From Ancient Africa

by Frank Dodd (Tony) Smith, Jr.
A little less than 15 billion years ago, our Universe emerged from the Void.

4 billion years ago, our Earth and Moon were orbiting our Sun.
2 billion years ago, bacteria built a nuclear fission reactor in Africa.

100,000 years ago, Humans were expanding from the African home-land to Eurasia and beyond.

12,000 years ago, Africans developed IFA Oracle divination based on the square of $16=16 \times 16=256=$ $=2^{\wedge} 8$ corresponding to the vertices of an 8 -dimensional hypercube and to the binary 2-choice Clifford algebra $\mathrm{Cl}(8)$ and so to related ones such as $\mathrm{Cl}(8) \mathrm{xCl}(8)=\mathrm{Cl}(16)$. Since the number of sub-hypercubes in an 8 -dimensional hypercube is $6,561=81 \times 81=3^{\wedge} 8$, the IFA Oracle has $\mathrm{N}=8$ ternary 3 -structure as well as binary 2 -structure:

As ancient African games such as Owari show, binary 2structure corresponds to static states and ternary 3structure corresponds to dynamic states. Mathematically, using binary 2 -choice static states to define dynamics on 3 ternary neighbor states produces the 256 elements of Elementary Cellular Automata.

The African Oracle patterns spread throughout the Earth, so that by the 13th century parts of them were found in:

India used the 240 parts of the Rig Veda's first sukt. The 240 corresponds to the 240 Root Vectors

of the E8 Lie algebra that is constructed from $\mathrm{Cl}(8) \mathrm{xCl}(8)$ $=\mathrm{Cl}(16)$.

Judaism used the 248 positive Commandments plus the 365 negative Commandments given to Moses during the 50 days from Egypt to Sinai.
The 248 correspond to the 248 -dim E8 Lie algebra that is constructed from $\mathrm{Cl}(8) \mathrm{xCl}(8)=\mathrm{Cl}(16)$.
The 365 is constructed by looking at one of the $1792=$ 7×256 sub-hypercubes of 6 -dim in the 8 -dim hypercube, effectively cutting off the ternary 3 -structure at $\mathrm{N}=6$

and then making a 27×27 Magic Square with $(729+1) / 2=$ 365 as its its central Magic Square number.

Plato, to construct a musical scale, used the full $\mathrm{N}=8$ binary 2 -structure but only $\mathrm{N}=5$ of the ternary 3 -structure

Plato used the numbers 256 and 243 to form the ratio $256 / 243$, which, along with $9 / 8$, let him construct the the first octave as:
1 9/8 81/64
4/3 $3 / 2 \quad 27 / 16$
243/128
2
by using the multiplicative intervals:
$\begin{array}{lllllll}9 / 8 & 9 / 8 & 256 / 243 & 9 / 8 & 9 / 8 & 9 / 8 & 256 / 243\end{array}$

China used the 64 possibilities of the binary I Ching and the 81 possibilities of the ternary Tai Hsuan Ching, effectively cutting off the binary 2 -structure at $\mathrm{N}=6$ and the ternary structure at $\mathrm{N}=4$

Japan used the 128 possibilities of Shinto Futomani Divination and the Triad: Jewel-Mirror-Sword, effectively cutting off the binary 2 -structure at $\mathrm{N}=7$ and the ternary 3 -structure at $\mathrm{N}=1$

Adding 3 of the ternary 3 -structures to 16 of the binary 2-
structures gives the number 19 of the $19 x 19$ board of the game Go (the Chinese version, Wei Qi, may have originally had a 17 x 17 board).

Mediterranean Africa used the 16 possibilities of the Ilm al Raml, effectively cutting off the binary 2structures at $\mathrm{N}=4$ and eliminating the ternary 3 structures

As noted about Japan, adding 3 of the ternary 3structures to 16 of the binary 2 -structures gives the number 19, but in Mediterranean Africa the most significant use of the number 19 is in the Quran, which is written in Arabic with a basic message that G-d is ONE, and the Arabic number-value of the Arabic letters of the word ONE is $6+1+8+4=19$. Rashad Khalifa, whose mathematical analysics of the Quran confirmed the primacy of the number 19, was murdered in 1990 in his Mosque in Arizona because of the results of his analysis.

In the early 13 th century Ibn Arabi (born in Spain, died in Damascus) wrote the "Bezels of Wisdom" describing his Sufi Islamic World-View using terms consistent with the processes of Quantum Theory:

> "mumkinat" = quantum possibile Worlds of the ManyWorlds, or Bohmian beables;
> "qada" = decoherence of quantum superposition of possibilities, or choice at an Event of a World of the Many-Worlds;
> "qadar" = outcome of qada = the World or State that comes into existence as the outcome of an Event; "al-khalq al-jadid" = the branching of the Worlds of the Many-Worlds that occurs at an Event.

According to the book Sufism and Taoism, by Toshihiko Izutsu (California 1983): "...Ibn Arabi says that ... the world in its entirety ... transforms itself kaleidoscopically from moment to moment ... 'new creation' (al-khalq aljadid) ... ordinary people are not aware of the process ... If a man happens to obtain the true knowldege of qadar, the knowledge surely brings him a perfect peace of mind and an intolerable pain at the same time.
The unusual peace of mind arises from the consciousness that everything in the world occurs as it has been determined from eternity. ... Instead of struggling in vain for obtaining what is not in his capacity, he will be happy ... He must be tormented, on the other hand, by an intense pain at the sight of all the so-called 'injustices', 'evils', and 'sufferings' that reign rampant around him, being keenly conscious that it is not in his 'preparedness'
to remove them from the world. ...".

Describing the kaleidoscopic process of qadar in specific physical detail requires, in addition to the processes of Ibn Arabi, a specific mathematical framework. Near the end of the 13th century, Ramon Llull of Mallorca studied the 16 possibilities of the Ilm al Raml and realized that they had a Fundamental Organizational Principle that he summarized in a Wheel Diagram

with 16 vertices connected to each other by 120 lines. If the 16 vertices represented a 16 -dimensional vector space, then the 120 lines connecting pairs of vectors represented 120 -dimensional bivectors of rotations in that 16-dimensional vector space.
That total geometry is described by the Real 16dimensional Clifford Algebra $\mathrm{Cl}(16)$.
$\mathrm{Cl}(16)$ not only describes rotations in vector space, but also spinors that describe left-handed and right-handed properties with respect to the space.
Half-spinors of $\mathrm{Cl}(16)$ have 128 dimensions.
When you combine the 120 bivectors of $\mathrm{Cl}(16)$ with the 128 half-spinors of $\mathrm{Cl}(16)$, you get the 248 -dimensional object called the exceptional Lie Algebra E8.
In 8 -dimensional space, 240 of the 248 generators of E8 form the 240 Root Vectors of E8.
$\mathrm{Cl}(16)$ factors into the tensor product of two copies of the Real 8-dimensional Clifford Algebra $\mathrm{Cl}(8)$:
$\mathrm{Cl}(16)=\mathrm{Cl}(8) \mathrm{xCl}(8)$
Since $\mathrm{Cl}(8)$, based on an 8 -dimensional vector space, has 256 dimensions, and $256=16 \times 16$, we have come full circle to the 16×16 possibilities of the ancient African Oracle.

However, Ramon Llull was not as interested in making a physics model by combining his $\mathrm{Cl}(16)$ mathematical structure with Ibn Arabi's quantum processes as he was in using his structure to show the equivalence of Judaism, Christianity, and Islam, an effort that failed, perhaps because the political institutions of those religions were in power struggles with each other and so were in fact hostile to reconciliation/unification.
Ramon Llull's work failed to find institutional acceptance in Judaism or Islam, and Christian Dominican Catholicism suppressed his work, but his ideas were carried on in the underground world resulting in description of detailed substructures by Tarot

0

- The magenta 28 are the $28 \mathrm{Spin}(8)$ adjoint bivectors of $\mathrm{Cl}(8)$.
- The 16 blue are the 8 vectors of $\operatorname{Spin}(8)$ and $\mathrm{Cl}(8)$ and their 8 dual/conjugates.
- The 32 red are the 16 spinors (8 +halfspinors and 8 -halfspinors) of $\mathrm{Spin}(8)$ and $\mathrm{Cl}(8)$ and their 16 dual/conjugates.
- The 2 black are diagonal degrees of freedom in 26-dim traceless J3(O)o part of J3(O) Jordan algebra.
whose 78 cards represent the E6 subalgebra of the 248dimensional Lie algebra E8 which is constructed from the Clifford algebra $\mathrm{Cl}(16)=\mathrm{Cl}(8) \mathrm{xCl}(8)$ where $\mathrm{Cl}(8)$ is the $16 \times 16=256$-dimensional algebra of IFA.

The rest of this paper gives some further details about:
Earlier Heaven IFA Sequence;
Cl(8) Graded Structure;
Cellular Automata Dynamics;
African Oracle Structures;
88 Equivalence Classes;
256 Elementary Rule Patterns and Physics; and
Past and Future History.

Earlier Heaven Binary Sequence IFA

The 16 Tetragrams in Earlier Heaven Binary Number sequence are:
$(\mathrm{o}=0$ and $\mathrm{oo}=1$, ordered from top to bottom)
Oludumare (original g-d) creates Earth, the 16 Odu, the Orishas, and humans:

Odu	Orisha
0	
Ogbe (light of creation)	- Orunmila (wisdom Tao)
o heaven Tao void	(next to Oluddomare)
O	
\bigcirc	
-	
1	
Osa (creativity)	- Oya (wind)
OO	
\bigcirc	
\bigcirc	
-	
2	
Otura (unity of everything)	- Osain (forest spirits)
\bigcirc	
OO	
\bigcirc	
\bigcirc	
3	
Owonrin (rain)	- Oshun (rivers) (He Xiangu)
-0	
OO	
\bigcirc	
\bigcirc	
4	
Irete (fate)	- Babalu Aye (healer) (TieGuai Li)
-	
\bigcirc	
OO	
\bigcirc	
5	
Ofun (taboo)	- Eshu Legba (trickster)
-0	
\bigcirc	
-0	
\bigcirc	

```
6
Edi (womb)
O
00
OO
O
7
Okanran (lightning) - Chango (thunder)
OO
OO
OO
O
8
Ogunda (sword) - Ogun (iron) (Lu Dongbin)
O
O
O
OO
9
Iwori (consciousness) - Eshu Legba (messenger)
OO
O
O
OO
1 0
Ose (victim of abuse) - Osun (guardian angel)
O
OO
O
OO
1 1
Oturopon (trap)
- Ochosi (hunter)
OO
OO
O
OO
1 2
Irosun (fire)
O
O
OO
OO
1 3
Ika (forest land) - Yemaya (ocean)
O
O
OO
O
```

14

```
Obara (rainbow)
O
OO
OO
OO
1 5
Oyeku (dark of earth) - Ibeyi (twins Yin-Yang)
oo Tai Ji Yin-Yang
OO

\section*{The 256 Pairs of Tetragrams in Earlier Heaven Binary Number Sequence}


\section*{correspond to the 256 elements of the \(\mathbf{C l}(8)\) Clifford Algebra with graded structure}
\[
1+8+28+56+70+56+28+8+1=256=16 \times 16
\]

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
```

 00101111
 00110000 00110001
 00110010
 00110011
 00110100
 00110101
 00110110
 00110111
 00111000
 00111001
 00111010
 00111011
 00111100
 00111101
 00111110
 00111111
 01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111
01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001

```

106
107
108 109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
```

 01101010
 01101011
 01101100
 01101101
 01101110
 01101111
 01110001
 01110010
 01110011
 01110100
 01110101
 01110110
 01110111
 01111000
 01111001
 01111010
 01111011
 01111100
 01111101
 01111110
 01111111
 10000000
10000001
10000010
10000011
10000100
10000101
10000101
10000111
10001000
10001001
10001010
10001011
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100
10010101
10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10001100
10100000
10100001
10100010
10100011
10100100

```

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
```

 10100101
 10100110
 10100111
 10101000
 10101001
 10101010
 10101011
 10101100
 10101101
 10101110
 10101111
 10110000
 10110001
 10110010
 10110011
 10110100
 10110101
 10110110
 10110111
 10111000
 10111001
 10111010
 10111011
 10111100
 10111101
 10111110
 10111111
 11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110

224	11100000			
225	11100001			
226	11100010			
227		11100011		
228	11100100			
229		11100101		
230		11100110		
231			11100111	
232	11101000			
233		11101001		
234		11101010		
235			11101011	
236		11101100		
237			11101101	
238			11101110	
239				11101111
240	11110000			
241		11110001		
242		11110010		
243			11110011	
244		11110100		
245			11110101	
246			11110110	
247				11110111
248		11111000		
249			11111001	
250			11111010	
251				11111011
252			11111100	
253				11111101
254				11111110

and to the 256 1-dimensional Cellular Automata

IFA and Global Dynamics of Cellular Automata

88 Equivalence Classes -------- 256 Elementary Rules

Images and quoted text are from The Global Dynamics of Cellular Automata by Andrew Wuensche and Mike Lesser (Addison-Wesley 1992 and a scanned version in pdf format downloaded from the web) (unless
othewise specified).

2.1 Cellular Automata

A cellular automaton (CA) is a discrete dynamical system which evolves by the iteration of a simple deterministic rule; as in any dynamical system, the system's variables change as a function of their current values.

An alternative approach is to view a CA as a parallel processing computer ${ }^{34}$ where the data is considered to be the initial CA configuration.

Yet a third approach is that a CA is a "logical universe. . .with its own local physics." ${ }^{16}$ Such a CA universe, in spite of its mathematically simple construction, seems to be capable of supporting complex emergent behaviour.

2.1.1 CA Architecture

A CA is constructed as follows: Time is discrete and progresses in steps. A D-dimensional, potentially infinite space is partitioned into discrete "cells" (the CA array or lattice) according to a given geometry. Boundary conditions may be set to define a finite space. Each cell has one attribute (the cell's value) from a limited range of attributes, which may be labelled by an integer. The pattern of values across the whole array is the CA global state at a given time.

Any pattern may be set as an initial condition at time t_{0}. Each cell of the array simultaneously has its value updated to evolve a new global state at time t_{1}. The new value of any given cell (the target cell) at t_{1} is a function of the values and locations of a set of cells (the neighbourhood) at t_{0}, typically situated locally in relation to the target cell (see Fig. 2.1). The neighbourhood may be defined by a neighbourhood template or wiring diagram. The CA evolves through a succession of global states (its trajectorg) by the iteration of this global updating procedure (the transition fanction). Provided that the transition function is constant and the system is closed to noise (the updating is error free), then the evolution of the CA from its initial global state is uniquely determined.

Two types of CA may be distinguished, both deterministic: The more general case may be described as having varying degrees of disordered architecture (non-local ${ }^{21}$), where the wiring diagram and/or function at each cell may differ, for example Walker's networks of Boolean functions ${ }^{27-32}$ and Kauffman's random Boolean networks. ${ }^{14,15}$

CA with ordered architecture are a special case, where the wiring diagram and function are the same over the entire array. In addition, the ordered wiring may be confined to a local neighbourhood, an uninterrupted zone of cells typically centred on the target cell. CA of this type will be referred to as having local architecture, for example, the architecture of Wolfram's "elementary rules." $33-40$ This paper is relevant to deterministic CA in general, however it deals mainly with the simplest possible local CA architecture.

Von Neumann first proposed CA to model self-reproduction. ${ }^{3,26}$ His relatively complicated CA architectures were local and two-dimensional with 29 cell values. The tendency since then has been to find simpler architecture that could nonetheless support complex emergent behaviour. For example Conways' "game of life" ${ }^{2}$ is a 2-D local

FIGURE 2.1 1-D, local binary CA with periodic boundary conditions, neighbourhood 3 (elementary rules), array length L.

CA with an orthogonal toroidal array, a 9-cell neighbourhood (the target cell and its eight nearest neighbours), and two cell values (binary value range).

2.1.2 Local 1-D Binary CA with Periodic Boundary Conditions

The simplest local CA architecture that we will investigate comprises a 1-D array of a small number of cells, a binary value range and a small local neighbourhood. The array is arranged in a circle; such a circular array is said to have periodic boundary conditions. Evolution of the CA may be represented as a sequence of global states on a cylinder, summed up by Fig. 2.1.

2.1.4 CA Dynamics

State space (also called phase space) is the set of all possible CA global states. In a finite CA, state space is finite; thus, any trajectory must eventually encounter a repeat of a global state that occurred at an earlier time. Because the system is deterministic, the trajectory will become trapped in this repeating sequence of states, a cyclic attractor, with a specific period of 1 or more.

States are either part of the attractor or belong to a transient, a sequence of states leading to the attractor. If transients exist, there must be states at their extremities (ganden-of-Eden states), unreachable by evolution from any other state. The set of all possible transients leading to an attractor, plus the attractor itself, is the basin of

FIGURE 2.3 A basin of attraction field, local 3-neighbour rule 193, $\mathrm{L}=10$. The number of basins of each type is (a) 1, (b) 2, (c) 10, and (d) 2 .
attraction of that attractor. State space is populated by one or more basins of attraction. These basins of attraction constitute the dynamical flow imposed on state space by the CA transition function.

A portrait of this global behaviour is the basin of attraction field, a discrete analogue of the familiar basin of attraction field found in the phase space of a continuous dynamical system, known as the system's phase portruit.

2.2 The Basin of Attraction Field

The basin (of attraction) field of a finite CA is the set of basins of attraction into which all possible states and trajectories will be organised by the cellular automaton transition function. The topology, or structure, of a single basin of attraction may be described by a diagram, the state transition graph. The set of graphs making up the field specifies the global behaviour of the system. Various other names have been used: state transition fragment, ${ }^{35}$ contraction map, ${ }^{7}$ topology of behaviour space, ${ }^{29}$ and network of attraction. ${ }^{42}$

The notion of basin fields was proposed by Walker, ${ }^{27}$ and examples ${ }^{[1]}$ have been given by Martin et al. ${ }^{22}$ Pitsianis et al., ${ }^{25}$ Wolfram, ${ }^{39,40}$ Feldberg and Rasmussen, ${ }^{5}$ and by the authors ${ }^{12}$ in an earlier edition of this atlas.

An example of a basin of attraction field is shown in Fig. 2.3 for the local, binary, 3-neighbour rule 193 (see chapter 3 , section 3.3). The array length, L, equals 10 , so that state space consists of $2^{10}=1024$ global states. The CA transition function connects these states into a set of basins, the basin (of attraction) field. In this case there are four different types of basins in the field, some of which occur more than once. The number of each type is indicated.

2.2.1 The State Transition Graph

A state transition graph links up all the states belonging to a single basin of attraction according to their specific evolutionary location; this will typically have a topology of trees rooted on attractor cycles. ${ }^{22}$ Global states are represented by nodes which are linked by directed ares. Each node will have zero or more incoming arcs from nodes at the previous time step (pre-images), but because the system is deterministic, exactly one outgoing arc

[^0]

FIGURE 2.8 Example of a basin of the 3 -neighbour rule 126, $L=31$. The seed state is a single 0 followed by six copies of the string 01111.

2.2.6 The Atlas

The program has been used to produce an atlas of basin of attraction fields over a range of array lengths, presented in Appendix 2. The Atlas consists of two parts. Part 1 presents all 3 -neighbour (elementary) rules. Part 2 presents all 5 -neighbour totalistic codes. Selected data is also presented on each basin and basin field. There is an index to rules and codes at the beginning of each part.

A CA rule belongs to a set of up to four equivalent rules, the equivalence class, that differ only in that they have negative and/or mirror image space-time patterns, but which have identical basin field topology. Thus, only one rule representing each equivalence class is presented in the Atlas. Pairs of equivalence classes relate in that their rules have complementary rule tables, forming a rule cluster. The representative rules in the Atlas are presented according to their rule cluster, with complementary equivalence classes shown on facing pages (the relationships between rules are explained in detail in chapter 3, section 3.5)

The 3 -neighbour rule clusters belong to one of three symmetry categories-symmetric, semi-asymmetric, and fully asymmetric-and are accordingly presented in three sections. The basin fields for the 88 equivalence classes of the 3 -neighbour rules are shown for $L=1$ to 15 .

2.2.7 Significance of Basin of Attraction Fields

The ability to represent basin of attraction fields may be significant in a number of areas such as CA theory, complex systems, dynamical systems, computational theory, artificial life, neural networks, and aspects of genetics.

Basin field topology represents a second order of complexity of CA behaviour, where the first order may be said to be the space-time patterns of particular trajectories. Easy access to a systematic presentation of basin fields, for a synoptic, qualitative, as well as explicit view of global behaviour, may provide insights into the dynamical theory of CA, and the structure of CA rule space. It may provide a useful analogue to the global behaviour of CA with more complex architecture, and dynamical systems in general.

The separate basins in a basin of attraction field classify state space. Attractors have been regarded as "memories," ${ }^{13,14,15}$ with implications for the mechanism underlying neural networks.

Basin fields may be of interest in genetics because mutations of the CA rule table by a small Hamming distance typically result in altered but related basin structures. Analogies have been made between a CA rule table and a DNA sequence. ${ }^{20}$ Kauffman and others study CA with non-local architecture as models in biology and genetics. ${ }^{14,15}$

Attractors have been interpreted as "cell types" in ontogeny. Evolution is said to occur in an optimal "fitness landscape" by mutation and selection of the CA "genotype" resulting in adapted dynamics or "phenotype."

A possible approach to basin of attraction fields is to see them as artificial morphologys, analogous to the "biomorphs" proposed by Dawkins. ${ }^{4}$ Their explicit morphological form (including the global CA state at each node) is determined by the genetic code, the rule table; a mutation of the rule table results in a mutant morphology. In addition, the genetic code is implicit in the morphology because the rule table can be reconstructed from spacetime patterns; this suggests possibilities for reproduction. Such a genotype-phenotype approach to CA may suggests applications in artificial life.

3.3 Rule Clusters

CA parameters may, finally, be restricted as follows: a binary value range ($k=2$) and local architecture, thus nearest-neighbour wiring, and periodic boundary conditions (a circular array). For a neighbourhood sive n, the number of different neighbourhoods equals 2^{n}, and the number of different rules equals $2^{2^{2}}$.

3.3.1 Rule Numbering System, $\mathbf{n = 3}$ (Elementary Rules)

The $k=2, n=3$ rules have the form,

$$
P_{i}^{t+1}=f\left(P_{i-1}^{t}, P_{i}^{t}, P_{i+1}^{t}\right)
$$

where $P_{i}=0$ or $1, i$ is the spatial position between 1 and L, and t is the time. For a circular array, length L, $P_{1}=P_{L+1}$.

The system may be represented as follows:

The $n=3$ rule table with $2^{3}=8$ entries uniquly specifies each individual rule from a total of $2^{2^{3}}=256$. Following Wolfram's convention ${ }^{33}$ the rule table is ordered in descending values of the binary neighbourhood strings.

$$
\begin{array}{lccccccccl}
& 111 & 110 & 101 & 100 & 011 & 010 & 001 & 000 & \text { neighbourhoods } \\
\text { Rule table.. } & T_{7} & T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} & \text { outputs }
\end{array}
$$

If the rule table is regarded as a binary number, the rule number, R, is its decimal equivalent; thus, the rule table will range from 00000000 to 11111111 , and R from 0 to 255 .

3.3.2 Complementary Transformation, $\mathbf{n}=\mathbf{3}$

Every rule, R, has a distinct complementary rule, R_{c}, where each entry in the rule table is inverted, so that for a given input line, the next line generated by R_{e} will be the negative of the next line generated by $R . R$ and R_{c} may have equivalent behaviour (see collapsed clusters below) ${ }^{[1]}$ In any case, their behaviour will be closely related. This will be reflected in the basin field structure. Deterministic structure and symmetry category (see below) will be common to R and R_{c}. In general, pre-imaging, cycle periods, and transient lengths will be related.

The $n=3$ rules can be listed in 128 complementary pairs.

$$
\text { if } \left.\begin{array}{rlrrrr}
R & =0, & 1, & 2, & \cdots, & 127 \\
R_{e} & = & 255, & 254, & 253, & \cdots,
\end{array} \right\rvert\, \begin{aligned}
& 128
\end{aligned}
$$

There are two types of symmetry that relate pairs of neighbourhoods:

| Complementary neighbourhood pairs | \cdots | 111,000 | T_{7}, T_{0} |
| :--- | :--- | :--- | :--- | :--- |
| (0s changed to 1 s and vice versa) | | 110,001 | T_{6}, T_{1} |
| | | 101,010 | T_{5}, T_{2} |
| | | 100,011 | T_{4}, T_{3} |
| Reflected neighbourhood pairs | \cdots | 110,011 | T_{6}, T_{3} |
| (mirror image) | | 100,001 | T_{4}, T_{1} |

3.3.3 Negative Transformation, $\mathrm{n}=3$

For any rule R and input line I, the CA will generate a space-time pattern P. There is a rule, R_{n}, that, given the negative input line, \bar{I} will generate the negative space-time pattern, \bar{P} (all cell values inverted).

Consider the rule table:

$$
\begin{array}{cccccccccl}
& 111 & 110 & 101 & 100 & 011 & 010 & 001 & 000 & \text { neighbourhoods } \\
\text { Rule table.. } & T_{7} & T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} & \text { outputs }
\end{array}
$$

To find R_{n} suppose a negative world in which the rule table, including neighbourhoods, could be transformed by inverting all values into

$$
\begin{array}{llllllllll}
& 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 & \text { neighbourhoods } \\
\text { Rule table.. } & \bar{T}_{7} & \bar{T}_{6} & \bar{T}_{5} & \bar{T}_{4} & \bar{T}_{3} & \bar{T}_{2} & \bar{T}_{1} & \bar{T}_{0} & \text { outputs }
\end{array}
$$

The conventional order of neighbourhoods has been altered and must be restored, giving

$$
\begin{array}{llllllllll}
& 111 & 110 & 101 & 100 & 011 & 010 & 001 & 000 & \text { neighbourhoods } \\
\text { Rule table.. } & \bar{T}_{0} & \bar{T}_{1} & \bar{T}_{2} & \bar{T}_{3} & \bar{T}_{4} & \bar{T}_{5} & \bar{T}_{6} & \bar{T}_{7} & \text { outputs }
\end{array}
$$

The transformed rule table is R_{n}. Thus the procedure to transform R to R_{n} is as follows in either order.

1. Take the complement of the rule table, R_{8}.
2. Swap the output of complementary neighbourhoods.

For example, rule 193-11000001 is transformed to rule 124-01111100.

3.3.4 Reflection Transformation, $\mathbf{n = 3}$

For any rule, R, input line I and space-time pattern P, there is a rule R_{r}, that, given the reflected input line, I_{r} will generate the reflected (mirror-image) space-time pattern P_{r}.

Consider the rule table:

$$
\begin{array}{cccccccccl}
& 111 & 110 & 101 & 100 & 011 & 010 & 001 & 000 & \text { neighbourhoods } \\
\text { Rule table.. } & T_{7} & T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} & \text { outputs }
\end{array}
$$

To find R_{r} suppose a mirror image world in which the rule table, including neighbourhoods would be transformed by reflection into

$$
\begin{array}{cccccccccl}
& 000 & 100 & 010 & 110 & 001 & 101 & 011 & 111 & \text { neighbourhoods } \\
\text { Ruletable.. } & T_{0} & T_{1} & T_{2} & T_{3} & T_{4} & T_{5} & T_{6} & T_{7} & \text { outputs }
\end{array}
$$

The conventional order of neighbourhoods has been altered and must be restored, giving

$$
\begin{array}{cccccccccl}
& 111 & 110 & 101 & 100 & 011 & 010 & 001 & 000 & \text { neighbourhoods } \\
\text { Rule table.. } & T_{7} & T_{3} & T_{5} & T_{1} & T_{6} & T_{2} & T_{4} & T_{0} & \text { outputs }
\end{array}
$$

The transformed rule table is R_{r}. Note that only the outputs of asymmetric neighbourhoods are altered. Thus to transform R to R_{r}, swap the outputs of the two pairs of asymmetric reflected neighbourhoods.

For example, rule 193-11000001 is transformed to rule 137-10001001.

3.3.5 Symmetry Categories

The reflection transformation allows rules to be placed into one of three symmetry categories:

1. symmetric rales $\left(R=R_{r}\right)$, if $T_{6}=T_{3}$ and $T_{4}=T_{1}$.
2. semi-asymmetric rules, if either $T_{6} \neq T_{3}$ or $T_{4} \neq T_{1}$, but not both.
3. fully asgmmefric rales, if $T_{6} \neq T_{3}$ and $T_{4} \neq T_{1}$.

Symmetric rules have space-time patterns whose structures appear to have no bias to move left or right; for semi-asymmetric rules, there is a clear bias towards either the left or right; and for fully asymmetric rules, there is an intersecting bias towards both left and right.

FIGURE 3.5 Equivalent space-time patterns, from equivalent rules. (a) rule R (193). (b) rule R_{n} (124).
(c) rule R_{r} (137). (d) rule R_{nr} (110).

3.3.6 Bilateral Symmetry of Symmetric Rules

The space-time patterns of symmetric rules, given an input line with bilateral symmetry (bs), must conserve bilateral symmetry, because the rule acts equivalently on both sides of the axis of symmetry.

As with rotation symmetry (see section 3.2), the degree of bilateral symmetry cannot decrease; in an attractor, bilateral symmetry must remain constant, because any increase would have to be balanced by a decrease as evolution returned around the attractor cycle, and a decrease cannot occur. Bilateral symmetry may increase only in a transient (see Fig. 3.4).

The bilateral axis may divide a circular array, length L, as follows: if L is even, the axis may divide the array into two reflected halves, for instance $0001-1000$. If the maximum disclosure length is $d_{\max }$, then $d_{\max } \leq 2^{L / 2}$. If L is odd, the axis may divide the array into two reflected halves bisecting one cell, for instance 0001000 , then $d_{\max } \leq 2^{((L-1) / 2)+1}$. Alternatively, if L is even, there may be more than one axis of bilateral symmetry, for instance 00010001 . Such an array has rotation symmetry as well as bilateral symmetry. The interaction between rotational and bilateral symmetry and consequences on behaviour is still unclear. All totalistic rales are symmetric (see 3.3.10).

3.3.7 Equivalence Classes

We have seen that a given rule, R, will have two equivalent rules, R_{n} and $R_{r} . R$ will also have a third equivalent, R_{nr}, derived by performing the negative and reflection transformations successively, in either order. There will thus be a maximum of four rules grouped in an equivalence class, an example is shown in Fig. 3.5, based on rule 193.

The equivalent rules differ only in that they have negative and mirror-image space-time patterns; otherwise, CA behaviour is totally equivalent. There are 88 equivalence classes among the $256 n=3$ rules. ${ }^{28,42}$ Basin field topology for the rules in each class will be identical, though the actual states will differ according to the transformations described.

FIGURE 3.6 A rule cluster, two complementary sets of four equivalent rules.

3.3.8 Rule Clusters

Every rule R has a distinct complement R_{e}. The 4-rule equivalence class relates to a complementary 4-rule equivalence class, resulting in an 8 -rule cluster. We depict the cluster as a box with the rules at each corner (Fig. 3.6), with complementary links along the y axis (dashed line), negative links along the x axis, and reflection links along the z axis.

The rules in a rule cluster are described by two basin fields, one for the top and one for the bottom layer. The outcome of transformations may produce the same rule, resulting in more than one occurrence of that rule in the rule cluster. In this case the cluster is shown collapsed, so that each rule only occurs once. For the purpose of reference, the lowest rule number identifies the cluster, and is positioned in the top left-hand corner. The rule clusters for all $n=3$ (elementary rules) are set out below.

SYMMETRIC RULE CLUSTERS ($T_{6}=T_{3}$ and $T_{4}=T_{1}$). By definition, $R=R_{r}$, so the reflection links (z axis) will collapse.

The cluster will collapse further, if for a given rule $R, R_{\mathrm{s}}=R_{n}$,

and also if $R=R_{n}$,

SEMI-ASYMMETRIC RULE CLUSTERS (either $T_{6} \neq T_{3}$ or $T_{4} \neq T_{1}$). There are no collapsed clusters among the semi-asymmetric rules.

FULLY ASYMMETRIC RULE CLUSTERS ($T_{6} \neq T_{3}$ and $T_{4} \neq T_{1}$).

The cluster will collapse if, for a given rule $R, R_{e}=R_{n}$,

(continued)

Fully asymmetric rule clusters (continued):
And if, for a given rule $R, R_{c}=R_{n r}$,

And if, for a given rule $R_{3} R_{\mathrm{n}}=R_{r}$,

And also if $R=R_{n}$,

88 Equivalence Classes

To summarise, the 256 rules collapse into 88 equivalence classes $20,28,42$ and 48 rule clusters in Table 3.1.
TABLE 3.1

	rules	equiv, classes	clusters
Symmetric rules	64	36	20
Semi-asymmetric rules	128	32	16
Fully asymmetric rules	64	20	12
Total	256	88	48

The 256 rules have been tabulated on a 16×16 "rule-space matrix" (Appendix 4). Manipulations of the matrix simulate the clustering transformations.

Rule-Space Matrix, 256 Rules

The $256 n=3$ rules (0 to 255) may be set out on a 16×16 matrix. Rows i and columns j are numbered 0 to 15 as shown on the next page, and equivalently by the 4 -bit binary numbers 0000 to 1111 . Each entry in the matrix, $a_{i j}$, is a function of its position, and is assigned the decimal equivalent of the 8 -bit binary number formed by the concatenation (denoted by the symbol +) of its 4 -bit row and column binary expressions. If bin $8(x)=$ the 4 -bit binary string equivalent of x, and $\operatorname{dec}(x \$)=$ the decimal equivalent of the binary string $x 8$, then

$$
a_{i j}=\operatorname{dec}(\operatorname{bin} 8(i)+\operatorname{bin} 8(j)) ;
$$

for example, to establish the entry $a_{5,6}$

$$
\begin{aligned}
& \operatorname{bin} \$(5)=" 0101 ", \text { and } \operatorname{bin} 8(6)=" 0110^{"} \\
& \operatorname{bin} \$(5)+\operatorname{bin} 8(6)={ }^{"} 0101 "+" 0110^{n}=" 01010110^{\circ}, \operatorname{dec}\left(" 01010110^{"}\right)=86
\end{aligned}
$$

Conversely, given a rule number, 0 to 255 , its position on the matrix is found by the separating its 8 -bit binary expression into two equal parts. The left 4 bits denotes the row i and the right 4 bits the column j. The resulting matrix is set out on the next page.

The position of rules on the matrix depends on the rule numbering convention implicit in the sequence of the rule table entries. The conventional sequence as described in section 3.3 is as follows:

$$
\begin{array}{cccccccccl}
& 111 & 110 & 101 & 100 & 011 & 010 & 001 & 000 & \text { neighbourhoods } \\
\text { Rule table.. } & T_{7} & T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} & \text { outputs }
\end{array}
$$

Thus $T_{7} T_{6} T_{5} T_{4} T_{3} T_{2} T_{1} T_{0}$ is the conventional binary expression of the rule. Other sequences of the rule table would be equally valid; indeed, there are $8!=13440$ permutations, and thus the same number of possible alternative numbering conventions.

If the equivalence relationships are indicated by drawing lines between equivalent rules on the matrix, a systematic pattern is apparent, however the clarity of this pattern varies for different numbering conventions. A limited search of alternatives has turned up a permutation that results in a pattern of exceptional clarity; this is the rearranged sequence:

$$
\begin{array}{cccccccccl}
& 111 & 101 & 110 & 100 & 000 & 010 & 001 & 011 & \text { neighbourhoods } \\
\text { Rule table.. } & T_{7} & T_{5} & T_{6} & T_{4} & T_{0} & T_{2} & T_{1} & T_{3} & \text { outputs }
\end{array}
$$

giving the alternative binary expression of the rule $T_{7} T_{5} T_{6} T_{4} T_{0} T_{2} T_{1} T_{3}$. In the matrix shown on the next page, rules are positioned according to the alternative numbering system, but are still numbered according to the conventional system. The diagonals, labeled c (complement) and n (negative), are indicated.

The matrix shows reflection equivalent rules linked by lines, and provides a graphic demonstration of rule categories and relationships as follows:

1. Simulates all the rule cluster transformations.
2. Distinguishes between symmetric, semi-asymmetric, and fully asymmetric rules.
3. Identifies special status rules resulting in collapsed clusters.
4. Accounts for the numbers of rules in equivalence classes and symmetry categories.

Rules that lie on the c diagonal have the property, for a given rule $R, R_{e}=R_{n}$. Fully asymmetric rules whose reflection link is bisected by the c diagonal, have the property, for a given rule $R, R_{e}=R_{\mathrm{nr}}$. As stated earlier, R and R_{n} will be superimposed if the matrix is folded across the n diagonal; rules that lie on this diagonal (on the fold) have the property, $R=R_{n}$. Fully asymmetric rules whose reflection link is bisected by the n diagonal have the property that, for a given rule $R, R_{n}=R_{r}$.

Semi-asymmetric rules are unrelated to the diagonals in the ways described above, and therefore have no collapsed clusters.

A4.5 Symmetric Rules

The equivalence classes among the symmetric rules (total 36) consist of the rules which are superimposed when the matrix is folded across the n diagonal.

The 32 rules that have sometimes been designated as "legal" 33 (both symmetric and even) are located in the left half of the matrix. The 16 totalistic rules among the $n=3$ rules are circled.

A4.6 Semi-Asymmetric Rules

The equivalence classes among the fully asymmetric rules (total 32) consist of the linked rules which are superimposed when the matrix is folded across the n diagonal.

A4.7 Fully Asymmetric Rules

The equivalence classes among the fully asymmetric rules (total 20) consist of the linked rules which are superimposed when the matrix is folded across the n diagonal.

Wolfram CA Rule Classes

4.1 Basin Field Topology and Rule Space

In this section, some implications of the emerging basin field landscape on the current perception of the structure of rule space are examined. Wolfram has proposed that all CA rules belong to one of four universality classes. ${ }^{34,36,39}$ These classes are essentially phenomenological, ${ }^{8}$ based on the characteristic appearance of typical space-time patterns. Wolfram's classes, and their analogues in continuous dynamical systems, are said to exhibit the behaviour shown below.

CA behaviour	dynamical systems analogue
class 1 evolves to a fixed, homogeneous state	limit points
lass 2 evolves to separated periodic regions	limit cycles
lass 3 evolves to chaotic, aperiodic patterns.	trange attractors
ass 4 evolves to complex, lo	long transients, no analo

It is accepted that many rules show "intermediate" behaviour, ${ }^{36}$ and there is also scope for defining subclasses, ${ }^{19,20}$ but the discussion below uses a loose definition of the four classes listed. Of these classes, it is conjectured that the supposedly rare ${ }^{16}$ complez rules (class 4) may in some cases be capable of supporting universal compotation. ${ }^{17,34}$ The space-time patterns of the complex rules contain interacting, static, and propagating structures, sometimes called information structures, similar to those illustrated in Figs. 2.2 and 4.1.

Langton proposed that class 4 rules are located at a phase transition in rule space. He suggested that the long transients typical of these rules have potential for information processing, and implications for understanding the origin and evolution of life. ${ }^{17}$

4.1.1 The λ Parameter

Rule space has been characterised by the λ parameter, ${ }^{16,17}$ the proportion of non-zero entries in the rule table. If the value range is k, with possible values $0,1,2, \ldots, k-1$, then a particular value, say 0 , is selected as the quiescent value. The λ parameter is the proportion of rule table entries other than 0 .

Langton and others ${ }^{17,20,41}$ have shown that the rule classes can be roughly selected by adjusting λ between 0 and $1-(1 / k)$. A rule table may be constructed by assigning one of the k values to each entry with equal probability, so that the density of all values, including the quiescent value, will be roughly equal, and $\lambda \simeq 1-(1 / k)$. At this value of λ, space-time patterns are most likely to appear chaotic.

Rules may be selected according to other values of λ. This is typically done by assigning the quiescent value with a selected probability z, so that $\lambda=1-z$. The remaining values are then assigned with equal probability $\lambda /(k-1)$.

For binary rules where $k=2, \lambda$ is simply the density of $1 s$ in the rule table. Maximum chacs in the appearance of space-time patterns is likely to occur at $\lambda=1 / 2$, a rule table with an equal number of 0 s and 1 s .

As the λ parameter is varied from 0 to $1 / 2$, the various classes of behaviour are traversed. Complex, class 4 behaviour occurs at a phase transition between periodic, class 2 and chaotic, class 3 behaviour, reordering Wolfram's classes as follows ${ }^{16,17}$;

$$
\begin{array}{rclclclc}
\text { class : } & 1 & \longrightarrow & 2 & \longrightarrow & 4 & & \\
\text { in general, } \lambda: & 0 & \ldots & \cdots & \ldots & \cdots & \cdots & 1-(1 / k) \\
\text { rules } \\
\text { binary, } k=2, \lambda: & 0 & \ldots & \cdots & \cdots & \cdots & \cdots & 1 / 2
\end{array}
$$

As λ increases from $1 / 2$ to 1 the sequence is reversed, so that the complex rules occur in two limited regions on either side of $\lambda=1 / 2$.

4.1.2 Convergence of State Space

It is suggested that the λ parameter is modulating the same aspect of CA global behaviour as the Z parameter (introduced in chapter 3, section 3.6)-the mazimum pre-imaging (mp) as a function of array length. In general this will reflect the degree of pre-imaging typical of a rule. The degree of pre-imaging is apparent in the topology of a rule's basin of attraction field, and reflects the convergence of state space, ${ }^{14}$ which may be equivalently measured as the density of garden-of-Eden nodes in state space (or in one basin).

Low pre-imaging implies low convergence and a low density of garden-of-Eden nodes; high pre-imaging implies high convergence and high density of garden-of-Eden nodes. The degree of pre-imaging and the density of garden-of-Eden nodes are available in the Atlas (or program).

4.1.3 The Z Parameter and the λ Parameter

The Z parameter is the probability that the next cell of a partial pre-image has a unique value (see chapter 3 , section 3.6). For binary rules, when $Z=1$, the quantity of $0 s$ and 1 s in the rule table is equal, $\lambda=1 / 2$; when $Z=0, \lambda=0$. As Z varies between 0 and $1, \lambda$ varies between 0 and $1 / 2$ or conversely between 1 and $1 / 2$.

The Z parameter may possibly be the mechanism underlying the operation of the λ parameter, because the probability of a rule table having a given value of Z depends on the proportions of 0 s and 1 s assigned at random to the rule table according to the setting of λ. Thus λ seems to be a measure of the probability of a particular value of Z. The Z parameter is concerned not only with the numbers of $O s$ and $1 s$ in the rule table, but also their position and thus might be expected to modulate behaviour more closely.

For a more direct comparison between the values of λ and Z for a given binary rule table, the λ parameter may be modified as follows. The quiescent state is taken as the majority value in the rule table; the minority value is taken as the active state. The modified λ parameter, referred to as the λ ratio, is the ratio of the active values to $1 / 2$ of the rule table (the potential maximum of active values). For example, in an $n=5$ rule table with 32 entries, say 10 entries in the rule table are 0 , then the λ ratio equals $10 / 16$.

$$
\begin{aligned}
& \text { If } \lambda \leq 1 / 2 \text {, then } \lambda \text { ratio }=2 \lambda . \\
& \text { If } \lambda>1 / 2 \text {, then } \lambda \text { ratio }=2(1-\lambda) .
\end{aligned}
$$

The value of the λ ratio varies between 0 and 1 roughly in line with, but never smaller than, the Z parameter. $Z \leq \lambda$ ratio, and $Z=\lambda$ ratio $=1$ only for limited pre-image rules.

As an example of the λ ratio and the Z parameter, consider the space-time patterns with complex structures that were illustrated in Figs. 2.2(a-c). The relevant rules have the following values for the λ ratio and Z :

$$
\begin{array}{lll}
\text { a. rule } 3112581872 & \lambda \text { ratio }=1, & Z=.671875 \\
\text { b. rule } 2334561936 & \lambda \text { ratio }=.8125, & Z=.6875 \\
\text { c. rule } 3583552890 & \lambda \text { ratio }=.875, & Z=.75
\end{array}
$$

There are many examples of rules where the λ ratio equals 1 or close to 1 , suggesting a chaotic space-time pattern, when in fact the pattern appears complex. In such cases the value of Z will typically be between .6 and .8 .

class			2			\rightarrow	
Z :	0	\cdots	\ldots	\ldots	\ldots	\ldots	1
λ ratio :	0	\ldots	\ldots	\ldots	1
λ :	0	\cdots	\ldots	\ldots	$1-(1 / k)$
$m p$:	diverges exponentially with L	\cdots	\ldots	\cdots	...	\cdots	fixed upper limit
$(m e, m l, n b)$:	fixed lower limit	\cdots	\cdots	\cdots	...	\ldots	diverges exponentially with L

FIGURE 4.2 Relationship between the Z parameter (and λ) and the change in basin of attraction field topology as L increases, reflecting convergence of state space.

4.1.5 Examples of Typical Basin Topology in Relation to Rule Class

To illustrate the relationships in Fig. 4.2, an example of a typical basin of attraction for $n=3$ rules characteristic of each rule class is given in Figs. 4.3-4.6, including the following data: $m p$, maximum pre-imaging; g-density, density of garden-of-Eden nodes; period, of attractor cycle; and $m l$, maximum transient length.

In these examples, rotation equivalent transients are suppressed for the sake of clarity. General examples of the complete basin field over a range of array length L are presented in the Atlas.

CLASS 1. Rules where $Z=.25$ will have a large proportion of ambiguous permutations in the rule table, so $m p$ will diverge exponentially with $L ; m c, m l$, and $n b$ will either remain fixed or relate arithmetically to L. Most states are locked into pre-image fans flowing into point attractors, or two-state attractors, especially the uniform states (all 0 s or 1s). The few states outside the influence of these attractors will only have enough scope to form basins with short cycles and transients. (See Fig. 4.3.)

CLASS 2. Rules where $Z=.5$ may have many basins separated from the uniform attractor. $m p$ will diverge exponentially with L, but to a lesser extent than for class 1. $m c, m l$, and $n b$ will relate arithmetically to L. Again many states are locked up in pre-image fans leaving enough scope for only short cycles or transients. (See Fig. 4.4.)

CLASS 4. The complex, class 4 rules occur typically at $Z=.75 . \mathrm{mp}$ and some combination of $m \mathrm{c}$, $m \mathrm{l}$, and $n b$ will be finely balanced and will diverge by some intermediate function with L. Controlled pre-imaging allows enough scope for moderately long cycles and transients. (See Figure 4.5.)

CLASS 3. The chaotic, class 3 rules are limited pre-image rules where $Z=1 . m p$ is fixed irrespective of L. Some combination of $m c, m l$, and $n b$ diverge exponentially with increasing L. For instance, clusters 30 and 45 , where $m p=3$, have the greatest values of $m c$ and $m l$ among the $n=3$ rules. (See Fig. 4.6.)

In general, the space-time patterns of the $n=3$ and $n=5$ rules have been found to correlate with the Z parameter; however, as with the λ parameter, there are exceptions. It has been noted that the transition to chaotic behaviour may occur at different λ values, although there is a well-defined distribution around a mean value. ${ }^{17,19}$ Chaotic space-time patterns may also occur at low values of Z. For example, the $n=3$ rules 18 and 126 have a value of $Z=.5$. Although the typical basin topology of these rules correlates with Z, their space-time patterns appear chaotic, but are confined to only a subset of possible configurations of neighbourhoods. This is clearly seen when colors are assigned to cells in space-time patterns according to the neighbourhood which determined the cell's value, implemented in the program Spacel following a suggestion by Warrell. ${ }^{43}$ The process whereby active neighbourhoods are eliminated requires further investigation.

FIGURE 4.3 Class 1, rule 251. $L=12$, seed 111111111111. $m p=853, g$-density $=$.92 , period $=1, m l=6 . m p$ diverges exponentially with $L ; Z=.25$; (λ ratio $=.25$). Equivalent transients above level 1 are suppressed.

FIGURE 4.4 Class 2, rule 33. $L=16$, seed 0111111111100000 . $m p=97, g$-density $=84$, period $=2, m l=5 . m p$ diverges exponentially with $L ; Z=.5 ;(\lambda$ ratio $=.5)$.

FIGURE 4.5 Class 4, rule 193. $L=18$, seed 011010001110000010. $m p=70, g$-density $=.61$, period $=27, m l=120$. $m p, m c$, and $m l$ diverge with $L ; Z=.75 ;(\lambda$ ratio $=.75)$. Equivalent transients are suppressed.

FIGURE 4.6 Class 3 , rule 30. $L=15$, seed $110110111000000 . m p=2, g$-density $=.04$, period $=1455, m l=321$. $m p$ and $m l$ diverge exponentially with $L ; Z=1 ;(\lambda$ ratio $=1)$. Equivalent transients and pre-image nodes are suppressed; angle between pre-image arcs is increased.

FIGURE 4.7 Space-time pstierns for $n=3$ rules. Array siwe is 150,420 time steps from a random initial state. Rule numbers and Z parmmeter are: (a) Class 2: rule $28, Z=5$; (b) Class 4: rule $193, Z=75$; (c) Class 3: rale
$30, Z=1$.

Parameters for 48 n=3 Clusters

TABLE $3.3 n=3$ rules

	rule number	λ parameter	$\begin{gathered} \lambda \\ \text { ratio } \end{gathered}$	Z parameter
symmetric rules	0	0/8	0	0
	1	1/8	0.25	0.25
	4	1/8	0.25	0.25
	5	2/8	0.5	0.5
	18	2/8	0.5	0.5
	19	3/8	0.75	0.625
	22	3/8	0.75	0.75
	23	4/8	1	0.5
	33	2/8	0.5	0.5
	36	2/8	0.5	0.5
	37	3/8	0.75	0.75
	50	$3 / 8$	0.75	0.625
	51	4/8	1	1
	54	4/8	1	0.75
	73	3/8	0.75	0.75
	77	4/8	1	0.5
	90	4/8	1	
	94	$5 / 8$	0.75	0.75
	105	4/8	1	1
	126	$6 / 8$	0.5	0.5
semi-asymmetric rules	2	1/8	0.25	0.25
	3	2/8	0.5	0.5
	6	2/8	0.5	0.5
	7	$3 / 8$	0.75	0.75
	9	2/8	0.5	0.5
	12	2/8	0.5	0.5
	13	3/8	0.75	0.75
	26	3/8	0.75	0.75
	27	4/8	1	0.75
	30	4/8	1	1
	35	$3 / 8$	0.75	0.625
	38	$3 / 8$	0.75	0.75
	41	$3 / 8$	0.75	0.75
	45	4/8	1	1.
	58	4/8	1	0.75
	62	$5 / 8$	0.75	0.75
fully asymmetric rules	10	2/8	0.5	0.5
	11	$3 / 8$	0.75	0.75
	14	3/8	0.75	0.75
	15	4/8	1.	1.
	24	2/8	0.5	0.5
	25	3/8	0.75	0.75
	28	3/8	0.75	0.75
	29	4/8	1	0.5
	43	4/8	1	0.5
	46	4/8	1	0.5
	57	4/8	1	0.75
	60	4/8	1	1

In his 1996-97 D.Phil. Thesis at the University of Sussex, Andrew Wuensche said:

"... Glider Dynamics ... corresponds to Wolfram's class 4 behaviour ... , to notions of emergent computation on the edge of chaos, and to a phase transition between order and chaos ... Gliders are analagous to autocatalytic sets of polymers in the sense of Kauffmann ... members of such sets have a survival advantage in occupying space, anad the set acquires its own identity as an observed object at a higher level. Gliders are also discrete examples of Prigogine's far-from-equilibrium dissipative structures \qquad in CA the process of formation, persistence and interaction of gliders and other dissipative structures can be traced at the lowest level of the system's basic components and their local interactions which are completely defined. This ability to see two levels of behaviour simultaneously, the underlying and emergent, may lead to insights into the mechanics of self-organization. ... Among the 256 binary 3-neighbor rules, the "elementary rules" ... , an
exhaustive search reveals two sets of glider rules, rule 54 and 110, and their equivalents. ...
Appendix 2.4 [re rule 193] ...

...[The]... spectrum of CA behaviour ... rang[es] progressively through ordered, complex and chaotic dynamics, corresponding to Wolfram's ... classes

(1 and 2) [ordered] - (4) [complex, including 54 and 193] - (3) [chaotic]

Ron Eglash (in his book "African Fractals" (Rutgers 1999) and on his web site at www.csdt.rpi.edu) says:

... the owari marching-group system can be used as a one-diemnsional cellular automaton ...

... transients of many different lengths can be produced. ... the constant pattern is called a "point attractor", and the transients would be said to lie in the "basin of attraction".

The marching group rule can also produce periodic behavior (a "limit cycle" or "periodic attractor" ...). Here is a period- 3 system using only four conters:

$$
211->22->31->211
$$

Total number of counters	Behavior (after transients)
1. Marching
2	... Period 2
3	... Marching
4 Period 3
5Period 3
6Marching
7.	... Period 4
8.Period 4
9Period 4
10.Marching
11.Period 5
12Period 5
13.	. . Period 5
14.	. Period 5
15	. Marching

... The numbers which lead to marching groups - $1,3,6,10,15 \ldots-\ldots[$ are $] ..$ the triangular numbers ... [the triangular numbers correspond to the dimension of the grade-2 bivectors in Clifford Algebras -

- for the case of the $2^{\wedge} 8=256$ Elementary CA Rules, there are 28 grade- 2 CA Rules]
... One-dimensional versions can ... be used as a kind of parallel computer. Consider, for example, a rule that in each iteration the number of counters in a cup is replaced by the sum of itself and its left neighbor. Starting with one:

$$
0100000->0110000->0121000->0133100->0146410
$$

This fourth iteration gives the us the binomial coefficients for expansion of $(a+b)^{\wedge} 4$,
which equals to $a^{\wedge} 4+4 a^{\wedge} 3 b+6 a^{\wedge} 2 b^{\wedge} 2+4 a b^{\wedge} 3+b^{\wedge} 4$.
[Such a rule reproduces at each step succeeding rows of the Yang Hui triangle.]

FIGURE 7.6
Binary codes in divination
(a) This Nigerian priest is telling the future by Ifa divination, in which pairs of flat shells or seeds split in two are tossed with each landing open-side or closed-side. They are connected by a doubled chain to make four pairs, giving a total of 16 divination symbols. In this version of Ifa (used in the Abigba region of Nigeria) they use two doubled chains and consider the cast more accurate if there is a correlation between the two sets. (b) Here we see a chain using split seeds. Each half lands either "closed" (meaning we see the rounded outside) or "open" (meaning we see the interios). By using open to represent O (double lines), and closed to represent 1 (single line), we can see how the divination symbol is obtained. (c) The divination chain is interpreted as pairs summing to odd (one stroke) or even (two strokes).
(a, photo by E. M. McClelland, cotetesy Royal Anthropalogical Insticute.)

... If we think of the two-strokes as zero and single stroke as one, the Bamana divination system is almost identical to the process of pseudorandom number generation used by digital circuits called "shift registers". Here the circuit takes mod 2 of the last two bits in the register and places the result in the first position. The other bits are shifted to the right, with the last discarded. ...

1111
0111
0011
0001
1000
0100
0010
1001
1100
0110
1011
0101
1010
1101
1110
... This four-bit register will only produce 15 binary words before the cycle starts over, but the period of the
cycle increases with more bits ... For the entire 16 bits ... that begin the Bamana divination, 65,535 binary words can be produced before repeating the cycle. ...

Skinner ... "Terrestrial Astrology: Divination by Geomancy". London: Routledge and Kegan Paul, 1980 ... provides a well-documented history of the diffusion evidence ... for ... Arabic, European, West African, and East African ... "geomancy" ...divination technique. ...
[Such diffusion seems also to have extended

from Africa to India, China, and Japan.]
... The implications of this trajectory - from sub-Saharan Africa to North Africa to Europe - are quite significant for the history of mathematics.
... a historical path for base-2 calculation ... begins with African divination, runs through the geomancy of European alchemists, and is finally transformed into binary calculation, where it is now applied in every digital circuit ...
... Following the introduction of geomancy to Europe by Hugo of Santalla in twelfth-century Spain ... European geomancers ... Ramon Lull ... and others ... persistently replaced the deterministic aspects of the system with chance. By mounting the 16 figures on a wheel and spinning it, they maintained their society's exclusion of any connections between determinism and unpredictability. The Africans, on the other hand, seem to have emphasized such connections ...[with]]... a "trickster" god, one who is both deterministic and unpredictable. ...

The fractal settlement patterns

of Africa stand in sharp contrast to the Cartesian grids of Euro-American settlements. ... Euro-American cultures are organized by ... "top-down" organization. Precolonial African cultures included ... societies that
are organized "bottom-up" rather than "top-down". ... African architecture tends to be fractal because that is a prominent design theme in African culture ... most of the indigenous African societies were neither utterly anarchic, nor frozen in static order; rather they utilized an adaptive flexibility ... African traditions of decentralized decision making could ... be combined with new information technologies, creating new forms that combine democratic rule with collective informaiton sharing ... what is needed is not ... "small is beautiful", but rather a self-organized approach to changes in the relations between scale and the socioenvironmental systems - not just appropriate technology, but appropriate scaling. ...
we are trapped between the periodic stasis of the preservationists' limit cycle, and the white noise of the profiteering positive feedback loop.
... both are lacking in flexible interactions with memory;
the ... preservationists' ... limit cycle being too tied to it, and the ... profiteering ... white noise being too free from it. ...".

During the decade since Ron Eglash published his book in 1999, the USA/UK global financial system is collapsing due to grossly excessive profiteering.

Perhaps "African traditions of decentralized decision making" could produce a successor global finanancial system that will better serve the needs of human civilization.

Atlas of Basin of Attraction Fields

for 88 n=3 Equivalence Classes

=3-rule 8 - -вдввดвв

 =3-rule 1 -88888881
 ty. at no (p)s $1=1$

1111111111111188-1111111111111188-rule $=3$-rule 254 - 11111118

$\begin{array}{ll}11111110 & 254 \\ 10000000 & 128\end{array}$

Length $=9$

$\begin{array}{ll}11111011 & 251 \\ 00100000 & 32\end{array}$

 =3-rule 5 -88000101

1111111111881188-1111111111881188-rule

$=3-$ rule $258-11111818$

Ав $=3$-rule 18 -80018018

1111118811118011-1111118011118011-rule =3-rule 237 -11181181

 =3-rule 19 -80818011

J-rule 19 =
ty, at nalp:
Lu.fataing
1111118011118888-1111118011118888-rule $=3-$ rule $236-11181108$
$=3-$ rule 22 -80018118

σ

$\begin{array}{ll}11101001 & 233 \\ 01101000 & 104\end{array}$

 =3-rule 23 -88018111

 =3-rule 33 -88188801

$$
Z=.5
$$ $=3-$ rule $222-11011118$

1111888011118011-1111880011118011-rule

 $=3-$ rule 285 -11801181

1111800011118888－11118088111188日8－rule $=3-$ rule $284-11801180$

$$
\begin{array}{cc}
Z=.75 & \text { 111180801188日811-111188801188日811-rule } \\
=3-\text { rule } 201-11881801
\end{array}
$$

Length＝13

$\begin{array}{ll}11001001 & 201 \\ 01101100 & 101\end{array}$

=3-rule 73 -01001001 Length:

8811801111801180-8011801111801188-rule $=3$-rule 98 -01011018

16b1111111180-b011801111111180-rule
 =3-rule 94 -81011118

$$
Z=1
$$

8811118811888811-8811118811888811-rule $=3-$ rule 185 -81101081

$Z=1 \quad$ 1188801180111180-1188001108111188-rule $=3$-rule 158 -10818118

 $=3-$ rule 2 -88日8日818

$00000010 \quad 2$ 1110111247 000100016

$.25 \quad 1111111111118811-1111111111118011-\mathrm{rule}$ $=3-$ rule $253-11111181$

J-rule $25 J=11111101$
ty. at no(p) 9 al mp

 =3-rule 3 -80808011

J-rule $3=0$ ty. at hatp
 Lota 11224

$$
Z=.5
$$

4293984
Length=

$$
\begin{aligned}
& \text { =3-rule } 6 \text {-88800118 }
\end{aligned}
$$

$.5 \quad Z=.5 \quad 1111111111800011-1111111111808011-\mathrm{rule}$
$=3$-rule $249-11111801$

=3-rule $?$-80008111

 =3-rule 248 -111110日
＝3－rule 9 －g日日b18日1 Le

． $5 \quad Z=.5 \quad 1111111100111180-1111111180111180-\mathrm{rule}$ $=3-$ rule 246 －11118118

$11110110 \quad 246$
$10010000 \quad 144$ $\begin{array}{ll}10000010 & 130 \\ 10111110 & 190\end{array}$

=3-rule 12 -80日日1180

1111188001180-1111111180881180-rule $=3-$ rule 242 - 11118010

5 घв日ввв1111801111-88вввв1111081111-rule $=3$-rule 27-80011811

$$
Z=.75 \quad \text { 日8月8118080111180-8B8B118808111180-rule }
$$

$$
=3-\text { rule } 38-80100118
$$

| $Z=.75 \quad$ 1111881111888811－1111881111888811－rule |
| ---: | :---: |
| $=3-$ rule $217-11811881$ |

$Z=.75 \quad$ 日880118811808811－0808118811808011－rule
$=3-$ rule $41-08181801$

$Z=.75 \quad 1111801180111188-1111801188111188-$ rule
$=3-$ rule $214-11818118$

$1 Z=1 \quad 1111801188801188-1111801180801180-$ rule $=3$-rule $218-11818818$

$11010010 \quad 210$ $\begin{array}{ll}10110100 & 180 \\ 10100110 & 166\end{array}$ 10100110
10011010
154

Terinte

$$
Z=.75 \quad \text { 8888111111881188-8808111111881188-rule }
$$ =3-rule 58 -88111810

$Z=.75 \quad$ 111180日800118011-11118808B0118811-rule $=3-$ rule 197 -11000101

=3-rule 193 -11080801

3011081111-8080800811801111-rule
 =3-rule 11 -8b881811

 $=3-$ rule 15 - 8 b日b 1111

Length=9
J-rule
ty. at
Le
t.
total

1111111108888880-1111111180888888-rule =3-rule 248 -11118日8刀

Length $=9$

8888801111888888-0898081111888888-rule $=3-$ rule $24-08811$ -

$=.75$ 88888811118日8011-8888881111808811-rule
=3-rule 25 - 08011801

1111118888111188-1111118888111188-rule $=3$-rule $230-11100118$

$=.75 \quad$ B808881111118880-8880801111118888-rule $=3$-rule 28 -80811180

$Z=.75 \quad$ 1111118808001111-1111118808801111-rule $=3$-rule 227 -11108011

 =3-rule 29 -88011181

I

11111188日8В01180-111111888ВВ01188-rule
 $=3-$ rule $226-11180810$

 =3-rule 43 - 80181811

1111801180118888-1111801180118880-rule $=3$-rule $212-11810180$

$=.5$ 8888118011111188-8080118011111188-rule
$=3$-rule 46 - 88181118

J-rule 46 m001011
ty. at nolp)s q a
 =3-rule 5?-88111801

256 Elementary Rule Patterns

with Graded Structure

18285670562881

(images from "A New Kind of Science" by Stephen Wolfram (Wolfram 2002))

Grade:

the 16 terms in the $\mathrm{Cl}(8)$ primitive idempotent

$$
\begin{gathered}
\mathrm{f}=(1 / 2)\left(1+\mathrm{e} _1248\right)(1 / 2)\left(1+\mathrm{e} _2358\right)(1 / 2)\left(1+\mathrm{e} _3468\right)(1 / 2)\left(1+\mathrm{e} _4578\right)= \\
=(1 / 16)\left(1+\underset{-}{\mathrm{e} _1248+\mathrm{e} _2358+\mathrm{e} _3468+\mathrm{e} _4578+\mathrm{e} _5618+\mathrm{e} _6728+\mathrm{e} _7138-\mathrm{e} _3567-} \begin{array}{l}
\left.\mathrm{e} _4671-\mathrm{e} _5712-\mathrm{e} _6123-\mathrm{e} _7234-\mathrm{e} _1345-\mathrm{e} _2456+\mathrm{e} _\mathrm{J}\right)
\end{array}\right.
\end{gathered}
$$

correspond to 16 of the 256 Cellular Automata

- +e_12345678 ${ }^{11111111}$

- +e_6728+e_3468+e_4578 to $11100010 \quad 10101100 \quad 11011000$

- +1 to 00000000
- - e_5712-e_1345-e_6123

- -e_4671-e_7234-e_2456-e_3567

Note the $\mathbf{C l}(0,8)=\mathbf{C l}(1,7)$ triality correspondences among:

- the 8 +half-spinors

- the 8 -half-spinors

11111111

- the 8 vectors

Note that:

the grade-0 scalars

are related to the Spinors and Primitive Idempotents of $\mathrm{Cl}(0,8)$;
the grade- 1 vectors $1,2,4,16$ (the subset sequence $2^{\wedge} 0=1,2^{\wedge} 1=2,2^{\wedge} 2=4,2^{\wedge} 4=16$ related to Fermat primes)

correspond to the 4 dimensions of physical spacetime;

- 1 gives a succession of bands, the procession of time;
- 2 gives a slope to the left, one of three space dimensions;
- 4 gives a vertical slope, a second of three space dimensions;
- 16 gives a slope to the right, the third of three space dimensions;
the grade-1 vectors $8,32,64,128$ (all giving all white)

correspond to the 4 dimensions of internal symmetry space;
- rule $18=00010010$ is the first rule to include both $16=00010000$ with right slope and $2=00000010$ with left slope and is the first rule with traingular self-similar fractal structure;
- rule $30=00011110$ is the first rule to include $16,8,4$, and 2 and is in the self-dual grade- 4 and is the first rule with triangular chaotic behavior.

Here are all 28 rules for each of grades 2 and 6.

Grade:

00000110

00001001

00001010

2

00100010

01001000

6

all 28 grade-2 bivectors correspond to the 28 generators of the $\operatorname{Spin}(8)$ Lie algebra;

8 of the grade- 2 bivectors,

after dimensional reduction to 4-dimensional physical spacetime, correspond to the 8 generators of color force $\mathrm{SU}(3)$, whose root vector diagram is illustrated above;

3 of the grade- 2 bivectors,

after dimensional reduction to 4 -dimensional physical spacetime, correspond to the 3 generators of weak force $\mathrm{SU}(2)$;

1 of the grade- 2 bivectors,

after dimensional reduction to 4-dimensional physical spacetime, correspond to the 1 generator of electromagnetic U(1);

16 of the grade- 2 bivectors,

after dimensional reduction to 4-dimensional physical spacetime, correspond to the 16 generators of Gravity/Higgs/phase U(2,2). One of them

corresponds to the propagator phase $\mathrm{U}(1)$ while the other 15 correspond to the Conformal Group $\mathrm{SU}(2,2)=\operatorname{Spin}(2,4)$ whose root vector diagram

is a 12-vertex cuboctahedron (the other 3 bivectors corresponding to the 3 generators of the Cartan Subalgebra).

Can the African IFA tell us about Past and Future History ?

A few thousand years ago in Shang China, King Wen took the 64-element I Ching subset of IFA and modified its binary number Earlier Heaven sequence to describe the History of that Time and Place. In the 20th century, Terence McKenna used a similar technique to describe History of the Earth through 2012.
His Predictions for 2000 to 2012 seem to be quite relevant to the State of Our Earth as of now (2009):

Terence McKenna died in April 2000, but the Predictions of his

I Ching Resonance TimeWave of History live on to 2012.

Now (April 2009) we know that his 2000 to 2009 TimeWave History peaks:

- 9/11
- Iraqi War escalation (Rocket Attacks on USA helicopters)
- Hurricane Katrina
- the Credit Crisis of the USA/UK Global Financial System
all did happen coincident with TimeWave Peaks.
What does the TimeWave tell us about next 3 years, 2009 to 2012 ?
From now (April 2009) into 2010 is a nearly flat (or seemingly slightly rising) plateau that I call ZombieLand. In ZombieLand, Trillions of USA Dollars are fed to keep insolvent (but politically influential) financial institutions in an undead state - that is, not a living useful part of the Global Economy, but not officially recognized as being dead. To understand ZombieLand, you need to understand what is a Trillion USA Dollars. Glenn Beck (on his TV show) made a very good effort to show what is a Trillion USA Dollars. He said (I am paraphrasing): :
"... Here are $\$ 100$ USA Dollars and $\$ 1$ Million USA Dollars (It would fit in a suitcase):

Here are $\$ 1$ Billion USA Dollars (It is about the size of a car) and $\mathbf{\$ 1}$ Trillion USA Dollars (It is about the
size of a Thousand Cars in a big parking lot.)

Another way to visualize the size of $\$ 1$ Trillion USA Dollars is to realize that the population of the USA (around 300 Million people) is about 100 Million Families.

\$1 Billion is about $\mathbf{\$ 1 0}$ for every Family in the USA.

$\mathbf{\$ 1}$ Trillion is about $\mathbf{\$ 1 0 , 0 0 0}$ for every Family in the USA.

Another thing to keep in mind is that the amount of Bailouts so far is on the order of a few Trilllion USA Dollars, but the total amount of possibly-worthless derivatives is on the order of \$500 Trillion USA Dollars. That would be $500 \times 10,000=\$ 5$ Million for every Family in the USA.

Since the population of the Earth is around 6 Billion, that would be almost $\mathbf{\$ 1 0 0 , 0 0 0}$ for every Person on Earth.

According to a 15 March 2009 huffingtonpost.com article by Arianna Huffington:
"... The battle lines over how to deal with the banking crisis have been drawn. On the one side are those who know what needs to be done. On the other are those who know what needs to be done -- but won't admit it. Because it is against their self-interest. Unlike the conflict over the stimulus package, this is not an ideological fight. This is a battle between the status quo and the future, between the interests of the financial/lobbying establishment and the public interest. What needs to be done is hard but straightforward. As Martin Wolf of the Financial Times sums it up: "Admit reality, restructure banks and, above all, slay zombie institutions at once." This tough love for bankers is being promoted by everyone from Nouriel Roubini, Paul Krugman, and Ann Pettifor to Niall Ferguson, the Wall Street Journal, and Milton Friedman's old partner, Anna Schwartz ... "They should not be recapitalizing firms that should be shut down," says Schwartz. "Firms that made wrong decisions should fail."... Tim Geithner ... is on the wrong side of the issue, more worried about the banking industry than the American people. Like Hank Paulson before him, Geithner appears more concerned about saving particular banks than saving the banking system. ... As Ann Pettifor puts it on HuffPost: "Much of Wall Street is effectively insolvent. It's not that these banks lack cash or capital -- it's just that they're never going to meet all their financial liabilities -- i.e. repay their debts. Ever." ...".

According to a 23 March 2009 democracynow.org interview of Paul Krugman:

[^1]idea is ... a bad idea, but it just keeps on coming back. ... to ... have taxpayers go in and buy ... these toxic assets ... 85 percent of the money is going to be a loan from the government, which is a non-recourse loan ... this is not Geithner. Ultimately, the buck stops in the Oval Office. The question is, why is President Obama going with the soft side, the hope over analysis, on this stuff? ... the view still, apparently, dominant ... in this administration is that there's nothing really fundamentally wrong with the system. ... those people who we thought were so smart ... really are smart, and we want to keep them on the job. ... the Obama administration is still partying like it's 2006. ...".

According to a 22 April 2009 economictimes.indiatimes.com article by Swaminathan S. Anklesaria Alyar:
"... the Obama administration is prolonging the recession by avoiding surgery to remove dead wood from its financial sector. Some call this cowardice. Others, such as former IMF chief economist Simon Johnson, writing in The Atlantic, say Wall Street has captured the White House. ... Johnson says the US now resembles Russia, where business oligarchs and government officials protect each others' financial interests, at the expense of the economy. ... This ... highlights the priority given by the Obama administration to save the titans of Wall Street rather than end the recession quickly. ... Technically, the financial sector is comprehensively bust. It needs to recognise the losses, writing off trillions. ... The market solution would be to force insolvent banks into bankruptcy, with shareholders and creditors taking a huge hit ... Many titans of Wall Street will disappear ... the Obama administration refuses to contemplate this obvious solution. ... Wall Street has captured the White House, so nothing will be done to imperil the politico-financial network that rules the US. Robert Rubin and Hank Paulson, treasury secretaries of Clinton and Bush, were both from Goldman Sachs. Larry Summers, the current treasury secretary, earned millions as a hedge fund consultant. In a market economy, well-managed companies should be rewarded with profits, while mismanaged companies should go bust. This basic rule has been suspended almost entirely for the titans of Wall Street. ... Accounting norms have been tweaked to permit zombie banks to pretend they are alive and solvent....".

If Terence McKenna's TimeWave is accurate, then for the next year or so we will live in a ZombieLand of accounting fiction and Empty Words of Hope,
only to see a sharp collapse of the USA/UK Global Financial System during 2010.

What will the 2012 Singularity Be Like ?

On the bad side, maybe the USA/UK leaders will be so unhappy at the prospect of losing their Global Hegemony that they might have a Temper Tantrum and Kick Over the Table of the Game of Life and have a Big War.

A more optimistic possibility is that a new Global Hegemony might form consistent with a Confucian Mandate of Heaven.

The Confucian I Ching (used by Terence McKenna in constructing the TimeWave) seems to be derived from Ancient African Mathematical Divination. Ron Eglash, in his book "African Fractals" (Rutgers 1999), said: "... fractal settlement patterns of Africa stand in sharp contrast to the Cartesian grids of Euro-American settlements. ... Euro-American cultures are organized by ... "top-down" organization. Precolonial African cultures included ... societies that are organized "bottom-up" rather than "top-down". ... most of the indigenous African societies were neither utterly anarchic, nor frozen in static order, rather they utilized an
adaptive flexibility ... African traditions of decentralized decision making could ... be combined with new information technologies, creating new forms that combine democratic rule with collective information sharing ...".

How does such a New Collective Democracy fit with the most likely successor entity to the USA/UK Global Hegemon - China ?

Although some regard China as a top-down dictatorship, the true situation is quite different, as is exemplified by the Chinese Computer Hacker Community. According to a 23 April 2009 popsci.com article by Mara Hvistendahl: "... In the past two years, Chinese hackers have intercepted critical NASA files, breached the computer system in a sensitive Commerce Department bureau, and launched assaults on the Save Darfur Coalition, pro-Tibet groups and CNN. And those are just the attacks that have been publicly acknowledged. Were these initiated by the Chinese government? Who is doing this? ... It's hundreds of thousands of everyday civilians. ... This ... Hacker ... culture thrives on a viral, Internet-driven nationalism. ... China's Internet patriots, who call themselves "red hackers," may not be acting on direct behalf of their government, but the effect is much the same. ... The Red Hacker Alliance, often described in the Western press as a monolithic group, is in fact a loose association allowing disparate cells to coordinate their efforts. ... the largest unifying characteristic is nationalism. In a 2005 Hong Kong Sunday Morning Post article, a man identified as "the Godfather of hackers" explains, "Unlike our Western [hacker] counterparts, most of whom are individualists or anarchists, Chinese hackers tend to get more involved with politics because most of them are young, passionate, and patriotic." Nationalism is hip, and hackers -- who spearhead nationalist campaigns with just a laptop and an Internet connection -- are figures to revere.
Henderson ... emphasizes that the relationship between citizen and state is fluid in China, and that the Chinese government tends not to prosecute hackers unless they attack within China. To Henderson, that lack of supervision is tacit approval, and it constitutes a de facto partnership between civilian hackers and the Chinese government. Jack Linchuan Qiu, a communications professor at the Chinese University of Hong Kong ... agrees. "Chinese hackerism is not the American 'hacktivism' that wants social change," he says. "It's actually very close to the state. The Chinese distinction between the private and public domains is very small." ...".

Perhaps the Chinese Government/People System, is in fact in accord with "African traditions of decentralized decision making",

and so might give us a Better World than the USA/UK system that is now collapsing under the weight of its own greedy profiteering.

[^0]: ("out degree") to a single node (the swccessor state), at the next time step. Nodes with no incoming arcs represent garden-of-Eden states. The number of incoming arcs is referred to as the degree of pre-imaging ("in degree").

 For a given set of CA parameters, state space will, in a sense, crystallise into a set of one or more basins of attraction. The basin of attraction field is the set of state transition graphs representing all the basins in state space.

 The make-up of a typical basin of attraction is illustrated by the state transition graph shown in Fig. 2.4 (it is part of the basin field shown in Fig. 2.6). In our graphic convention (see Appendix 2), the length of transition arcs decreases with distance away from the attractor, and the diameter of the graphic representation of the attractor asymptotically approaches an upper limit with increasing period, so that attractor cycles are drawn with approximately the same diameter irrespective of the number of nodes in the attractor. The forward direction of transitions is inward from garden-of-Eden states to the attractor, which is the only closed loop in the basin, and then clockwise around the attractor cycle.

 Typically, the vast majority of nodes in a basin field, or a single basin of attraction, lie on transient trees outside the attractor cycle. A transient tree is the set of all paths from garden-of-Eden nodes leading to one node on the attractor cycle (an attractor node). A branch of the transient tree is termed a transient branch, and is the set of all paths from garden-of-Eden nodes leading to a state within a transient tree. A transient is one particular path from an arbitrary node in the transient tree leading to the attractor node. In all cases the attractor node itself is excluded from the definition.

[^1]: "... "The Zombie Ideas Have Won" - Paul Krugman on \$1 Trillion Geithner Plan to Buy Toxic Bank Assets ... Treasury Secretary Timothy Geithner is preparing to unveil a plan ... to purchase as much as $\mathbf{\$ 1}$ trillion in troubled mortgages and other assets from banks. .. The Obama administration has described the plan as a public-private partnership, but most of the actual money will be put up by the government. ... Paul Krugman: A zombie

