivector angle that produces, in a single operation, the same rotation that is effected by the composite of two rotations.

**Category:** Geometry

[272] **viXra:1710.0137 [pdf]**
*submitted on 2017-10-13 01:17:37*

**Authors:** Antoine Balan

**Comments:** 5 pages, written in french

The Dirac operator is twisted by a symmetric automorphism, the Dirac-Lichnerowicz formula is proved. An application for the Seiberg-Witten equations is proposed.

**Category:** Geometry

[271] **viXra:1710.0131 [pdf]**
*submitted on 2017-10-11 07:44:42*

**Authors:** Edgar Valdebenito

**Comments:** 8 Pages.

This note presents a fractal image for f(z)=ln(1+g(z)).

**Category:** Geometry

[270] **viXra:1710.0127 [pdf]**
*submitted on 2017-10-11 20:27:18*

**Authors:** Choe ryujin

**Comments:** 4 Pages.

Proof of happy ending problem

**Category:** Geometry

[269] **viXra:1710.0110 [pdf]**
*submitted on 2017-10-10 11:31:30*

**Authors:** Mauro Bernardini

**Comments:** 4 Pages.

This paper attempts to provide a new vision on the 4th spatial dimension starting on the known symmetries of the Euclidean geometry. It results that, the points of the 4th dimensional complex space are circumferences of variable ray. While the axis of the 4th spatial dimension, to be orthogonal to all the three 3d cartesinan axes, is a complex line made of two specular cones surfaces symmetrical on their vertexes corresponding to the common origin of both the real and complex cartesian systems.

**Category:** Geometry

[268] **viXra:1709.0439 [pdf]**
*submitted on 2017-09-30 10:53:14*

**Authors:** Bouetou Bouetou Thomas

**Comments:** 10 Pages. non

I have noticed a situation of plagiarist and want to draw the attention of the authors and readers.

**Category:** Geometry

[267] **viXra:1709.0109 [pdf]**
*submitted on 2017-09-10 05:11:19*

**Authors:** Prashanth R. Rao

**Comments:** 3 Pages.

In this paper, we generate a special hexagon with two-fold symmetry by diagonally juxtaposing two squares of different dimensions so that they share exactly one common vertex and their adjacent sides are perpendicular to one another. We connect in specific pairs, the vertices adjacent to common vertex of both squares to generate a hexagon that is symmetrical about a line connecting the unconnected vertices. We show that this special hexagon must have one square whose points lie on its sides. With suitable modifications, it may be possible to use this technique to prove the Toeplitz conjecture for a simple closed curve generated by connecting the same six vertices of this special hexagon.

**Category:** Geometry

[266] **viXra:1709.0026 [pdf]**
*submitted on 2017-09-02 14:50:05*

**Authors:** Prashanth R. Rao

**Comments:** 2 Pages.

According to Toeplitz conjecture or the inscribed square conjecture, every simple closed curve in a plane must have atleast one set of four points on it that belong to a square. This conjecture remains unsolved for a general case although it has been proven for some special cases of simple closed curves. In this paper, we prove the conjecture for a special case of a simple closed curve derived from two simple closed curves, each of which have exactly only one set of points defining a square. The Toeplitz solution squares of two parent simple closed curves have the same dimensions and share exactly one common vertex and the adjacent sides of the two squares form a right angle. The derived simple closed curve is formed by eliminating this common vertex (that belonged to the two solutions squares to begin with) and connecting other available points on the parent curves. We show that this derived simple closed curve has atleast one solution square satisfying the Toeplitz conjecture.

**Category:** Geometry

[265] **viXra:1708.0462 [pdf]**
*submitted on 2017-08-29 17:16:30*

**Authors:** James A. Smith

**Comments:** 9 Pages.

We show how to transform a "rotate a vector around a given axis" problem into one that may be solved via GA, which rotates objects with respect to bivectors. A sample problem is worked to show how to calculate the result of such a rotation conveniently via an Excel spreadsheet, to which a link is provided.

**Category:** Geometry

[264] **viXra:1708.0459 [pdf]**
*submitted on 2017-08-30 06:57:06*

**Authors:** Adham ahmed mohamed ahmed

**Comments:** 1 Page.

This is a method to calculate pi using a computer

**Category:** Geometry

[263] **viXra:1708.0420 [pdf]**
*submitted on 2017-08-28 08:14:53*

**Authors:** Edgar Valdebenito

**Comments:** 56 Pages.

This note presents some examples of Newton-Raphson fractals.

**Category:** Geometry

[262] **viXra:1708.0236 [pdf]**
*submitted on 2017-08-19 17:45:13*

**Authors:** Prashanth R. Rao

**Comments:** 1 Page.

Abstract: In this paper we prove that any two points A and B in space that are at different distances from a third point C, when connected by any curve in three dimensional space, must contain points such as D that are at intermediate distances from the third point C (length DC is intermediate to length AC and length BC).

**Category:** Geometry

[261] **viXra:1708.0229 [pdf]**
*submitted on 2017-08-19 12:49:36*

**Authors:** Prashanth R. Rao

**Comments:** 1 Page.

In this paper, we give a simple proof that if there are two points A and B that are at distinct linear distances from a third point C (AC is not equal to BC), then any curve connecting the points A and B (this curve lies within the same plane containing A,B,C) must contain points such as D that lie at an intermediate distance from C, (DC is of length intermediate to AC and BC).

**Category:** Geometry

[260] **viXra:1708.0191 [pdf]**
*submitted on 2017-08-17 03:54:59*

**Authors:** Vu B Ho

**Comments:** 6 Pages.

In this work we show that by restricting the coordinate transformations to the group of time-independent coordinate transformations it is possible to derive the Ricci flow from the contracted Bianchi identities.

**Category:** Geometry

[259] **viXra:1708.0027 [pdf]**
*submitted on 2017-08-02 13:40:27*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in french

The pseudo-quaternionic manifolds are studied. Several tensors are defined.

**Category:** Geometry

[258] **viXra:1707.0374 [pdf]**
*submitted on 2017-07-28 10:50:06*

**Authors:** Liu Ran

**Comments:** 3 Pages.

因为圆周率是一个比值，圆周长和直径都是测量而来，只要去测量圆周长和直径，就不可避免要在空间去度量，而空间，全都是非欧空间。

**Category:** Geometry

[257] **viXra:1707.0249 [pdf]**
*submitted on 2017-07-18 12:52:38*

**Authors:** Ulrich E. Bruchholz, Horst Eckardt

**Comments:** 19 Pages.

The well known numerical method of approximating differential
quotients by quotients of differences is used in a novel context.
This method is commonly underestimated, wrongly.
The method is explained by an ordinary differential equation first.
Then it is demonstrated how this simple method
proves successful for non-linear field equations with chaotic
behaviour. Using certain discrete values of their integration constants,
a behaviour comparable with Mandelbrot sets is obtained.
Instead of solving the
differential equations directly, their convergence behaviour is analyzed.
As an example the Einstein-Maxwell equations are investigated,
where discrete
particle quantities are obtained from a continuous theory, which is possible
only by this method.
The special set of integration constants contains values identical with
particle characteristics.
Known particle values are confirmed, and unknown values can be predicted.
In this paper, supposed neutrino masses are presented.

**Category:** Geometry

[256] **viXra:1707.0242 [pdf]**
*submitted on 2017-07-17 13:20:25*

**Authors:** Edgar Valdebenito

**Comments:** 4 Pages.

In this note we briefly examine the curve: x^3+y^3=sqrt(2)*x*y

**Category:** Geometry

[255] **viXra:1707.0181 [pdf]**
*submitted on 2017-07-12 20:58:33*

**Authors:** Pan Zhang

**Comments:** 14 Pages.

Let $V$ be an asymptotically cylindrical K\"{a}hler manifold with asymptotic
cross-section $\mathfrak{D}$. Let $E_\mathfrak{D}$ be a stable Higgs bundle over $\mathfrak{D}$, and $E$ a Higgs bundle over $V$ which is asymptotic to
$E_\mathfrak{D}$. In this paper, using the continuity method of Uhlenbeck and Yau, we prove that there exists an asymptotically translation-invariant Hermitian projectively Hermitian Yang-Mills metric on $E$.

**Category:** Geometry

[254] **viXra:1707.0046 [pdf]**
*submitted on 2017-07-04 11:58:48*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in french

A Laplacian operator is defined bound to a riemannian manifold with a pseudo-complex structure.

**Category:** Geometry

[253] **viXra:1707.0011 [pdf]**
*submitted on 2017-07-01 08:14:34*

**Authors:** John Atwell Moody

**Comments:** 17 Pages. written September 2014

When a meromorphic vector field is given on the projective plane, a complete holomorphic limit cycle, because it is a closed singular submanifold of projective space, is defined by algebraic equations. Also the meromorphic vector field is an algebraic object. Poincare had asked, is there just an algebraic calculation leading from the vector field to the defining equations of the solution, without the
mysterious intermediary of the dynamical system.
The answer is yes, that there is nothing more mysterious or wonderful that happens when a complete holomorphic limit cycle is formed than could have been defined using algebra.

**Category:** Geometry

[252] **viXra:1707.0010 [pdf]**
*submitted on 2017-07-01 08:17:31*

**Authors:** John Atwell Moody

**Comments:** Pages.

Contents:

Analytic primality testing 1

Lefshetz numbers of modular curves 23

Grothendieck sections and rational points of modular curves 29

Rational points of modular curves 33

Conclusion about modular forms 41

Outline geometric proof of Mordell’s conjecture 48

Example:the Fermat curves

63 The residue calculation 69

The meaning of positive and negative 81

**Category:** Geometry

[251] **viXra:1707.0009 [pdf]**
*submitted on 2017-07-01 08:21:26*

**Authors:** John Atwell Moody

**Comments:** Pages.

Contents

Projective toric varieties

Divisors

Maps

Chow ring

Fourier series and generalizations

**Category:** Geometry

[250] **viXra:1706.0497 [pdf]**
*submitted on 2017-06-27 02:58:55*

**Authors:** Orgest ZAKA, Kristaq FILIPI

**Comments:** 4 Pages. https://www.ijsr.net/archive/v6i6/ART20174592.pdf

In this paper we present an application possibility of the affine plane of order $n$, in the planning experiment, taking samples as his point. In this case are needed $n^2$ samples. The usefulness of the support of experimental planning in a finite affine plane consists in avoiding the partial repetition combinations within a proof. Reviewed when planning cannot directly drawn over an affine plane. In this case indicated how the problem can be completed, and when completed can he, with intent to drawn on an affine plane.

**Category:** Geometry

[249] **viXra:1706.0409 [pdf]**
*submitted on 2017-06-21 01:40:42*

**Authors:** Antoine Balan

**Comments:** 5 pages, written in french

A symplectic Dirac operator is defined for a spin Kaehler manifold. The corresponding Schrödinger-Lichnerowicz formula is proved.

**Category:** Geometry

[248] **viXra:1706.0021 [pdf]**
*submitted on 2017-06-02 19:22:09*

**Authors:** Mendzina Essomba Francois, Essomba Essomba Dieudonne Gael

**Comments:** 24 Pages.

The same mathematical equation connects the circle to the square, the sphere to the cube, the hyper-sphere to the hyper-cube, another also connects the ellipse to the rectangle, the ellipsoid to a rectangular parallelepiped, the hyper-ellipsoid To the rectangular hyper-parallelepiped.
The understanding of these equations has taken us very far in a universe so familiar to mathematicians, the universe of periodic functions, and that of geometric forms with rounded ends revealing an infinity of new mathematical constants associated with them.

**Category:** Geometry

[247] **viXra:1704.0343 [pdf]**
*submitted on 2017-04-25 13:47:47*

**Authors:** Giordano Colò

**Comments:** 28 Pages.

We describe the deformations of the moduli space M of Special Lagrangian submanifolds in the compact case and we give a characterization of the topology of M by using McLean theorem. We consider Banach spaces on bundle sections and elliptical operators and we use Hodge theory to study the topology of the manifold. Starting from McLean results, for which the moduli space of compact special Lagrangian submanifolds is smooth and its tangent space can be identified with harmonic 1-forms on these submanifolds, we can analyze their deformations. Then we introduce a Riemannian metric on M, from which we obtain other important properties.

**Category:** Geometry

[246] **viXra:1704.0328 [pdf]**
*submitted on 2017-04-25 03:20:29*

**Authors:** Ion Patrascu, Florentin Smarandache

**Comments:** 3 Pages.

In this article, we highlight some properties of the Apollonius circles of rank - 1 associated with a triangle.

**Category:** Geometry

[245] **viXra:1704.0134 [pdf]**
*submitted on 2017-04-11 04:15:20*

**Authors:** Xu Chen

**Comments:** 23 Pages.

In this article, we computed the homology groups of real Grassmann manifold $G_{n,m}(\mathbb{R})$ by Witten complex.

**Category:** Geometry

[244] **viXra:1703.0273 [pdf]**
*submitted on 2017-03-28 19:09:13*

**Authors:** Arman Maesumi

**Comments:** 5 Pages.

Given a triangle ABC, the average area of an inscribed triangle RST whose vertices are uniformly distributed on BC, CA and AB, is proven to be one-fourth of the area of ABC. The average of the square of the area of RST is shown to be one-twelfth of the square of the area of ABC, and the average of the cube of the ratio of the areas is 5/144. A Monte Carlo simulation confirms the theoretical results, as well as a Maxima program which computes the exact averages.

**Category:** Geometry

[243] **viXra:1703.0267 [pdf]**
*submitted on 2017-03-28 08:30:43*

**Authors:** Jan Hakenberg, Ulrich Reif

**Comments:** 5 Pages.

The derivation of multilinear forms used to compute the moments of sets bounded by subdivision surfaces requires solving a number of systems of linear equations. As the support of the subdivision mask or the degree of the moment grows, the corresponding linear system becomes intractable to construct, let alone to solve by Gaussian elimination. In the paper, we argue that the power iteration and the geometric series are feasible methods to approximate the multilinear forms. The tensor iterations investigated in this work are shown to converge at favorable rates, achieve arbitrary numerical accuracy, and have a small memory footprint. In particular, our approach makes it possible to compute the volume, centroid, and inertia of spatial domains bounded by Catmull-Clark and Loop subdivision surfaces.

**Category:** Geometry

[92] **viXra:1812.0423 [pdf]**
*replaced on 2019-01-11 20:21:50*

**Authors:** Shawn Halayka

**Comments:** 5 Pages.

The curvature of a surface can lead to fractional dimension.
In this paper, the properties of the 2-sphere surface of a 3D ball and the 2.x-surface of a 3D fractal set are considered.
Tessellation is used to approximate each surface, primarily because the 2.x-surface of a 3D fractal set is otherwise non-differentiable.

**Category:** Geometry

[91] **viXra:1812.0423 [pdf]**
*replaced on 2019-01-08 10:44:26*

**Authors:** Shawn Halayka

**Comments:** 5 Pages.

The curvature of a surface can lead to fractional dimension.
In this paper, the properties of the 2-sphere surface of a 3D ball and the 2.x-surface of a 3D fractal set are considered.
Tessellation is used to approximate each surface, primarily because the 2.x-surface of a 3D fractal set is otherwise non-differentiable.

**Category:** Geometry

[90] **viXra:1810.0324 [pdf]**
*replaced on 2018-10-23 10:40:48*

**Authors:** Hongbing Zhang

**Comments:** 18 Pages. Please Indicate This Source From Hongbing Zhang When Cite the Contents in Works of Sience or Popular Sience

Why does a half-angle-rotation in quaternion space or spin space correspond to a whole-angle-rotation in normal 3D space? The question is equivalent to why a half angle in the representation of SU(2) corresponds to a whole angle in the representation of SO(3). Usually we use the computation of the abstract mathematics to answer the question. But now I will give an exact and intuitive geometry-explanation on it in this paper.

**Category:** Geometry

[89] **viXra:1810.0324 [pdf]**
*replaced on 2018-10-22 05:26:02*

**Authors:** Hongbing Zhang

**Comments:** 18 Pages. Please Indicate This Source From Hongbing Zhang When Cite the Contents in Works of Sience or Popular Sience

Why does a half-angle-rotation in quaternion space or spin space correspond to a whole-angle-rotation in normal 3D space? The question is equivalent to why a half angle in the representation of SU(2) corresponds to a whole angle in the representation of SO(3). Usually we use the computation of the abstract mathematics to answer the question. But now I will give an exact and intuitive geometry-explanation on it in this paper.

**Category:** Geometry

[88] **viXra:1810.0171 [pdf]**
*replaced on 2018-10-14 11:00:59*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in english

By similarity with the Seiberg-Witten equations, we propose two differential equations, depending of a spinor and a vector field, instead of a connection. Good moduli spaces are espected as a consequence of commutativity.

**Category:** Geometry

[87] **viXra:1810.0171 [pdf]**
*replaced on 2018-10-13 14:13:21*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in english

By similarity with the Seiberg-Witten equations, we propose two differential equations, depending of a spinor and a vector field, instead of a connection. Good moduli spaces are espected as a consequence of commutativity.

**Category:** Geometry

[86] **viXra:1808.0206 [pdf]**
*replaced on 2018-08-18 16:33:06*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in english

We define here the notion of Balan-Killing manifolds which are spin manifolds whose metrics verify a certain differential equation. We take our inspiration from the notion of Killing spinors.

**Category:** Geometry

[85] **viXra:1808.0206 [pdf]**
*replaced on 2018-08-18 05:09:12*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in english

We define here the notion of Balan-Killing manifolds which are spin manifolds whose metrics verify a certain differential equation. We take our inspiration from the notion of Killing spinors.

**Category:** Geometry

[84] **viXra:1807.0234 [pdf]**
*replaced on 2018-07-14 06:23:07*

**Authors:** James A. Smith

**Comments:** 18 Pages.

As a demonstration of the coherence of Geometric Algebra's (GA's) geometric and algebraic concepts of bivectors, we add three geometric bivectors according to the procedure described by Hestenes and Macdonald, then use bivector identities to determine, from the result, two bivectors whose outer product is equal to the initial sum. In this way, we show that the procedure that GA's inventors dened for adding geometric bivectors is precisely that which is needed to give results that coincide with those obtained by calculating outer products of vectors that are expressed in terms of a 3D basis. We explain that that accomplishment is no coincidence: it is a consequence of the attributes that GA's designers assigned (or didn't) to bivectors.

**Category:** Geometry

[83] **viXra:1805.0030 [pdf]**
*replaced on 2018-05-30 16:22:45*

**Authors:** Johan Aspegren

**Comments:** 7 Pages.

One theme of this paper is to extend known results from polygons and balls to the general convex bodies in n− dimensions. An another theme stems from approximating a convex surface with polytope surface. Our result gives a sufficient and necessary condition for an natural approximation method to succeed (in principle) in the case of surfaces of convex bodies. Thus, Schwartz`s paradox does not affect our method. This allows us to denefine certain surface measures on surfaces of convex bodies in a novel and simple way.

**Category:** Geometry

[82] **viXra:1805.0030 [pdf]**
*replaced on 2018-05-22 11:28:23*

**Authors:** Johan Aspegren

**Comments:** 7 Pages.

One theme of this paper is to extend known results from polygons and balls to the general convex bodies in n− dimensions. An another theme stems from approximating a convex surface with a polytope surface. Our result gives a sufficient and necessary condition for an natural approximation method to succeed (in principle) in the case of surfaces of convex bodies. Thus, Schwartz`s paradox does not affect our method. This allows us to define certain surface measures on surfaces of convex bodies in a novel and simple way.

**Category:** Geometry

[81] **viXra:1805.0030 [pdf]**
*replaced on 2018-05-20 22:09:51*

**Authors:** Johan Aspegren

**Comments:** 7 Pages.

One theme of this paper is to extend known results from polygons and balls to the general convex bodies in n− dimensions. An another theme stems from approximating a convex surface with a polytope surface. Our result gives a sufficient and necessary condition for an natural approximation method to succeed (in principle) in the case of surfaces of convex bodies. Thus, Schwartz`s paradox does not affect our method. This allows us to define certain surface measures on surfaces of convex bodies in a novel and simple way.

**Category:** Geometry

[80] **viXra:1805.0030 [pdf]**
*replaced on 2018-05-06 01:48:26*

**Authors:** Johan Aspegren

**Comments:** 7 Pages.

One theme of this paper is to extend known results from polygons and balls to the general convex bodies in n− dimensions. An another theme stems from approximating a convex surface with a polytope surface. Our result gives a sufficient and necessary condition for an natural approximation method to succeed (in principle) in the case of surfaces of convex bodies. Thus, Schwartz`s paradox does not affect our method. This allows us to define certain surface measures on surfaces of convex bodies in a novel and simple way.

**Category:** Geometry

[79] **viXra:1804.0003 [pdf]**
*replaced on 2018-06-05 10:27:07*

**Authors:** Antoine Balan

**Comments:** 6 pages, written in french

We define here the Seiberg-Witten equations in the quaternionic case. We formulate some algebra of the Hamilton numbers and study geometric applications of the quaternions.

**Category:** Geometry

[78] **viXra:1803.0119 [pdf]**
*replaced on 2018-03-09 09:44:09*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in french

Following the definition of the flow of Ricci and with help of the Dirac operator, we construct a flow of hermitian metrics for the spinors fiber bundle.

**Category:** Geometry

[77] **viXra:1803.0050 [pdf]**
*replaced on 2018-03-05 11:16:01*

**Authors:** Antoine Balan

**Comments:** 1 page, written in french

The flow of Ricci is defined for the hermitian metrics of a complex fiber bundle.

**Category:** Geometry

[76] **viXra:1802.0196 [pdf]**
*replaced on 2018-02-16 15:58:29*

**Authors:** Hiroshi Okumura

**Comments:** 3 Pages. The paper is considering a problem in Wasan geometry.

A problem involving a square in the curvilinear triangle made by two touching congruent circles and their common tangent is generalized.

**Category:** Geometry

[75] **viXra:1801.0347 [pdf]**
*replaced on 2018-01-27 07:26:09*

**Authors:** Antoine Balan

**Comments:** 2 pages, written in french

The flow of Ricci-Schrödinger is defined from the Ricci flow, like the Schrödinger equation with respect to the heat equation.

**Category:** Geometry

[74] **viXra:1712.0642 [pdf]**
*replaced on 2018-04-23 22:13:50*

**Authors:** James A. Smith

**Comments:** 13 Pages.

Published times of the Earth's perihelions do not refer to the perihelions of the orbit that the Earth would follow if unaffected by other bodies such as the Moon. To estimate the timing of that ``unperturbed" perihelion, we fit an unperturbed Kepler orbit to the timings of the year 2017's equinoxes and solstices. We find that the unperturbed 2017 perihelion, defined in that way, would occur 12.93 days after the December 2016 solstice. Using that result, calculated times of the year 2017's solstices and equinoxes differ from published values by less than five minutes. That degree of accuracy is sufficient for the intended use of the result.

**Category:** Geometry

[73] **viXra:1711.0317 [pdf]**
*replaced on 2017-12-17 12:03:53*

**Authors:** Giordano Colò

**Comments:** 22 Pages.

We try to give a formulation of Strominger-Yau-Zaslow conjecture on mirror symmetry by studying the singularities of special Lagrangian submanifolds of 3-dimensional Calabi-Yau manifolds. In this paper we’ll give the description of the boundary of the moduli space of special Lagrangian manifolds. We do this by introducing special Lagrangian cones in the more general Kähler manifolds. Then we can focus on the almost Calabi-Yau manifolds. We consider the behaviour of the Lagrangian manifolds near the conical singular points to classify them according to the way they are approximated from the asymptotic cone. Then we analyze their deformations in Calabi-Yau manifolds.

**Category:** Geometry

[72] **viXra:1711.0317 [pdf]**
*replaced on 2017-11-16 11:38:05*

**Authors:** Giordano Colò

**Comments:** 21 Pages.

We try to give a formulation of Strominger-Yau-Zaslow conjecture
on mirror symmetry by studying the singularities of special Lagrangian
submanifolds of 3-dimensional Calabi-Yau manifolds. In this
paper we’ll give the description of the boundary of the moduli space
of special Lagrangian manifolds.
We do this by introducing special Lagrangian cones in the more
general Kähler manifolds. Then we can focus on the textitalmost
Calabi-Yau manifolds. We consider the behaviour of the Lagrangian
manifolds near the conical singular points to classify them according
to the way they are approximated from the asymptotic cone. Then
we analyze their deformations in Calabi-Yau manifolds.

**Category:** Geometry

[71] **viXra:1710.0110 [pdf]**
*replaced on 2017-10-13 16:26:37*

**Authors:** Mauro Bernardini

**Comments:** 4 Pages. this version corrects some accidental writing errors of the previous loaded version.

This paper attempts to provide a new vision on the 4th spatial dimension starting on the known symmetries of the Euclidean geometry. It results that, the points of the 4th dimensional complex space are circumferences of variable ray. While the axis of the 4th spatial dimension, to be orthogonal to all the three 3d cartesinan axes, is a complex line made of two specular cones surfaces symmetrical on their vertexes corresponding to the common origin of both the real and complex cartesian systems.

**Category:** Geometry

[70] **viXra:1709.0144 [pdf]**
*replaced on 2018-12-29 04:20:55*

**Authors:** Pawan Kumar B.K.

**Comments:** 15 Pages.

Regular polygons are planar geometric structures that are used to a great extent in mathematics, engineering and physics. For all size of a regular polygon, the ratio of perimeter to the longest diagonal length is always constant and converges to the value of as the number of sides of the polygon approaches to ∞. The purpose of this paper is to introduce Bishwakarma Ratio Formulas through mathematical explanations. The Bishwakarma Ratio Formulae calculate the ratio of perimeter of regular polygon to the longest diagonal length for all possible regular polygons. These ratios are called Bishwakarma Ratios- often denoted by short term BK ratios- as they have been obtained via Bishwakarma Ratio Formulae. The result has been shown to be valid by actually calculating the ratio for each polygon by using corresponding formula and geometrical reasoning. Computational calculations of the ratios have also been presented upto 30 and 50 significant figures to validate the convergence.

**Category:** Geometry

[69] **viXra:1707.0374 [pdf]**
*replaced on 2017-07-29 09:16:08*

**Authors:** Liu Ran

**Comments:** 3 Pages.

因为圆周率是一个比值，圆周长和直径都是测量而来，只要去测量圆周长和直径，就不可避免要在空间去度量，而空间，全都是非欧空间。

**Category:** Geometry

[68] **viXra:1706.0409 [pdf]**
*replaced on 2017-06-28 01:37:22*

**Authors:** Antoine Balan

**Comments:** 4 pages, written in french

The symplectic Dirac operator is defined over a spin Kaehler manifold. The corresponding Schrödinger-Lichnerowicz formula is proved.

**Category:** Geometry

[67] **viXra:1706.0021 [pdf]**
*replaced on 2017-06-04 16:51:38*

**Authors:** Mendzina Essomba Francois, Essomba Essomba Dieudonne Gael

**Comments:** 25 Pages.

The same mathematical equation connects the circle to the square, the sphere to the cube, the hyper-sphere to the hyper-cube, another also connects the ellipse to the rectangle, the ellipsoid to a rectangular parallelepiped, the hyper-ellipsoid To the rectangular hyper-parallelepiped.
The understanding of these equations has taken us very far in a universe so familiar to mathematicians, the universe of periodic functions, and that of geometric forms with rounded ends revealing an infinity of new mathematical constants associated with them.

**Category:** Geometry