# Number Theory

## 1202 Submissions

[7] **viXra:1202.0086 [pdf]**
*replaced on 2012-03-03 23:45:52*

### Controversy Between Jiang Proof and Wiles Proof for Fermat Last Theorem in China

**Authors:** Song Wen Miao

**Comments:** 3 Pages. CHINESE

ALL EYES ARE ON FERMAT LAST THEOREM WHO PROVED FORST

**Category:** Number Theory

[6] **viXra:1202.0085 [pdf]**
*submitted on 2012-02-28 04:04:30*

### Generalized Fermat Primes P Such that 3 is a Primitive Root Modulo P

**Authors:** Predrag Terzich

**Comments:** 4 Pages.

We explore some properties of generalized Fermat primes of the form : F_n(2q)=(2q)^(2^n)+1 , where n > 1 and q is an odd prime number .

**Category:** Number Theory

[5] **viXra:1202.0063 [pdf]**
*submitted on 2012-02-18 19:13:46*

### (This Paper Has Been Withdrawn by the Author)

**Authors:** Germán Paz

**Comments:** 32 Pages. Withdrawn.

*This paper has been withdrawn by the author due to a flaw in the proof. / Este
documento ha sido retirado por el autor debido a un error en la demostración.*

**Category:** Number Theory

[4] **viXra:1202.0061 [pdf]**
*submitted on 2012-02-18 21:49:14*

### (This Paper Has Been Withdrawn by the Author)

**Authors:** Germán Paz

**Comments:** 19 Pages. Withdrawn.

*This paper has been withdrawn by the author due to a flaw in the proof. / Este
documento ha sido retirado por el autor debido a un error en la demostración.*

**Category:** Number Theory

[3] **viXra:1202.0056 [pdf]**
*submitted on 2012-02-17 10:43:30*

### Fermat's Marvelous Proofs for Fermat Last Theorem

**Authors:** Chun-Xuan Jiang

**Comments:** 6 Pages.

Using cmplex hyperbolic functions and complex trionometric functions ,we reapear the Fermat marvelus proofs for Fermat last theorem

**Category:** Number Theory

[2] **viXra:1202.0029 [pdf]**
*replaced on 2014-08-25 05:42:42*

### Primality Test for Fermat Numbers Using Quartic Recurrence Equation

**Authors:** Predrag Terzich

**Comments:** 5 Pages.

We present deterministic primality test for Fermat numbers . Essentially this test is similar to the Lucas-Lehmer primality test for Mersenne numbers

**Category:** Number Theory

[1] **viXra:1202.0024 [pdf]**
*submitted on 2012-02-10 06:54:39*

### On the Form of Mersenne Numbers

**Authors:** Predrag Terzich

**Comments:** 4 Pages.

We present a theorem concerning the form of Mersenne
numbers . We also discuss a closed form expression which links prime numbers and natural logarithms .

**Category:** Number Theory