
素数分布中蒋函数 
蒋春暄 

 
1777 年最伟大数学家 Euler 说：“数学家还没有发现素数序列中的一些

规则。我们有理由相信它是一个人类智慧尚未洞悉的奥秘。”20 世纪最伟

大数学家 Erdös 说：“至少还需要 100 万年，我们才能真正理解素数。”说

明素数研究多么困难！多么复杂！但是我的兴趣就是要研究没有人研究的

问题。用我的思路、我的方法进行研究。不管这个问题多么困难。这篇论

文是把我过去对素数研究作一个总结，使人们更容易理解。我发现只有素

数定理才算一个真正定理：即欧几里德证明了有无限多个素数，并找到计

算低于 N 素数个数公式 N/logN，其它素数定理都是猜想，因为只获得上限

和下限公式并没有证明它有无限多素数解。 
用蒋函数我证明了素数分布中几乎所有问题。素数问题是有规则的，

不是随机的。本文只有一个定理。孪生素数和哥德巴赫猜想只能作为两个

特例。这个定理包括素数分布所有问题。素数研究最近最大成果是格林和

陶哲轩证明存在任意长的素数等差数列。陶哲轩因此获得 2006 年国际数学

家大会菲尔茨奖。王元对陶哲轩评价：“我不敢想象天下会有这样伟大的成

就。”陶哲轩文章内容就是本文 Example8。格林—陶哲轩论文是错误的：1、
他们没有证明<素数等差数列>无限多素数解。2、他们没有找计算素数个数

的公式，他们是抄前人的公式，计算个数概念不清。请看文献[20]，公式

应该是 (log ) k
k N Nν − ，不是 2 (log ) k

k N Nν − 。他们 66 页论文没有直接讨论素

数等差数列，他们根本不懂素数，普林斯顿《数学年刊》发表这样一篇错

误的论文，说明这杂志编委不懂素数，因为全世界数学家都不懂素数，把

这篇错误论文评为 2006 年国际数学家的菲尔茨奖，这就是当代素数研究水

平。本文 Example 8 已给素数等差数列彻底解决。 
 
 
 
 
 
 

 1



Jiang’s function 1( )nJ ω+  in prime 
distribution 
Chun-Xuan Jiang 

P. O. Box 3924, Beijing 100854, P. R. China 
jiangchunxuan@vip.sohu.com 

Dedicated to the 30-th anniversary of hadronic mechanics 
 

Abstract 
We define that prime equations 

        1 1 1( , , ), , ( , )n k nf P P f P PL L L                 （5） 

are polynomials (with integer coefficients) irreducible over integers, where 
 are all prime. If Jiang’s function 1, , nP L P 1( ) 0nJ ω+ =  then （5）has finite 

prime solutions. If 1( ) 0nJ ω+ ≠  then there are infinitely many primes  
such that 

1, , nP PL

1, kf fL  are all prime. We obtain a unite prime formula in prime 
distribution 

        { }1 1 1( , 1) , , : , , are all primek n kN n P P N f fπ + + = ≤L L  

            ~ 1 1

1

( )(deg ) (1 (1)).
! ( ) log

k nk
n

i k n k n
i

J Nf o
n N

ω ω
φ ω

− +
+ +

=

= × +∏           （8） 

Jiang’s function is accurate sieve function. Using Jiang’s function we prove 
about 600 prime theorems[6]. Jiang’s function provids proofs of the prime 
theorems which are simple enough to understand and accurate enough to be 
useful. 
 
 
 
 

 2



      Mathematicians have tried in vain to discover some order in the 
sequence of prime numbers but we have every reason to believe that there are 
some mysteries which the human mind will never penetrate. 
                                          Leonhard Euler 
      It will be another million years, at least, before we understand the 
primes. 
                                         Paul Erdös 

 
Support that Euler totient function 

                  
2

( ) ( 1)
P

Pφ ω
≤

= Π − = ∞  as  ω→∞，              （1） 

where 
2 P

Pω
≤

= Π  is called primorial. 

Support that ( , ) 1ihω = , where 1, , ( )i φ ω= L . We have prime equations 

                1 ( )1, ,P n P n h ( )φ ω φ ωω ω= + = +L                    （2） 

where . 0,1, 2,n = L

（2）is called infinitely many prime equations (IMPE). Every equation has 
infinitely many prime solutions. We have 

               
(mod )

( )1 (1
( )i

i
i i

h
P N

P h

N o
ω

(1)).ππ
φ ω≤

≡

= = +∑ ,                  （3） 

where 
ihπ denotes the number of primes iP N≤  in i iP n hω= + 0,1, 2,n = L , 

( )Nπ  the number of primes less than or equal to . N
We replace set of prime numbers by IMPE. (2) is the fundamental tool for 
proving the prime theorems in prime distribution. 
Let 30ω =  and (30) 8φ = . From (2) we have eight prime equations 

1 30 1P n= + , 2 30 7P n= + , , 3 30 11P n= + 4 30 13P n= + , 5 30 17P n= + ,  

6 30 19P n= + , 7 30 23P n= + , , 8 30 29P n= + 0,1, 2,n = L             （4） 
Every equation has infinitely many prime solutions. 
THEOREM. We define that prime equations 

        1 1 1( , , ), , ( , , )n k nf P P f P PL L L                           （5） 
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are polynomials (with integer coefficients) irreducible over integers, where 
 are all prime. There exist infinitely many 1, , nP L P n− tuplets of  

such that each 
1, , nP PL

kf  is prime. 
PROOF. Firstly, we have Jiang’s function [1-11] 

              ,                       （6） 1 3
( ) [( 1) ( )]n

n P
J Pω+ ≤

= Π − − Pχ

where ( )Pχ  is called sieve constant and denotes the number of solutions for 
the following congruence 

             11
( , , ) 0 (mod )

k

i ni
f q q P

=
Π ≡L ,                      （7） 

where  . 1 1, , 1, , 1, , 1nq P q P= − = −L L L

1( )nJ ω+  denotes the number of tuplets of  prime equations for 
which 

n− 1, , nP L P

1 1 1( , , ), , ( , , )n k nf P P f P PL L L  are prime equation. If 1( ) 0nJ ω+ =  then 
(5) has finite prime solutions. If 1( ) 0nJ ω+ ≠  using ( )Pχ  we sift out from (2) 
prime equations that can not be represented , then residual prime 
equations of (2) are  prime equations for which  

1, , nP L P
P

n

1, , nP L 1 1( , , ), ,nf P PL L

1( , , )kf P PL  are all prime equation, hence we prove that there exist infinitely 
many tuplets of primes  for which  n− 1, , nP L P

n

1 1( , , ), ,nf P PL L

1( , , )kf P PL  are all prime. 
Secondly, we have the best asymptotic formula [2,3,4,6] 

   { }1 1 1( , 1) , , : , , are all primek n kN n P P N f fπ + + = ≤L L  

     1 1

1

( )(deg ) (1 (1)).
! ( ) log

k nk
n

i k n k ni

J Nf
n N

ω ω
φ ω

− +
+ +=

= Π × + o                    （8） 

（8）is called a unite prime formula in prime distribution. Let , 1, 0n k= =

2 ( ) ( )J ω φ ω= . From (8) we have prime number theorem 

            { }1 1 1( , 2) : is prime (1 (1)).
log

NN P N P o
N

π = ≤ = + .        （9） 

Number theorists believe that there are infinitely many twin primes, but they do 
not have rigorous proof of this old conjecture by any method. All prime 
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theorems are conjectures except the prime number theorm, because they do not 
prove that prime equations have infinitely many prime solutions. We prove the 
following conjectures by this theorem. 

Example 1. Twin primes (300BC). ,P P + 2

From (6) and (7) we have Jiang’s function 

                   2 3
( ) ( 2) 0

P
J Pω

≤
= Π − ≠  

Since 2 ( ) 0J ω ≠  in (2) exist infinitely many  prime equations for which 
 is prime equation, hence we prove that there are infinitely many primes 

 for which 

P
2P +

P 2P +  is prome. 

Let 30ω =  and . From (4) we have three  prime equatins 2 (30) 3J = P

               3 5 830 11, 30 17, 30 29P n P n P n= + = + = + . 

From (8) we have the best asymptotic formula 

{ } 2
2 2 2

( )( , 2) : 2 prime (1 (1))
( ) log

J NN P N P o
N

ω ωπ
φ ω

= ≤ + = +  

          2 23

12 1 (1 (1)).
( 1) logP

N o
P N≤

⎛ ⎞
= Π − +⎜ ⎟−⎝ ⎠

 

In 1996 we proved twin primes conjecture [1] 

Remark. 2 ( )J ω  denotes the number of  prime equations, P

2 2 (1 (1))
( ) log

N o
N

ω
φ ω

+  the number of solutions of primes for every  prime 

equation. 

P

Example 2. Even Goldbach’s conjecture 1N P P2= + . Every even number 

 is the sum of two primes. 6N ≥
From (6) and (7) we have Jiang’s function 
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            2 3

1( ) ( 2) 0
2P P N

PJ P
P

ω
≤

−
= Π − Π ≠

−
. 

Since 2 ( ) 0J ω ≠  as  in (2) exist infinitely many  prime equations 
for which  is prime equation, hence we prove that every even number 

 is the sum of two primes. 

N →∞ 1P

1N P−
6N ≥

From (8) we have the best asymptotic formula 

{ } 2
2 1 1 2 2

( )( , 2) , prime (1 (1)).
( ) log

J NN P N N P o
N

ω ωπ
φ ω

= ≤ − = +  

        2 23

1 12 1 (1 (1))
( 1) 2 logP P N

P N o
P P N≤

⎛ ⎞ −
= Π − Π +⎜ ⎟− −⎝ ⎠

. 

In 1996 we proved even Goldbach’s conjecture [1] 

Example 3. Prime equations . , 2,P P P+ + 6

From (6) and (7) we have Jiang’s function 

             2 5
( ) ( 3) 0

P
J Pω

≤
= Π − ≠ , 

2 ( )J ω  is denotes the number of  prime equations for which  and 
 are all prime equation. Since 

P 2P +
6P+ 2 ( ) 0J ω ≠  in (2) exist infinitely many  

prime equations such that 
P

2P +  and 6P+  are all prime equation, hence we 
prove that there are infinitely many primes  such that P 2P +  and  are 
all prime. 

6P+

Let 230, (30) 2Jω = = . From (4) we have two  prime equations P

           3 530 11, 30 17P n P n= + = + . 

From (8) we have the best asymptotic formula 

{ }
2

2
3 3 3

( )( , 2) : 2, 6 prime (1 (1))
( ) log

J NN P N P P o
N

ω ωπ
φ ω

= ≤ + + = + . 

Example 4. Odd Goldbach’s conjecture 1 2N P P P3= + + . Every odd number 
 is the sum of three primes. 9N ≥

From (6) and (7) we have Jiang’s function 
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      ( )2
3 23

1( ) 3 3) 1 0
3 3P P N

J P P
P P

ω
≤

⎛ ⎞= Π − + Π − ≠⎜ ⎟− +⎝ ⎠
. 

Since 3( ) 0J ω ≠  as  in (2) exist infinitely many pairs of  and  
prime equations for which  is prime equation, hence we prove that 
every odd number  is the sum of three primes. 

N →∞ 1P 2P

1N P P− − 2

9N ≥
From (8) we have the best asymptotic formula 

{ }
2

3
2 1 2 1 2 3 3

( )( ,3) , : prime (1 (1))
2 ( ) log
J NN P P N N P P o

N
ω ωπ

φ ω
= ≤ − − = + . 

        
2

3 3 33

1 11 1 (1 (1))
( 1) 3 3 logP P N

N o
P P P N≤

⎛ ⎞ ⎛ ⎞= Π + Π − +⎜ ⎟ ⎜ ⎟− − +⎝ ⎠⎝ ⎠
. 

Example 5. Prime equation . 3 1 2 2P PP= +
From (6) and (7) we have Jiang’s function 

                 ( )2
3 3
( ) 3 2 0

P
J P Pω

≤
= Π − + ≠  

3 ( )J ω  denotes the number of pairs of  and  prime equations for which 
 is prime equation. Since 

1P 2P

3P 3 ( ) 0J ω ≠  in (2) exist infinitely many pairs of  
and  prime equations for which  is prime equation, hence we prove that 
there are infinitely many pairs of primes  and  for which  is prime. 

1P

2P 3P

1P 2P 3P
From (8) we have the best asymptotic formula 

{ }
2

3
2 1 2 1 2 3 3

( )( ,3) , : 2 prime (1 (1)).
4 ( ) log
J NN P P N PP o

N
ω ωπ

φ ω
= ≤ + = +  

Note. deg 1 2( )PP 2= . 

Example 6 [12].  Prime equation . 3 3
3 1 22P P P= +

From (6) and (7) we have Jiang’s function 

              2
3 3
( ) ( 1) ( ) 0

P
J P Pω χ

≤
⎡ ⎤= Π − − ≠⎣ ⎦  

where ( ) 3( 1)P Pχ = −  if 
1

32 1(mod
P

P
−

≡ ) ; ( ) 0Pχ =  if 
1

32 1(mod
P

P
−

≡/ ) ; 
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( ) 1P Pχ = −  otherwise. 

Since 3( ) 0J ω ≠  in (2) there are infinitely many pairs of  and  prime 
equations for which  is prime equation, hence we prove that there are 
infinitely many pairs of primes  and  for which  is prime. 

1P 2P

3P

1P 2P 3P
From (8) we have the best asymptotic formula 

{ }
2

3 3 3
2 1 2 1 2 3 3

( )( ,3) , : 2 prime ~ (1 (1)).
6 ( ) log
J NN P P N P P o

N
ω ωπ

φ ω
= ≤ + +  

Example 7 [13].  Prime equation 4 2
3 1 2( 1)P P P= + + . 

From (6) and (7) we have Jiang’s function 

         2
3 3
( ) ( 1) ( ) 0

P
J P Pω χ

≤
⎡ ⎤= Π − − ≠⎣ ⎦  

where ( ) 2( 1)P Pχ = −  if ; 1(mod 4)P ≡ ( ) 2( 3)P Pχ = −  if ; 1(mod8)P ≡
( ) 0Pχ =  otherwise. 

Since 3( ) 0J ω ≠  in (2) there are infinitely many pairs of  and  prime 
equations for which  is prime equation, hence we prove that there are 
infinitely many pairs of primes  and  for which  is prime. 

1P 2P

3P

1P 2P 3P
From (8) we have the best asymptotic formula 

{ }
2

3
2 1 2 3 3 3

( )( ,3) , : prime (1 (1)).
8 ( ) log
J NN P P N P o

N
ω ωπ

φ ω
= ≤ = +  

Example 8 [14-19]. Arithmetic progressions consisting only of primes. We 
define the arithmetic progressions of length . k

   1 2 1 3 1 1 1, , 2 , , ( 1) , ( ,kP P P d P P d P P k d P d ) 1= + = + = + − =L .      （10） 

From (8) we have the best asymptotic formula 

       { }1 1 1 1( , 2) : , , , ( 1) are all primek N P N P P d P k dπ = ≤ + + −L  

                     
1

2 ( ) (1 (1)).
( ) log

k

k k

J N o
N

ω ω
φ ω

−

= + . 

If 2 ( ) 0J ω =  then (10) has finite prime solutoins. If 2 ( ) 0J ω ≠  then there are 
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infinitely many primes  for which  are all prime. In [20] 
Conjecture 1.2 (Hardy-Littlewood conjecture on 

1P 2 , , kP L P
k − term APs) and Theorem 

1.3(G.-Tao) are false. 
To eliminate  from (10) we have d

     . 3 2 1 2 12 , ( 1) ( 2) ,3jP P P P j P j P j= − = − − − ≤ ≤ k

From (6) and (7) we have Jiang’s function 

             3 3
( ) ( 1) ( 1)( 1) 0

P k k P
J P P P kω

≤ < ≤
= Π − Π − − + ≠  

Since 3( ) 0J ω ≠  in (2) there are infinitely many pairs of  and  prime 
equations for which  are all prime equation, hence we prove that 
there are infinitely many pairs of primes  and  for which  are 
all prime. 

1P 2P

3 , , kP L P
P1P 2P 3 , , kP L

From (8) we have the best asymptotic formula 

{ }1 1 2 2 1( ,3) , : ( 1) ( 2) prime,3k N P P N j P j P jπ − = ≤ − − − ≤ ≤ k     

2 2
3( ) (1 (1))
2 ( ) log

k

k k

J N o
N

ω ω
φ ω

−

= +      

2 2 2

1 12

1 ( 1) (1 (1))
2 ( 1) ( 1) log

k k

k k kP k k P

P P P k N o
P P N

− −

− −≤ < ≤

− +
= Π Π +

− −
. 

Example 9. It is a well-known conjecture that one of 2, 2, 2P P P+ +  is always 
divisible by 3. To generalize above to the k − primes, we prove the following 
conjectures. Let  be a square-free even number. n
1. , 2, ,P P n P n+ +
where  3 ( 1)n + . 
Frome (6) and (7) we have , hence one of 2 (3) 0J = 2, ,P P n P n+ +  is always 
divisible by 3. 
2. , 2 4, , , ,P P n P n P n+ + +L

where 5 ( ), 2,3.n b b+ =  
From (6) and (7) we have , hence one of 2 (5) 0J = 2 4, , , ,P P n P n P n+ + +L  
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is always divisible by 5. 
3. , 2 6, , , ,P P n P n P n+ + +L

where 7 ( ), 2,4.n b b+ =  
From (6) and (7) we have , hence one of 2 (7) 0J = 2 6, , , ,P P n P n P n+ + +L  
is always divisible by 7. 
4. , 2 1, , , ,P P n P n P n+ + +L 0

where 11 ( ), 3,4,5,9.n b b+ =  
From (6) and (7) we have , hence one of 2 (11) 0J = 2 1, , , ,P P n P n P n 0+ + +L  
is always divisible by 11. 
5. , 2 1, , , ,P P n P n P n+ + +L 2

where 13 ( ), 2,6,7,11.n b b+ =  
From (6) and (7) we have , hence one of 2 (13) 0J = 2 1, , , ,P P n P n P n 2+ + +L  
is always divisible by 13. 
6. , 2 1, , , ,P P n P n P n+ + +L 6

where 17 ( ), 3,5,6,7,10,11,12,14,15.n b b+ =  
From (6) and (7) we have , hence one of 2 (17) 0J = 2 1, , , ,P P n P n P n 6+ + +L  
is always divisible by 17. 
7. , 2 1, , , ,P P n P n P n+ + +L 8

where 19 ( ), 4,5,6,9,16.17.n b b+ =  
From (6) and (7) we have , hence one of 2 (19) 0J = 2 1, , , ,P P n P n P n 8+ + +L  
is always divisible by 19. 
Example 10. Let  be an even number. n
1. , , , 1,3,5, , 2 1iP P n i k+ = +L

From (6) and (7) we have 2 ( ) 0J ω ≠ , hence we prove that there exist infinitely 
many primes  such that  are all prime for any . P , iP P n+ k
2. . , , 2, 4,6, , 2iP P n i k+ = L

From (6) and (7) we have 2 ( ) 0J ω ≠ , hence we prove that there exist infinitely 
many primes  such that  are all prime for any . P , iP P n+ k

Example 11. prime equation  2 12P P P= + 3
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Frome (6) and (7) we have Jiang’s function 

                2
3 3
( ) ( 3 2) 0

P
J P Pω

≤
= Π − + ≠

Since 3( ) 0J ω ≠  in (2) there are infinitely many pairs of  and  prime 
equations for which  is prime equation, hence we prove that there are 
infinitely many pairs of primes  and  for which  is prime. 

1P 2P

3P

1P 2P 3P
From (8) we have the best asymptotic formula 

{ }
2

3
2 1 2 3 3 3

( )( ,3) , : prime (1 (1)).
2 ( ) log
J NN P P N P o

N
ω ωπ

φ ω
= ≤ = +            

In the same way we can prove 2
2 32P P P1= +  which has the same Jiang’s 

function. 
Jiang’s funciton is accurate sieve function. Using it we can prove any 
irreducible prime equations in prime distribution. There are infinitely many 
twin primes but we do not have rigorous proof of this old conjecture by any 
method [20]. As strong as the numerical evidence may be, we still do not even 
know whether there are infinitely many pairs of twin primes [21]. All the prime 
theorems are conjectures except the prime number theorem, because they do not 
prove the simplest twin primes. They conjecture that the prime distribution is 
randomness [12-25],because they do not understand theory of prime numbers. 
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