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Preface

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours
to print out the predictions of this kind of unified theory as an article in the desired format. TGD
is something di↵erent and I am not ashamed to confess that I have devoted the last 37 years of
my life to this enterprise and am still unable to write The Rules.

If I remember correctly, I got the basic idea of Topological Geometrodynamics (TGD) during
autumn 1977, perhaps it was October. What I realized was that the representability of physical
space-times as 4-dimensional surfaces of some higher-dimensional space-time obtained by replacing
the points of Minkowski space with some very small compact internal space could resolve the con-
ceptual di�culties of general relativity related to the definition of the notion of energy. This belief
was too optimistic and only with the advent of what I call zero energy ontology the understanding
of the notion of Poincare invariance has become satisfactory. This required also the understanding
of the relationship to General Relativity.

It soon became clear that the approach leads to a generalization of the notion of space-time
with particles being represented by space-time surfaces with finite size so that TGD could be also
seen as a generalization of the string model. Much later it became clear that this generalization is
consistent with conformal invariance only if space-time is 4-dimensional and the Minkowski space
factor of imbedding space is 4-dimensional. During last year it became clear that 4-D Minkowski
space and 4-D complex projective space CP2 are completely unique in the sense that they allow
twistor space with Kähler structure.

It took some time to discover that also the geometrization of also gauge interactions and
elementary particle quantum numbers could be possible in this framework: it took two years to
find the unique internal space (CP2) providing this geometrization involving also the realization
that family replication phenomenon for fermions has a natural topological explanation in TGD
framework and that the symmetries of the standard model symmetries are much more profound
than pragmatic TOE builders have believed them to be. If TGD is correct, main stream particle
physics chose the wrong track leading to the recent deep crisis when people decided that quarks
and leptons belong to same multiplet of the gauge group implying instability of proton.

There have been also longstanding problems.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence
the conservation of the inertial energy does not seem to be consistent with the Equivalence
Principle. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to
be vacuum extremals with respect to the inertial energy. About 25 years was needed to
realize that the sign of the inertial energy can be also negative and in cosmological scales the
density of inertial energy vanishes: physically acceptable universes are creatable from vacuum.
Eventually this led to the notion of zero energy ontology (ZEO) which deviates dramatically
from the standard ontology being however consistent with the crossing symmetry of quantum
field theories. In this framework the quantum numbers are assigned with zero energy states
located at the boundaries of so called causal diamonds defined as intersections of future and
past directed light-cones. The notion of energy-momentum becomes length scale dependent
since one has a scale hierarchy for causal diamonds. This allows to understand the non-
conservation of energy as apparent.

Equivalence Principle as it is expressed by Einstein’s equations follows from Poincare invari-
ance once it is realized that GRT space-time is obtained from the many-sheeted space-time of
TGD by lumping together the space-time sheets to a regionof Minkowski space and endowing
it with an e↵ective metric given as a sum of Minkowski metric and deviations of the metrices
of space-time sheets from Minkowski metric. Similar description relates classical gauge po-
tentials identified as components of induced spinor connection to Yang-Mills gauge potentials
in GRT space-time. Various topological inhomogenities below resolution scale identified as
particles are described using energy momentum tensor and gauge currents.
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• From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical
electromagnetic fields.

It took about 26 years to gain the maturity to admit the obvious: these fields are classical
correlates for long range color and weak interactions assignable to dark matter. The only
possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy of fractal
copies of standard model physics. Also the understanding of electro-weak massivation and
screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution
of the problem and provides also surprisingly powerful insights to the mathematical structure
of quantum TGD.

The latest development was the realization that the well- definedness of electromagnetic
charge as quantum number for the modes of the induced spinors field requires that the CP2

projection of the region in which they are non-vanishing carries vanishing W boson field and
is 2-D. This implies in the generic case their localization to 2-D surfaces: string world sheets
and possibly also partonic 2-surfaces. This localization applies to all modes except covariantly
constant right handed neutrino generating supersymmetry and mplies that string model in
4-D space-time is part of TGD. Localization is possible only for Kähler-Dirac assigned with
Kähler action defining the dynamics of space-time surfaces. One must however leave open the
question whether W field might vanish for the space-time of GRT if related to many-sheeted
space-time in the proposed manner even when they do not vanish for space-time sheets.

I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be
enough to construct the quantum theory but the first discovery made already during first year of
TGD was that these formalisms might be useless due to the extreme non-linearity and enormous
vacuum degeneracy of the theory. This turned out to be the case.

• It took some years to discover that the only working approach is based on the generalization of
Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
”world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and in positive energyontology implies that space-time surfaces are
analogous to Bohr orbits. This in positive energy ontology in which space-like 3-surface is
basic object. It is not clear whether Bohr orbitology is necessary also in ZEO in which space-
time surfaces connect space-like 3-surfaces at the light-like boundaries of causal diamond CD
obtained as intersection of future and past directed light-cones (with CP2 factor included).
The reason is that the pair of 3-surfaces replaces the boundary conditions at single 3-surface
involving also time derivatives. If one assumes Bohr orbitology then strong correlations
between the 3-surfaces at the ends of CD follow. Still a couple of years and I discovered that
quantum states of the Universe can be identified as classical spinor fields in WCW. Only
quantum jump remains the genuinely quantal aspect of quantum physics.

• During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with
sheets representing physical subsystems of various sizes. At the beginning of 90s I became
dimly aware of the importance of p-adic number fields and soon ended up with the idea that
p-adic thermodynamics for a conformally invariant system allows to understand elementary
particle massivation with amazingly few input assumptions. The attempts to understand p-
adicity from basic principles led gradually to the vision about physics as a generalized number
theory as an approach complementary to the physics as an infinite-dimensional spinor ge-
ometry of WCW approach. One of its elements was a generalization of the number concept
obtained by fusing real numbers and various p-adic numbers along common rationals. The
number theoretical trinity involves besides p-adic number fields also quaternions and octo-
nions and the notion of infinite prime.

• TGD inspired theory of consciousness entered the scheme after 1995 as I started to write
a book about consciousness. Gradually it became di�cult to say where physics ends and
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consciousness theory begins since consciousness theory could be seen as a generalization of
quantum measurement theory by identifying quantum jump as a moment of consciousness
and by replacing the observer with the notion of self identified as a system which is conscious
as long as it can avoid entanglement with environment. The somewhat cryptic statement
”Everything is conscious and consciousness can be only lost” summarizes the basic philosophy
neatly.

The idea about p-adic physics as physics of cognition and intentionality emerged also rather
naturally and implies perhaps the most dramatic generalization of the space-time concept in
which most points of p-adic space-time sheets are infinite in real sense and the projection
to the real imbedding space consists of discrete set of points. One of the most fascinating
outcomes was the observation that the entropy based on p-adic norm can be negative. This
observation led to the vision that life can be regarded as something in the intersection of real
and p-adic worlds. Negentropic entanglement has interpretation as a correlate for various
positively colored aspects of conscious experience and means also the possibility of strongly
correlated states stable under state function reduction and di↵erent from the conventional
bound states and perhaps playing key role in the energy metabolism of living matter.

If one requires consistency of Negentropy Mazimization Pronciple with standard measure-
ment theory, negentropic entanglement defined in terms of number theoretic negentropy is
necessarily associated with a density matrix proportional to unit matrix and is maximal and
is characterized by the dimension n of the unit matrix. Negentropy is positive and maximal
for a p-adic unique prime dividing n.

• One of the latest threads in the evolution of ideas is not more than nine years old. Learning
about the paper of Laurent Nottale about the possibility to identify planetary orbits as Bohr
orbits with a gigantic value of gravitational Planck constant made once again possible to see
the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions
can have arbitrarily large sizes. Second motivation for the hierarchy of Planck constants
comes from bio-electromagnetism suggesting that in living systems Planck constant could
have large values making macroscopic quantum coherence possible. The interpretation of
dark matter as a hierarchy of phases of ordinary matter characterized by the value of Planck
constant is very natural.

During summer 2010 several new insights about the mathematical structure and interpreta-
tion of TGD emerged. One of these insights was the realization that the postulated hierarchy
of Planck constants might follow from the basic structure of quantum TGD. The point is that
due to the extreme non-linearity of the classical action principle the correspondence between
canonical momentum densities and time derivatives of the imbedding space coordinates is
one-to-many and the natural description of the situation is in terms of local singular covering
spaces of the imbedding space. One could speak about e↵ective value of Planck constant
heff = n ⇥ h coming as a multiple of minimal value of Planck constant. Quite recently it
became clear that the non-determinism of Kähler action is indeed the fundamental justifi-
cation for the hierarchy: the integer n can be also interpreted as the integer characterizing
the dimension of unit matrix characterizing negentropic entanglement made possible by the
many-sheeted character of the space-time surface.

Due to conformal invariance acting as gauge symmetry the n degenerate space-time sheets
must be replaced with conformal equivalence classes of space-time sheets and conformal
transformations correspond to quantum critical deformations leaving the ends of space-time
surfaces invariant. Conformal invariance would be broken: only the sub-algebra for which
conformal weights are divisible by n act as gauge symmetries. Thus deep connections be-
tween conformal invariance related to quantum criticality, hierarchy of Planck constants,
negentropic entanglement, e↵ective p-adic topology, and non-determinism of Kähler action
perhaps reflecting p-adic non-determinism emerges.

The implications of the hierarchy of Planck constants are extremely far reaching so that the
significance of the reduction of this hierarchy to the basic mathematical structure distin-
guishing between TGD and competing theories cannot be under-estimated.
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From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious
taking into account how far reaching re-structuring and generalization of the basic mathematical
structure of quantum physics is required. It has indeed turned out that the dream about explicit
formula is unrealistic before one has understood what happens in quantum jump. Symmetries
and general physical principles have turned out to be the proper guide line here. To give some
impressions about what is required some highlights are in order.

• With the emergence of ZEO the notion of S-matrix was replaced with M-matrix defined
between positive and negative energy parts of zero energy states. M-matrix can be interpreted
as a complex square root of density matrix representable as a diagonal and positive square
root of density matrix and unitary S-matrix so that quantum theory in ZEO can be said to
define a square root of thermodynamics at least formally. M-matrices in turn bombine to
form the rows of unitary U-matrix defined between zero energy states.

• A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces
at which the induced metric of space-time surfaces changes its signature and in terms of
space-like 3-surfaces are equivalent. This means e↵ective 2-dimensionality in the sense that
partonic 2-surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent
space data at partonic 2-surfaces code for the physics. Quantum classical correspondence
requires the coding of the quantum numbers characterizing quantum states assigned to the
partonic 2-surfaces to the geometry of space-time surface. This is achieved by adding to the
modified Dirac action a measurement interaction term assigned with light-like 3-surfaces.

• The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further gen-
eralization of these symmetries to non-local Yangian symmetries generalizing the recently
discovered Yangian symmetry of N = 4 supersymmetric Yang-Mills theories is highly sug-
gestive. Here the replacement of point like particles with partonic 2-surfaces means the
replacement of conformal symmetry of Minkowski space with infinite-dimensional super-
conformal algebras. Yangian symmetry provides also a further refinement to the notion of
conserved quantum numbers allowing to define them for bound states using non-local energy
conserved currents.

• A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kähler action for the preferred extremals defining WCW
Kähler function reduces to a 3-D boundary term. This takes place if the conserved currents
are so called Beltrami fields with the defining property that the coordinates associated with
flow lines extend to single global coordinate variable. This ansatz together with the weak
form of electric-magnetic duality reduces the Kähler action to Chern-Simons term with the
condition that the 3-surfaces are extremals of Chern-Simons action subject to the constraint
force defined by the weak form of electric magnetic duality. It is the latter constraint which
prevents the trivialization of the theory to a topological quantum field theory. Also the
identification of the Kähler function of WCW as Dirac determinant finds support as well as
the description of the scattering amplitudes in terms of braids with interpretation in terms of
finite measurement resolution coded to the basic structure of the solutions of field equations.

• In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual
particles are taken only as a convenient mathematical tool in quantum field theories. QFT
approach is however plagued by UV and IR divergences and one must keep mind open for
the possibility that a genuine progress might mean opening of the black box of the virtual
particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably.
Light-like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D
partonic 2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like
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”wormhole throats” suggests that virtual particle do not di↵er from on mass shell particles
only in that the four- and three- momenta of wormhole throats fail to be parallel. The two
throats of the wormhole contact defining virtual particle would contact carry on mass shell
quantum numbers but for virtual particles the four-momenta need not be parallel and can
also have opposite signs of energy.

The localization of the nodes of induced spinor fields to 2-D string world sheets (and possibly
also to partonic 2-surfaces) implies a stringy formulation of the theory analogous to stringy
variant of twistor formalism with string world sheets having interpretation as 2-braids. In
TGD framework fermionic variant of twistor Grassmann formalism leads to a stringy variant
of twistor diagrammatics in which basic fermions can be said to be on mass-shell but carry
non-physical helicities in the internal lines. This suggests the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD. This
vision is single man’s view and doomed to contain unrealistic elements as I know from experience.
My dream is that young critical readers could take this vision seriously enough to try to demonstrate
that some of its basic premises are wrong or to develop an alternative based on these or better
premises. I must be however honest and tell that 32 years of TGD is a really vast bundle of
thoughts and quite a challenge for anyone who is not able to cheat himself by taking the attitude
of a blind believer or a light-hearted debunker trusting on the power of easy rhetoric tricks.

Matti Pitkänen

Hanko,
September 16, 2014
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Chapter 1

Introduction

1.1 Basic Ideas of Topological Geometrodynamics (TGD)

Standard model describes rather successfully both electroweak and strong interactions but sees
them as totally separate and contains a large number of parameters which it is not able to predict.
For about four decades ago unified theories known as Grand Unified Theories (GUTs) trying to
understand electroweak interactions and strong interactions as aspects of the same fundamental
gauge interaction assignable to a larger symmetry group emerged. Later superstring models trying
to unify even gravitation and strong and weak interactions emerged. The shortcomings of both
GUTs and superstring models are now well-known. If TGD - whose basic idea emerged 37 years
ago - would emerge now it would be seen as an attempt trying to solve the di�culties of these
approaches to unification.

The basic physical picture behind TGD corresponds to a fusion of two rather disparate ap-
proaches: namely TGD as a Poincare invariant theory of gravitation and TGD as a generalization
of the old-fashioned string model. The CMAP files at my homepage provide an overview about
ideas and evolution of TGD and make easier to understand what TGD and its applications are
about (http://www.tgdtheory.fi/cmaphtml.html [L13]).

1.1.1 Basic vision very briefly

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of
basic interactions. The development of the basic ideas of TGD to a relatively stable form took
time of about half decade [K1].

The basic vision and its relationship to existing theories is now rather well understood.

1. Space-times are representable as 4-surfaces in the 8-dimensional imbedding space H = M4⇥
CP2, where M4 is 4-dimensional (4-D) Minkowski space and CP2 is 4-D complex projective
space (see Appendix).

2. Induction procedure allows to geometrize various fields. Space-time metric characterizing
gravitational fields corresponds to the induced metric obtained by projecting the metric tensor
of H to the space-time surface. Electroweak gauge potentials are identified as projections
of the components of CP2 spinor connection to the space-time surface, and color gauge
potentials as projections ofCP2 Killing vector fields representing color symmetries. Also
spinor structure can be induced: induced spinor gamma matrices are projections of gamma
matrices of H and induced spinor fields just H spinor fields restricted to space-time surface.

3. Geometrization of quantum numbers is achieved. The isometry group of the geometry of
CP2 codes for the color gauge symmetries of strong interactions. Vierbein group codes
for electroweak symmetries, and explains their breaking in terms of CP2 geometry so that
standard model gauge group results. There are also important deviations from standard
model: color quantum numbers are not spin-like but analogous to orbital angular momentum:
this di↵erence is expected to be seen only in CP2 scale. In contrast to GUTs, quark and

1
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lepton numbers are separately conserved and family replication has a topological explanation
in terms of topology of the partonic 2-surface carrying fermionic quantum numbers.

M4 and CP2 are unique choices for many other reasons. For instance, they are the unique 4-
D space-times allowing twistor space with Kähler structure. M4 light-cone boundary allows
a huge extension of 2-D conformal symmetries. Imbedding space H has a number theoretic
interpretation as 8-D space allowing octonionic tangent space structure. M4 and CP2 al-
low quaternionic structures. Therefore standard model symmetries have number theoretic
meaning.

4. Induced gauge potentials are expressible in terms of imbedding space coordinates and their
gradients and general coordinate invariance implies that there are only 4 field like variables
locally. Situation is thus extremely simple mathematically. The objection is that one loses
linear superposition of fields. The resolution of the problem comes from the generalization
of the concepts of particle and space-time.

Space-time surfaces can be also particle like having thus finite size. In particular, space-time
regions with Euclidian signature of the induced metric (temporal and spatial dimensions in
the same role) emerge and have interpretation as lines of generalized Feynman diagrams.
Particle in space-time can be identified as a topological inhomogenuity in background space-
time surface which looks like the space-time of general relativity in long length scales.

One ends up with a generalization of space-time surface to many-sheeted space-time with
space-time sheets having extremely small distance of about 104 Planck lengths (CP2 size).
As one adds a particle to this kind of structure, it touches various space-time sheets and
thus interacts with the associated classical fields. Their e↵ects superpose linearly in good
approximation and linear superposition of fields is replaced with that for their e↵ects.

This resolves the basic objection. It also leads to the understanding of how the space-time
of general relativity and quantum field theories emerges from TGD space-time as e↵ective
space-time when the sheets of many-sheeted space-time are lumped together to form a re-
gion of Minkowski space with metric replaced with a metric identified as the sum of empty
Minkowski metric and deviations of the metrics of sheets from empty Minkowski metric.
Gauge potentials are identified as sums of the induced gauge potentials. TGD is therefore
a microscopic theory from which standard model and general relativity follow as a topolog-
ical simplification however forcing to increase dramatically the number of fundamental field
variables.

5. A further objection is that classical weak fields identified as induced gauge fields are long
ranged and should cause large parity breaking e↵ects due to weak interactions. These e↵ects
are indeed observed but only in living matter. The resolution of problem is implied by
the condition that the modes of the induced spinor fields have well-defined electromagnetic
charge. This forces their localization to 2-D string world sheets in the generic case having
vanishing weak gauge fields so that parity breaking e↵ects emerge just as they do in standard
model. Also string model like picture emerges from TGD and one ends up with a rather
concrete view about generalized Feynman diagrammatics.

The great challenge is to construct a mathematical theory around these physically very attrac-
tive ideas and I have devoted the last thirty seven years for the realization of this dream and this
has resulted in eight online books about TGD and nine online books about TGD inspired theory
of consciousness and of quantum biology.

1.1.2 Two manners to see TGD and their fusion

As already mentioned, TGD can be interpreted both as a modification of general relativity and
generalization of string models.

TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure,
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is regarded as a surface in the 8-dimensional space H = M4
⇥CP2, where M4 denotes Minkowski

space and CP2 = SU(3)/U(2) is the complex projective space of two complex dimensions [A59,
A42, A54, A40].

The identification of the space-time as a sub-manifold [A36, A57] of M4 ⇥ CP2 leads to an
exact Poincare invariance and solves the conceptual di�culties related to the definition of the
energy-momentum in General Relativity.

It soon however turned out that sub-manifold geometry, being considerably richer in structure
than the abstract manifold geometry, leads to a geometrization of all basic interactions. First,
the geometrization of the elementary particle quantum numbers is achieved. The geometry of
CP2 explains electro-weak and color quantum numbers. The di↵erent H-chiralities of H-spinors
correspond to the conserved baryon and lepton numbers. Secondly, the geometrization of the field
concept results. The projections of the CP2 spinor connection, Killing vector fields of CP2 and of
H-metric to four-surface define classical electro-weak, color gauge fields and metric in X4.

The choice of H is unique from the condition that TGD has standard model symmetries. Also
number theoretical vision selects H = M4 ⇥ CP2 uniquely. M4 and CP2 are also unique spaces
allowing twistor space with Kähler structure.

TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons
in the sense that the quantum numbers of the elementary particles reside on the boundaries.
Various boundary topologies (number of handles) correspond to various fermion families so that
one obtains an explanation for the known elementary particle quantum numbers. This approach
leads also to a natural topological description of the particle reactions as topology changes: for
instance, two-particle decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important di↵erence between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
di↵erent routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds
the space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

Fusion of the two approaches via a generalization of the space-time concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which di↵ers drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial
3-space of General Relativity is replaced with a ”topological condensate” containing matter as
particle like 3-surfaces ”glued” to the topologically trivial background 3-space by connected sum
operation. Secondly, the assumption about connectedness of the 3-space is given up. Besides the
”topological condensate” there could be ”vapor phase” that is a ”gas” of particle like 3-surfaces
and string like objects (counterpart of the ”baby universes” of GRT) and the non-conservation of
energy in GRT corresponds to the transfer of energy between di↵erent sheets of the space-time
and possibly existence vapour phase.

What one obtains is what I have christened as many-sheeted space-time (see fig. http://
www.tgdtheory.fi/appfigures/manysheeted.jpg or fig. 9 in the appendix of this book). One
particular aspect is topological field quantization meaning that various classical fields assignable to
a physical system correspond to space-time sheets representing the classical fields to that particular
system. One can speak of the field body of a particular physical system. Field body consists of
topological light rays, and electric and magnetic flux quanta. In Maxwell’s theory system does not
possess this kind of field identity. The notion of magnetic body is one of the key players in TGD
inspired theory of consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEO). The basic
notion of ZEO is causal diamond (CD) identified as the Cartesian product of CP2 and of the
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intersection of future and past directed light-cones and having scale coming as an integer multiple
of CP2 size is fundamental. CDs form a fractal hierarchy and zero energy states decompose to
products of positive and negative energy parts assignable to the opposite boundaries of CD defining
the ends of the space-time surface. The counterpart of zero energy state in positive energy ontology
is the pair of initial and final states of a physical event, say particle reaction.

At space-time level ZEO means that 3-surfaces are pairs of space-like 3-surfaces at the opposite
light-like boundaries of CD. Since the extremals of Kähler action connect these, one can say that
by holography the basic dynamical objects are the space-time surface connecting these 3-surfaces.
This changes totally the vision about notions like self-organization: self-organization by quantum
jumps does not take for a 3-D system but for the entire 4-D field pattern associated with it.

General Coordinate Invariance (GCI) allows to identify the basic dynamical objects as space-
like 3-surfaces at the ends of space-time surface at boundaries of CD: this means that space-
time surface is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at
which the signature of the induced metric changes from Minkowskian to Euclidian and interpreted
as lines of generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar
interpretation. The requirement that the two interpretations are equivalent, leads to a strong
form of General Coordinate Invariance. The outcome is e↵ective 2-dimensionality stating that
the partonic 2-surfaces identified as intersections of the space-like ends of space-time surface and
light-like wormhole throats are the fundamental objects. That only e↵ective 2-dimensionality is in
question is due to the e↵ects caused by the failure of strict determinism of Kähler action. In finite
length scale resolution these e↵ects can be neglected below UV cuto↵ and above IR cuto↵. One
can also speak about strong form of holography.

1.1.3 Basic objections

Objections are the most powerful tool in theory building. The strongest objection against TGD
is the observation that all classical gauge fields are expressible in terms of four imbedding space
coordinates only- essentially CP2 coordinates. The linear superposition of classical gauge fields
taking place independently for all gauge fields is lost. This would be a catastrophe without many-
sheeted space-time. Instead of gauge fields, only the e↵ects such as gauge forces are superposed.
Particle topologically condenses to several space-time sheets simultaneously and experiences the
sum of gauge forces. This transforms the weakness to extreme economy: in a typical unified theory
the number of primary field variables is countered in hundreds if not thousands, now it is just four.

Second objection is that TGD space-time is quite too simple as compared to GRT space-
time due to the imbeddability to 8-D imbedding space. One can also argue that Poincare invariant
theory of gravitation cannot be consistent with General Relativity. The above interpretation allows
to understand the relationship to GRT space-time and how Equivalence Principle (EP) follows
from Poincare invariance of TGD. The interpretation of GRT space-time is as e↵ective space-
time obtained by replacing many-sheeted space-time with Minkowski space with e↵ective metric
determined as a sum of Minkowski metric and sum over the deviations of the induced metrices of
space-time sheets from Minkowski metric. Poincare invariance suggests strongly classical EP for
the GRT limit in long length scales at least. One can consider also other kinds of limits such as the
analog of GRT limit for Euclidian space-time regions assignable to elementary particles. In this case
deformations of CP2 metric define a natural starting point and CP2 indeed defines a gravitational
instanton with very large cosmological constant in Einstein-Maxwell theory. Also gauge potentials
of standard model correspond classically to superpositions of induced gauge potentials over space-
time sheets.

Topological field quantization

Topological field quantization distinguishes between TGD based and more standard - say Maxwellian
- notion of field. In Maxwell’s fields created by separate systems superpose and one cannot tell
which part of field comes from which system except theoretically. In TGD these fields correspond
to di↵erent space-time sheets and only their e↵ects on test particle superpose. Hence physical
systems have well-defined field identifies - field bodies - in particular magnetic bodies.

The notion of magnetic body carrying dark matter with non-standard large value of Planck
constant has become central concept in TGD inspired theory of consciousness and living matter,
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and by starting from various anomalies of biology one ends up to a rather detailed view about the
role of magnetic body as intentional agent receiving sensory input from the biological body and
controlling it using EEG and its various scaled up variants as a communication tool. Among other
thins this leads to models for cell membrane, nerve pulse, and EEG.

1.1.4 p-Adic variants of space-time surfaces

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. Also the hierarchy of Planck constants forces a generalization of the notion of space-time
but this generalization can be understood in terms of the failure of strict determinism for Kähler
action defining the fundamental variational principle behind the dynamics of space-time surfaces.

A very concise manner to express how TGD di↵ers from Special and General Relativities
could be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and
Equivalence Principle remain true. What is new is the notion of sub-manifold geometry: this allows
to realize Poincare Invariance and geometrize gravitation simultaneously. This notion also allows
a geometrization of known fundamental interactions and is an essential element of all applications
of TGD ranging from Planck length to cosmological scales. Sub-manifold geometry is also crucial
in the applications of TGD to biology and consciousness theory.

1.1.5 The threads in the development of quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants
interpreted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the
following these threads are briefly described.

The theoretical framework involves several threads.

1. Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-
dimensional WCW, p-adic numbers and quantum TGD, and TGD inspired theory of con-
sciousness and of quantum biology have been for last decade of the second millenium the
basic three strongly interacting threads in the tapestry of quantum TGD.

2. The discussions with Tony Smith initiated a fourth thread which deserves the name ’TGD as
a generalized number theory’. The basic observation was that classical number fields might
allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation,
but a deep generalization of quantum TGD. This led to a thorough and extremely fruitful
revision of the basic views about what the final form and physical content of quantum TGD
might be. Together with the vision about the fusion of p-adic and real physics to a larger
coherent structure these sub-threads fused to the ”physics as generalized number theory”
thread.

3. A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is
not at all clear whether standard quantum mechanics can accommodate this hierarchy, and
that a dynamical quantized Planck constant might be necessary and strongly suggested by
the failure of strict determinism for the fundamental variational principle. The identification
of hierarchy of Planck constants labelling phases of dark matter would be natural. This also
led to a solution of a long standing puzzle: what is the proper interpretation of the predicted
fractal hierarchy of long ranged classical electro-weak and color gauge fields. Quantum clas-
sical correspondences allows only single answer: there is infinite hierarchy of p-adically scaled
up variants of standard model physics and for each of them also dark hierarchy. Thus TGD
Universe would be fractal in very abstract and deep sense.

The chronology based identification of the threads is quite natural but not logical and it is
much more logical to see p-adic physics, the ideas related to classical number fields, and infinite
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primes as sub-threads of a thread which might be called ”physics as a generalized number theory”.
In the following I adopt this view. This reduces the number of threads to four.

TGD forces the generalization of physics to a quantum theory of consciousness, and represent
TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics
as physics of cognitive representations. The eight online books [K58, K42, K34, K75, K49, K74,
K73, K48] about TGD and nine online books about TGD inspired theory of consciousness and of
quantum biology [K53, K7, K38, K6, K21, K25, K27, K47, K68] are warmly recommended to the
interested reader.

Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was ”Do not quantize”. The basic ingredients to the new
approach have served as the basic philosophy for the attempt to construct Quantum TGD since
then and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrödinger amplitude in the configuration space CH (”world of classical worlds”,WCW)
consisting of all possible 3-surfaces in H. ”All possible” means that surfaces with arbitrary
many disjoint components and with arbitrary internal topology and also singular surfaces
topologically intermediate between two di↵erent manifold topologies are included. Particle
reactions are identified as topology changes [A51, A60, A61]. For instance, the decay of a
3-surface to two 3-surfaces corresponds to the decay A ! B+C. Classically this corresponds
to a path of WCW leading from 1-particle sector to 2-particle sector. At quantum level this
corresponds to the dispersion of the generalized Schrödinger amplitude localized to 1-particle
sector to two-particle sector. All coupling constants should result as predictions of the theory
since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not
anymore quite equivalent with the original insight. In particular, the space-time correlates of
Feynman graphs have emerged from theory as Euclidian space-time regions and the strong
form of General Coordinate Invariance has led to a rather detailed and in many respects un-
expected visions. This picture forces to give up the idea about smooth space-time surfaces
and replace space-time surface with a generalization of Feynman diagram in which vertices
represent the failure of manifold property. I have also introduced the word ”world of classical
worlds” (WCW) instead of rather formal ”configuration space”. I hope that ”WCW” does
not induce despair in the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric
related di↵erential operators, say Dirac operator, appearing in the field equations of the
theory 1. The most ambitious dream is that zero energy states correspond to a complete
solution basis for the Dirac operator of WCW so that this classical free field theory would
dictate M-matrices defined between positive and negative energy parts of zero energy states
which form orthonormal rows of what I call U-matrix as a matrix defined between zero energy
states. Given M-matrix in turn would decompose to a product of a hermitian density matrix
and unitary S-matrix.

M-matrix would define time-like entanglement coe�cients between positive and negative
energy parts of zero energy states (all net quantum numbers vanish for them) and can be
regarded as a hermitian square root of density matrix multiplied by a unitary S-matrix.
Quantum theory would be in well-defined sense a square root of thermodynamics. The
orthogonality and hermiticity of the complex square roots of density matrices commuting
with S-matrix means that they span infinite-dimensional Lie algebra acting as symmetries of
the S-matrix. Therefore quantum TGD would reduce to group theory in well-defined sense:
its own symmetries would define the symmetries of the theory. In fact the Lie algebra of
Hermitian M-matrices extends to Kac-Moody type algebra obtained by multiplying hermitian

1
There are four kinds of Dirac operators in TGD. WCW Dirac operator appearing in Super-Virasoro conditions,

imbedding space Dirac operator whose modes define the ground states of Super-Virasoro representations, Kähler-

Dirac operator at space-time surfaces, and the algebraic variant of M

4
Dirac operator appearing in propagators
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square roots of density matrices with powers of the S-matrix. Also the analog of Yangian
algebra involving only non-negative powers of S-matrix is possible.

4. By quantum classical correspondence the construction of WCW spinor structure reduces to
the second quantization of the induced spinor fields at space-time surface. The basic ac-
tion is so called modified Dirac action (or Kähler-Dirac action) in which gamma matrices
are replaced with the modified (Kähler-Dirac) gamma matrices defined as contractions of
the canonical momentum currents with the imbedding space gamma matrices. In this man-
ner one achieves super-conformal symmetry and conservation of fermionic currents among
other things and consistent Dirac equation. The modified gamma matrices define as anti-
commutators e↵ective metric, which might provide geometrization for some basic observables
of condensed matter physics. One might also talk about bosonic emergence in accordance
with the prediction that the gauge bosons and graviton are expressible in terms of bound
states of fermion and anti-fermion.

5. An important result relates to the notion of induced spinor connection. If one requires
that spinor modes have well-defined em charge, one must assume that the modes in the
generic situation are localized at 2-D surfaces - string world sheets or perhaps also partonic
2-surfaces - at which classical W boson fields vanish. Covariantly constant right handed
neutrino generating super-symmetries forms an exception. The vanishing of also Z0 field is
possible for Kähler-Dirac action and should hold true at least above weak length scales. This
implies that string model in 4-D space-time becomes part of TGD. Without these conditions
classical weak fields can vanish above weak scale only for the GRT limit of TGD for which
gauge potentials are sums over those for space-time sheets.

The localization simplifies enormously the mathematics and one can solve exactly the Kähler-
Dirac equation for the modes of the induced spinor field just like in super string models.

At the light-like 3-surfaces at which the signature of the induced metric changes from Eu-
clidian to Minkowskian so that

p
g4 vanishes one can pose the condition that the algebraic

analog of massless Dirac equation is satisfied by the nodes so that Kähler-Dirac action gives
massless Dirac propagator localizable at the boundaries of the string world sheets.

The evolution of these basic ideas has been rather slow but has gradually led to a rather
beautiful vision. One of the key problems has been the definition of Kähler function. Kähler
function is Kähler action for a preferred extremal assignable to a given 3-surface but what this
preferred extremal is? The obvious first guess was as absolute minimum of Kähler action but
could not be proven to be right or wrong. One big step in the progress was boosted by the idea
that TGD should reduce to almost topological QFT in which braids would replace 3-surfaces in
finite measurement resolution, which could be inherent property of the theory itself and imply
discretization at partonic 2-surfaces with discrete points carrying fermion number.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coe�-
cients and in Minkowskian regions the

p
g4 factorc coming from metric would be imaginary

so that one would obtain sum of real term identifiable as Kähler function and imaginary
term identifiable as the ordinary Minkowskian action giving rise to interference e↵ects and
stationary phase approximation central in both classical and quantum field theory.

Imaginary contribution - the presence of which I realized only after 33 years of TGD - could
also have topological interpretation as a Morse function. On physical side the emergence of
Euclidian space-time regions is something completely new and leads to a dramatic modifica-
tion of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of
Coulomb contribution to Kähler action is required and is true for all known extremals if one
makes a general ansatz about the form of classical conserved currents. The so called weak
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form of electric-magnetic duality defines a boundary condition reducing the resulting 3-D
terms to Chern-Simons terms. In this manner almost topological QFT results. But only
”almost” since the Lagrange multiplier term forcing electric-magnetic duality implies that
Chern-Simons action for preferred extremals depends on metric.

TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configu-
ration space (”world of classical worldss”, WCW), p-adic numbers and quantum TGD, and TGD
inspired theory of consciousness, have been for last ten years the basic three strongly interacting
threads in the tapestry of quantum TGD. The fourth thread deserves the name ’TGD as a gen-
eralized number theory’. It involves three separate threads: the fusion of real and various p-adic
physics to a single coherent whole by requiring number theoretic universality discussed already, the
formulation of quantum TGD in terms of hyper-counterparts of classical number fields identified
as sub-spaces of complexified classical number fields with Minkowskian signature of the metric
defined by the complexified inner product, and the notion of infinite prime.

1. p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers
might be important for TGD. Experimentation with p-adic numbers led to the notion of canonical
identification mapping reals to p-adics and vice versa. The breakthrough came with the successful
p-adic mass calculations using p-adic thermodynamics for Super-Virasoro representations with the
super-Kac-Moody algebra associated with a Lie-group containing standard model gauge group.
Although the details of the calculations have varied from year to year, it was clear that p-adic
physics reduces not only the ratio of proton and Planck mass, the great mystery number of physics,
but all elementary particle mass scales, to number theory if one assumes that primes near prime
powers of two are in a physically favored position. Why this is the case, became one of the key
puzzles and led to a number of arguments with a common gist: evolution is present already at
the elementary particle level and the primes allowed by the p-adic length scale hypothesis are the
fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length
scale as often believed, but that there is an infinite hierarchy of p-adic physics characterized by
p-adic length scales varying to even cosmological length scales. The idea about the connection of
p-adics with cognition motivated already the first attempts to understand the role of the p-adics
and inspired ’Universe as Computer’ vision but time was not ripe to develop this idea to anything
concrete (p-adic numbers are however in a central role in TGD inspired theory of consciousness). It
became however obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy
of intelligences and that p-adic prime serves as a kind of intelligence quotient. Ironically, the
almost obvious idea about p-adic regions as cognitive regions of space-time providing cognitive
representations for real regions had to wait for almost a decade for the access into my consciousness.

In string model context one tries to reduces the physics to Planck scale. The price is the
inability to say anything about physics in long length scales. In TGD p-adic physics takes care of
this shortcoming by predicting the physics also in long length scales.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an e↵ective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is
both, how should one glue the physics in di↵erent number field together to get the Physics?
Should one perform p-adicization also at the level of the WCW? Certainly the p-adicization
at the level of super-conformal representation is necessary for the p-adic mass calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-
adic definite integral which is a crucial element of any variational principle based formulation
of the field equations. Here the frustration was not due to the lack of solution but due to
the too large number of solutions to the problem, a clear symptom for the sad fact that



1.1. Basic Ideas of Topological Geometrodynamics (TGD) 9

clever inventions rather than real discoveries might be in question. Quite recently I however
learned that the problem of making sense about p-adic integration has been for decades
central problem in the frontier of mathematics and a lot of profound work has been done
along same intuitive lines as I have proceeded in TGD framework. The basic idea is certainly
the notion of algebraic continuation from the world of rationals belonging to the intersection
of real world and various p-adic worlds.

The notion of p-adic manifold [K79] identified as p-adic space-time surface solving p-adic
analogs of field equations and having real space-time sheets as chart maps provides a possible
solution of the basic challenge. One can also speak of real space-time surfaces having p-
adic space-time surfaces as chart maps (cognitive maps, ”thought bubbles”). Discretization
required having interpretation in terms of finite measurement resolution is unavoidable in
this approach.

Despite various uncertainties, the number of the applications of the poorly defined p-adic physics
has grown steadily and the applications turned out to be relatively stable so that it was clear that
the solution to these problems must exist. It became only gradually clear that the solution of the
problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept
and one can speak about real and p-adic space-time sheets. The quantum dynamics should be such
that it allows quantum transitions transforming space-time sheets belonging to di↵erent number
fields to each other. The space-time sheets in the intersection of real and p-adic worlds are of
special interest and the hypothesis is that living matter resides in this intersection. This leads to
surprisingly detailed predictions and far reaching conjectures. For instance, the number theoretic
generalization of entropy concept allows negentropic entanglement central for the applications to
living matter (see fig. http://www.tgdtheory.fi/appfigures/cat.jpg or fig. 21 in the appendix
of this book).

The basic principle is number theoretic universality stating roughly that the physics in various
number fields can be obtained as completion of rational number based physics to various number
fields. Rational number based physics would in turn describe physics in finite measurement resolu-
tion and cognitive resolution. The notion of finite measurement resolution has become one of the
basic principles of quantum TGD and leads to the notions of braids as representatives of 3-surfaces
and inclusions of hyper-finite factors as a representation for finite measurement resolution. The
braids actually co-emerge with string world sheets implied by the condition that em charge is
well-defined for spinor modes.

2. The role of classical number fields

The vision about the physical role of the classical number fields relies on certain speculative
questions inspired by the idea that space-time dynamics could be reduced to associativity or co-
associativity condition. Associativity means here associativity of tangent spaces of space-time
region and co-associativity associativity of normal spaces of space-time region.

1. Could space-time surfaces X4 be regarded as associative or co-associative (”quaternionic”
is equivalent with ”associative”) surfaces of H endowed with octonionic structure in the
sense that tangent space of space-time surface would be associative (co-associative with
normal space associative) sub-space of octonions at each point of X4 [K52]. This is certainly
possible and an interesting conjecture is that the preferred extremals of Kähler action include
associative and co-associative space-time regions.

2. Could the notion of compactification generalize to that of number theoretic compactifica-
tion in the sense that one can map associative (co-associative) surfaces of M8 regarded as
octonionic linear space to surfaces in M4 ⇥ CP2 [K52]? This conjecture - M8 � H duality
- would give for M4 ⇥ CP2 deep number theoretic meaning. CP2 would parametrize asso-
ciative planes of octonion space containing fixed complex plane M2 ⇢ M8 and CP2 point
would thus characterize the tangent space of X4 ⇢ M8. The point of M4 would be obtained

http://www.tgdtheory.fi/appfigures/cat.jpg


10 Chapter 1. Introduction

by projecting the point of X4 ⇢ M8 to a point of M4 identified as tangent space of X4.
This would guarantee that the dimension of space-time surface in H would be four. The
conjecture is that the preferred extremals of Kähler action include these surfaces.

3. M8�H duality can be generalized to a duality H ! H if the images of the associative surface
in M8 is associative surface in H. One can start from associative surface of H and assume
that it contains the preferred M2 tangent plane in 8-D tangent space of H or integrable
distribution M2(x) of them, and its points to H by mapping M4 projection of H point to
itself and associative tangent space to CP2 point. This point need not be the original one! If
the resulting surface is also associative, one can iterate the process indefinitely. WCW would
be a category with one object.

4. G2 defines the automorphism group of octonions, and one might hope that the maps of
octonions to octonions such that the action of Jacobian in the tangent space of associative
or co-associative surface reduces to that of G2 could produce new associative/co-associative
surfaces. The action of G2 would be analogous to that of gauge group.

5. One can also ask whether the notions of commutativity and co-commutativity could have
physical meaning. The well-definedness of em charge as quantum number for the modes of
the induced spinor field requires their localization to 2-D surfaces (right-handed neutrino is
an exception) - string world sheets and partonic 2-surfaces. This can be possible only for
Kähler action and could have commutativity and co-commutativity as a number theoretic
counterpart. The basic vision would be that the dynamics of Kähler action realizes number
theoretical geometrical notions like associativity and commutativity and their co-notions.

The notion of number theoretic compactification stating that space-time surfaces can be re-
garded as surfaces of either M8 or M4 ⇥ CP2. As surfaces of M8 identifiable as space of hyper-
octonions they are hyper-quaternionic or co-hyper-quaternionic- and thus maximally associative
or co-associative. This means that their tangent space is either hyper-quaternionic plane of M8

or an orthogonal complement of such a plane. These surface can be mapped in natural manner to
surfaces in M4⇥CP2 [K52] provided one can assign to each point of tangent space a hyper-complex
plane M2(x) ⇢ M4 ⇢ M8. One can also speak about M8 �H duality.

This vision has very strong predictive power. It predicts that the preferred extremals of Kähler
action correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can
assign to tangent space at each point of space-time surface a hyper-complex plane M2(x) ⇢ M4.
As a consequence, the M4 projection of space-time surface at each point contains M2(x) and its
orthogonal complement. These distributions are integrable implying that space-time surface allows
dual slicings defined by string world sheets Y 2 and partonic 2-surfaces X2. The existence of this
kind of slicing was earlier deduced from the study of extremals of Kähler action and christened as
Hamilton-Jacobi structure. The physical interpretation of M2(x) is as the space of non-physical
polarizations and the plane of local 4-momentum.

Number theoretical compactification has inspired large number of conjectures. This includes
dual formulations of TGD as Minkowskian and Euclidian string model type theories, the precise
identification of preferred extremals of Kähler action as extremals for which second variation van-
ishes (at least for deformations representing dynamical symmetries) and thus providing space-time
correlate for quantum criticality, the notion of number theoretic braid implied by the basic dynam-
ics of Kähler action and crucial for precise construction of quantum TGD as almost-topological
QFT, the construction of WCW metric and spinor structure in terms of second quantized induced
spinor fields with modified Dirac action defined by Kähler action realizing the notion of finite
measurement resolution and a connection with inclusions of hyper-finite factors of type II1 about
which Cli↵ord algebra of WCW represents an example.

The two most important number theoretic conjectures relate to the preferred extremals of
Kähler action. The general idea is that classical dynamics for the preferred extremals of Kähler
action should reduce to number theory: space-time surfaces should be either associative or co-
associative in some sense.

Associativity (co-associativity) would be that tangent (normal) spaces of space-time surfaces
associative (co-associative) in some sense and thus quaternionic (co-quaternionic). This can be
formulated in two manners.
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1. One can introduce octonionic tangent space basis by assigning to the ”free” gamma matri-
ces octonion basis or in terms of octonionic representation of the imbedding space gamma
matrices possible in dimension D = 8.

2. Associativity (quaternionicity) would state that the projections of octonionic basic vectors or
induced gamma matrices basis to the space-time surface generates associative (quaternionic)
sub-algebra at each space-time point. Co-associativity is defined in analogous manner and
can be expressed in terms of the components of second fundamental form.

3. For gamma matrix option induced rather than modified gamma matrices must be in question
since modified gamma matrices can span lower than 4-dimensional space and are not parallel
to the space-time surfaces as imbedding space vectors.

3. Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy
defined by a repeatedly second quantized arithmetic quantum field theory gave a further boost for
the speculations about TGD as a generalized number theory.

After the realization that infinite primes can be mapped to polynomials possibly representable
as surfaces geometrically, it was clear how TGDmight be formulated as a generalized number theory
with infinite primes forming the bridge between classical and quantum such that real numbers,
p-adic numbers, and various generalizations of p-adics emerge dynamically from algebraic physics
as various completions of the algebraic extensions of rational (hyper-)quaternions and (hyper-
)octonions. Complete algebraic, topological and dimensional democracy would characterize the
theory.

What is especially interesting is that p-adic and real regions of the space-time surface might
aso emerge automatically as solutions of the field equations. In the space-time regions where
the solutions of field equations give rise to in-admissible complex values of the imbedding space
coordinates, p-adic solution can exist for some values of the p-adic prime. The characteristic non-
determinism of the p-adic di↵erential equations suggests strongly that p-adic regions correspond to
’mind stu↵’, the regions of space-time where cognitive representations reside. This interpretation
implies that p-adic physics is physics of cognition. Since Nature is probably a brilliant simulator
of Nature, the natural idea is to study the p-adic physics of the cognitive representations to derive
information about the real physics. This view encouraged by TGD inspired theory of consciousness
clarifies di�cult interpretational issues and provides a clear interpretation for the predictions of
p-adic physics.

1.1.6 Hierarchy of Planck constants and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence
regions. Hence the fact that they have all possible size scales more or less unavoidably implies that
Planck constant must be quantized and have arbitrarily large values. If one accepts this then also
the idea about dark matter as a macroscopic quantum phase characterized by an arbitrarily large
value of Planck constant emerges naturally as does also the interpretation for the long ranged
classical electro-weak and color fields predicted by TGD. Rather seldom the evolution of ideas
follows simple linear logic, and this was the case also now. In any case, this vision represents the
fifth, relatively new thread in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large ~ phases

D. Da Rocha and Laurent Nottale [E2] have proposed that Schrödinger equation with Planck
constant ~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c =

1). v0 is a velocity parameter having the value v0 = 144.7 ± .7 km/s giving v0/c = 4.6 ⇥ 10�4.
This is rather near to the peak orbital velocity of stars in galactic halos. Also subharmonics and
harmonics of v0 seem to appear. The support for the hypothesis coming from empirical data is
impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrody-
namics. Many-sheeted space-time however suggests that astrophysical systems are at some levels
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of the hierarchy of space-time sheets macroscopic quantum systems. The space-time sheets in
question would carry dark matter.

Nottale’s hypothesis would predict a gigantic value of hgr. Equivalence Principle and the
independence of gravitational Compton length on mass m implies however that one can restrict
the values of mass m to masses of microscopic objects so that hgr would be much smaller. Large
hgr could provide a solution of the black hole collapse (IR catastrophe) problem encountered at
the classical level. The resolution of the problem inspired by TGD inspired theory of living matter
is that it is the dark matter at larger space-time sheets which is quantum coherent in the required
time scale [K45] .

It is natural to assign the values of Planck constants postulated by Nottale to the space-time
sheets mediating gravitational interaction and identifiable as magnetic flux tubes (quanta) possibly
carrying monopole flux and identifiable as remnants of cosmic string phase of primordial cosmology.
The magnetic energy of these flux quanta would correspond to dark energy and magnetic tension
would give rise to negative ”pressure” forcing accelerate cosmological expansion. This leads to a
rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.

Hierarchy of Planck constants from the anomalies of neuroscience and biology

The quantal ELF e↵ects of ELF em fields on vertebrate brain have been known since seventies.
ELF em fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity
is about 2/5 times that of Earth for biologically important ions have physiological e↵ects and
a↵ect also behavior. What is intriguing that the e↵ects are found only in vertebrates (to my best
knowledge). The energies for the photons of ELF em fields are extremely low - about 10�10 times
lower than thermal energy at physiological temperatures- so that quantal e↵ects are impossible
in the framework of standard quantum theory. The values of Planck constant would be in these
situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large a value of Planck constant
that the energy of photons is above the thermal energy. The proposed interpretation was as dark
photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-
standard value of Planck constant. If only particles with the same value of Planck constant can
appear in the same vertex of Feynman diagram, the phases with di↵erent value of Planck constant
are dark relative to each other. The phase transitions changing Planck constant can however make
possible interactions between phases with di↵erent Planck constant but these interactions do not
manifest themselves in particle physics. Also the interactions mediated by classical fields should
be possible. Dark matter would not be so dark as we have used to believe.

The hypothesis heff = hgr - at least for microscopic particles - implies that cyclotron ener-
gies of charged particles do not depend on the mass of the particle and their spectrum is thus
universal although corresponding frequencies depend on mass. In bio-applications this spectrum
would correspond to the energy spectrum of bio-photons assumed to result from dark photons by
heff reducing phase transition and the energies of bio-photons would be in visible and UV range
associated with the excitations of bio-molecules.

Also the anomalies of biology (see for instance [K39, K40, K66]) support the view that dark
matter might be a key player in living matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kähler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple ~ = n~0 of the ordinary Planck constant ~0 is assigned with a multiple singular covering
of the imbedding space [K17]. One ends up to an identification of dark matter as phases with
non-standard value of Planck constant having geometric interpretation in terms of these coverings
providing generalized imbedding space with a book like structure with pages labelled by Planck
constants or integers characterizing Planck constant. The phase transitions changing the value of
Planck constant would correspond to leakage between di↵erent sectors of the extended imbedding
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space. The question is whether these coverings must be postulated separately or whether they are
only a convenient auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only e↵ective.
Many-sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The
huge vacuum degeneracy of Kähler action implies that the relationship between gradients of the
imbedding space coordinates and canonical momentum currents is many-to-one: this was the very
fact forcing to give up all the standard quantization recipes and leading to the idea about physics
as geometry of the ”world of classical worlds”. If one allows space-time surfaces for which all sheets
corresponding to the same values of the canonical momentum currents are present, one obtains
e↵ectively many-sheeted covering of the imbedding space and the contributions from sheets to the
Kähler action are identical. If all sheets are treated e↵ectively as one and the same sheet, the value
of Planck constant is an integer multiple of the ordinary one. A natural boundary condition would
be that at the ends of space-time at future and past boundaries of causal diamond containing the
space-time surface, various branches co-incide. This would raise the ends of space-time surface in
special physical role.

A more precise formulation is in terms of presence of large number of space-time sheets con-
necting given space-like 3-surfaces at the opposite boundaries of causal diamond. Quantum criti-
cality presence of vanishing second variations of Kähler action and identified in terms of conformal
invariance broken down to to sub-algebras of super-conformal algebras with conformal weights
divisible by integer n is highly suggestive notion and would imply that n sheets of the e↵ective
covering are actually conformal equivalence classes of space-time sheets with same Kähler action
and same values of conserved classical charges (see fig. http://www.tgdtheory.fi/appfigures/
planckhierarchy.jpg, which is also in the appendix of this book). n would naturally correspond
the value of heff and its factors negentropic entanglement with unit density matrix would be be-
tween the n sheets of two coverings of this kind. p-Adic prime would be largest prime power factor
of n.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking e↵ects in hadronic, nuclear, and atomic length scales does not
however seem to allow long ranged electro-weak gauge fields. The problem disappears if long
range classical electro-weak gauge fields are identified as space-time correlates for massless gauge
fields created by dark matter. Also scaled up variants of ordinary electro-weak particle spectra
are possible. The identification explains chiral selection in living matter and unbroken U(2)ew
invariance and free color in bio length scales become characteristics of living matter and of bio-
chemistry and bio-nuclear physics.

The recent view about the solutions of Kähler- Dirac action assumes that the modes have a
well-defined em charge and this implies that localization of the modes to 2-D surfaces (right-handed
neutrino is an exception). Classical W boson fields vanish at these surfaces and also classical Z0

field can vanish. The latter would guarantee the absence of large parity breaking e↵ects above
intermediate boson scale scaling like heff .

1.2 Bird’s eye of view about the topics of the book

The topics of this book are the purely geometric aspects of the vision about physics as an infinite-
dimensional Kähler geometry of the ”world of classical worlds”, with ” classical world” identified
either as light-like 3-D surface of the unique Bohr orbit like 4-surface traversing through it. The
non-determinism of Kähler action forces to generalize the notion of 3-surface so that unions of
space-like surfaces with time like separations must be allowed. Zero energy ontology allows to
formulate this picture elegantly in terms of causal diamonds defined as intersections of future and
past directed light-cones. Also a a geometric realization of coupling constant evolution and finite
measurement resolution emerges.

There are two separate tasks involved.

1. Provide configuration space of 3-surfaces with Kähler geometry which is consistent with 4-
dimensional general coordinate invariance so that the metric is Di↵4 degenerate. General

http://www.tgdtheory.fi/appfigures/planckhierarchy.jpg
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coordinate invariance implies that the definition of metric must assign to a given light-like
3-surface X3 a 4-surface as a kind of Bohr orbit X4(X3).

2. Provide the configuration space with a spinor structure. The great idea is to identify config-
uration space gamma matrices in terms of super algebra generators expressible using second
quantized fermionic oscillator operators for induced free spinor fields at the space-time sur-
face assignable to a given 3-surface. The isometry generators and contractions of Killing
vectors with gamma matrices would thus form a generalization of Super Kac-Moody algebra.

The condition of mathematical existence poses surprisingly strong conditions on configuration
space metric and spinor structure.

1. From the experience with loop spaces one can expect that there is no hope about existence of
well-defined Riemann connection unless this space is union of infinite-dimensional symmetric
spaces with constant curvature metric and simple considerations requires that vacuum Ein-
stein equations are satisfied by each component in the union. The coordinates labeling these
symmetric spaces are zero modes having interpretation as genuinely classical variables which
do not quantum fluctuate since they do not contribute to the line element of the configuration
space.

2. The construction of the Kähler structure involves also the identification of complex structure.
Direct construction of Kähler function as action associated with a preferred Bohr orbit like ex-
tremal for some physically motivated action action leads to a unique result. Second approach
is group theoretical and is based on a direct guess of isometries of the infinite-dimensional
symmetric space formed by 3-surfaces with fixed values of zero modes. The group of isome-
tries is generalization of Kac-Moody group obtained by replacing finite-dimensional Lie group
with the group of symplectic transformations of �M4

+ ⇥CP2, where �M4
+ is the boundary of

4-dimensional future light-cone. A crucial role is played by the generalized conformal invari-
ance assignable to light-like 3-surfaces and to the boundaries of causal diamond. Contrary
to the original belief, the coset construction does not provide a realization of Equivalence
Principle at quantum level. The proper realization of EP at quantum level seems to be based
on the identification of classical Noether charges in Cartan algebra with the eigenvalues of
their quantum counterparts assignable to Kähler-Dirac action. At classical level EP follows
at GRT limit obtained by lumping many-sheeted space-time to M4 with e↵ective metric
satisfying Einstein’s equations as a reflection of the underlying Poincare invariance.

3. Fermionic statistics and quantization of spinor fields can be realized in terms of configura-
tion space spinors structure. Quantum criticality and the idea about space-time surfaces as
analogs of Bohr orbits have served as basic guiding lines of Quantum TGD. These notions can
be formulated more precisely in terms of the modified Dirac equation for induced spinor fields
allowing also realization of super-conformal symmetries and quantum gravitational hologra-
phy. A rather detailed view about how configuration space Kähler function emerges as Dirac
determinant allowing a tentative identification of the preferred extremals of Kähler action
as surface for which second variation of Kähler action vanishes for some deformations of the
surface. The catastrophe theoretic analog for quantum critical space-time surfaces are the
points of space spanned by behavior and control variables at which the determinant defined
by the second derivatives of potential function with respect to behavior variables vanishes.
Number theoretic vision leads to rather detailed view about preferred extremals of Kähler ac-
tion. In particular, preferred extremals should be what I have dubbed as hyper-quaternionic
surfaces. It it still an open question whether this characterization is equivalent with quantum
criticality or not.

1.3 Sources

The eight online books about TGD [K58, K42, K75, K49, K34, K74, K73, K48] and nine online
books about TGD inspired theory of consciousness and quantum biology [K53, K7, K38, K6, K21,
K25, K27, K47, K68] are warmly recommended for the reader willing to get overall view about
what is involved.
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My homepage (http://www.tgdtheory.com/curri.html) contains a lot of material about
TGD. In particular, there is summary about TGD and its applications using CMAP represen-
tation serving also as a TGD glossary [L13, L14] (see http://www.tgdtheory.fi/cmaphtml.html
and http://www.tgdtheory.fi/tgdglossary.pdf).

I have published articles about TGD and its applications to consciousness and living matter
in Journal of Non-Locality (http://journals.sfu.ca/jnonlocality/index.php/jnonlocality
founded by Lian Sidorov and in Prespacetime Journal (http://prespacetime.com), Journal of
Consciousness Research and Exploration (https://www.createspace.com/4185546), and DNA
Decipher Journal (http://dnadecipher.com), all of them founded by Huping Hu. One can find
the list about the articles published at http://www.tgdtheory.com/curri.html. I am grateful
for these far-sighted people for providing a communication channel, whose importance one cannot
overestimate.

1.4 The contents of the book

In the following abstracts of various chapters of the book are given in order to provide overall view.

1.4.1 Identification of the Configuration Space Kähler Function

There are two basic approaches to quantum TGD. The first approach, which is discussed in
this chapter, is a generalization of Einstein’s geometrization program of physics to an infinite-
dimensional context. Second approach is based on the identification of physics as a generalized
number theory. The first approach relies on the vision of quantum physics as infinite-dimensional
Kähler geometry for the ”world of classical worlds” (WCW) identified as the space of 3-surfaces
in in certain 8-dimensional space. There are three separate approaches to the challenge of con-
structing WCW Kähler geometry and spinor structure. The first approach relies on direct guess
of Kähler function. Second approach relies on the construction of Kähler form and metric uti-
lizing the huge symmetries of the geometry needed to guarantee the mathematical existence of
Riemann connection. The third approach relies on the construction of spinor structure based on
the hypothesis that complexified WCW gamma matrices are representable as linear combinations
of fermionic oscillator operator for second quantized free spinor fields at space-time surface and on
the geometrization of super-conformal symmetries in terms of WCW spinor structure.

In this chapter the proposal for Kähler function based on the requirement of 4-dimensional
General Coordinate Invariance implying that its definition must assign to a given 3-surface a unique
space-time surface. Quantum classical correspondence requires that this surface is a preferred
extremal of some some general coordinate invariant action, and so called Kähler action is a unique
candidate in this respect. The preferred extremal has intepretation as an analog of Bohr orbit
so that classical physics becomes and exact part of WCW geometry and therefore also quantum
physics.

The basic challenge is the explicit identification of WCW Kähler function K. Two assumptions
lead to the identification of K as a sum of Chern-Simons type terms associated with the ends of
causal diamond and with the light-like wormhole throats at which the signature of the induced
metric changes. The first assumption is the weak form of electric magnetic duality. Second as-
sumption is that the Kähler current for preferred extremals satisfies the condition jK ^ djK = 0
implying that the flow parameter of the flow lines of jK defines a global space-time coordinate.
This would mean that the vision about reduction to almost topological QFT would be realized.

Second challenge is the understanding of the space-time correlates of quantum criticality.
Electric-magnetic duality helps considerably here. The realization that the hierarchy of Planck
constant realized in terms of coverings of the imbedding space follows from basic quantum TGD
leads to a further understanding. The extreme non-linearity of canonical momentum densities as
functions of time derivatives of the imbedding space coordinates implies that the correspondence
between these two variables is not 1-1 so that it is natural to introduce coverings of CD ⇥ CP2.
This leads also to a precise geometric characterization of the criticality of the preferred extremals.

http://www.tgdtheory.com/curri.html
http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
http://journals.sfu.ca/jnonlocality/index.php/jnonlocality
http://prespacetime.com
https://www.createspace.com/4185546
http://dnadecipher.com
http://www.tgdtheory.com/curri.html
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1.4.2 Construction of Configuration Space Kähler Geometry from Sym-
metry Principles

There are three separate approaches to the challenge of constructing WCW Kähler geometry and
spinor structure. The first one relies on a direct guess of Kähler function. Second approach relies
on the construction of Kähler form and metric utilizing the huge symmetries of the geometry
needed to guarantee the mathematical existence of Riemann connection. The third approach relies
on the construction of spinor structure assuming that complexified WCW gamma matrices are
representable as linear combinations of fermionic oscillator operator for the second quantized free
spinor fields at space-time surface and on the geometrization of super-conformal symmetries in
terms of spinor structure.

In this chapter the construction of Kähler form and metric based on symmetries is discussed.
The basic vision is that WCW can be regarded as the space of generalized Feynman diagrams with
lines thickned to light-like 3-surfaces and vertices identified as partonic 2-surfaces. In zero energy
ontology the strong form of General Coordinate Invariance (GCI) implies e↵ective 2-dimensionality
and the basic objects are taken to be pairs partonic 2-surfaces X2 at opposite light-like boundaries
of causal diamonds (CDs). This has turned out to be too strong formulation for e↵ective 2-
dimensionality.

The hypothesis is that WCW can be regarded as a union of infinite-dimensional symmetric
spaces G/H labeled by zero modes having an interpretation as classical, non-quantum fluctuating
variables. A crucial role is played by the metric 2-dimensionality of the light-cone boundary �M4

+

and of light-like 3-surfaces implying a generalization of conformal invariance. The groupG acting as
isometries of WCW is tentatively identified as the symplectic group of �M4

+⇥CP2. H corresponds
to sub-group acting as di↵eomorphisms at preferred 3-surface, which can be taken to correspond
to maximum of Kähler function.

An explicit construction for the Hamiltonians of WCW isometry algebra as so called flux
Hamiltonians using Haltonians of light-cone boundary is proposed and also the elements of Kähler
form can be constructed in terms of these. Explicit expressions for WCW flux Hamiltonians as
functionals of complex coordinates of the Cartesian product of the infinite-dimensional symmetric
spaces having as points the partonic 2-surfaces defining the ends of the the light 3-surface (line of
generalized Feynman diagram) are proposed.

This construction su↵ers from some rather obvious defects. E↵ective 2-dimensionality is real-
ized in too strong sense, only covariantly constant right-handed neutrino is involved, and WCW
Hamiltonians do not directly reflect the dynamics of Kähler action. The construction however
generalizes in very straightforward manner to a construction free of these problems. This however
requires understanding of the dynamics of preferred extremals and modified Dirac action.

1.4.3 Configuration space spinor structure

There are three separate approaches to the challenge of constructing WCW Kähler geometry
and spinor structure. The first approach relies on a direct guess of Kähler function. Second
approach relies on the construction of Kähler form and metric utilizing the huge symmetries of
the geometry needed to guarantee the mathematical existence of Riemann connection. The third
approach discussed in this chapter relies on the construction of spinor structure based on the
hypothesis that complexified WCW gamma matrices are representable as linear combinations of
fermionic oscillator operator for the second quantized free spinor fields at space-time surface and
on the geometrization of super-conformal symmetries in terms of spinor structure. This implies a
geometrization of fermionic statistics.

The basic philosophy is that at fundamental level the construction of WCW geometry reduces to
the second quantization of the induced spinor fields using Dirac action. This assumption is parallel
with the bosonic emergence stating that all gauge bosons are pairs of fermion and antifermion
at opposite throats of wormhole contact. An attractive conjecture is that vacuum functional
corresponds to Dirac determinant and that it reduces to the exponent of Kähler function. In order
to achieve internal consistency the induced gamma matrices appearing in Dirac operator must be
replaced by the modified gamma matrices defined uniquely by Kähler action and one must also
assume that extremals of Kähler action are in question so that the classical space-time dynamics
reduces to a consistency condition. This implies also super-symmetries and the fermionic oscillator



1.4. The contents of the book 17

algebra at partonic 2-surfaces has intepretation as N = 1 generalization of space-time super-
symmetry algebra di↵erent however from standard SUSY algebra in that Majorana spinors are not
needed. This algebra serves as a building brick of various super-conformal algebras involved.

The requirement that there exist deformations giving rise to conserved Noether charges requires
that the preferred extremals are critical in the sense that the second variation of the Kähler action
vanishes for these deformations. Thus Bohr orbit property could correspond to criticality or at
least involve it.

Quantum classical correspondence demands that quantum numbers are coded to the properties
of the preferred extremals given by the Dirac determinant and this requires a linear coupling to the
conserved quantum charges in Cartan algebra. E↵ective 2-dimensionality allows a measurement
interaction term only in 3-D Chern-Simons Dirac action assignable to the wormhole throats and
the ends of the space-time surfaces at the boundaries of CD. This allows also to have physical
propagators reducing to Dirac propagator not possible without the measurement interaction term.
An essential point is that the measurement interaction corresponds formally to a gauge transfor-
mation for the induced Kähler gauge potential. If one accepts the weak form of electric-magnetic
duality Kähler function reduces to a generalized Chern-Simons term and the e↵ect of measurement
interaction term to Kähler function reduces e↵ectively to the same gauge transformation.

The basic vision is that WCW gamma matrices are expressible as super-symplectic charges at
the boundaries of CD. The basic building brick of WCW is the product of infinite-D symmetric
spaces assignable to the ends of the propagator line of the generalized Feynman diagram. WCW
Kähler metric has in this case ”kinetic” parts associated with the ends and ”interaction” part
between the ends. General expressions for the super-counterparts of WCW flux Hamiltoniansand
for the matrix elements of WCW metric in terms of their anticommutators are proposed on basis
of this picture.

1.4.4 Does modified Dirac action define the fundamental action princi-
ple?

The construction of the spinor structure for the world of classical worlds (WCW) leads to the
vision that second quantized modified Dirac equation codes for the entire quantum TGD. Among
other things this would mean that Dirac determinant would define the vacuum functional of the
theory having interpretation as the exponent of Kähler function of WCW and Kähler function
would reduce to Kähler action for a preferred extremal of Kähler action. In this chapter the recent
view about the modified Dirac action are explained in more detail.

1. Identification of the modified Dirac action

The most general form of the modified Dirac action action involves several terms. The first
one is 4-dimensional assignable to Kähler action. Second term is instanton term reducible to an
expression restricted to wormhole throats or any light-like 3-surfaces parallel to them in the slicing
of space-time surface by light-like 3-surfaces. The third term is assignable to Chern-Simons term
and has interpretation as a measurement interaction term linear in Cartan algebra of the isometry
group of the imbedding space in order to obtain stringy propagators and also to realize coupling
between the quantum numbers associated with super-conformal representations and space-time
geometry required by quantum classical correspondence.

This means that 3-D light-like wormhole throats carry induced spinor field which can be re-
garded as independent degrees of freedom having the spinor fields at partonic 2-surfaces as sources
and acting as 3-D sources for the 4-D induced spinor field. The most general measurement in-
teraction would involve the corresponding coupling also for Kähler action but is not physically
motivated. There are good arguments in favor of Chern-Simons Dirac action and corresponding
measurement interaction.

1. A correlation between 4-D geometry of space-time sheet and quantum numbers is achieved
by the identification of exponent of Kähler function as Dirac determinant making possible the
entanglement of classical degrees of freedom in the interior of space-time sheet with quantum
numbers.

2. Cartan algebra plays a key role not only at quantum level but also at the level of space-time
geometry since quantum critical conserved currents vanish for Cartan algebra of isometries
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and the measurement interaction terms giving rise to conserved currents are possible only
for Cartan algebras. Furthermore, modified Dirac equation makes sense only for eigen states
of Cartan algebra generators. The hierarchy of Planck constants realized in terms of the
book like structure of the generalized imbedding space assigns to each CD (causal diamond)
preferred Cartan algebra: in case of Poincare algebra there are two of them corresponding
to linear and cylindrical M4 coordinates.

3. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface defined
fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn defining fermionic
sources for 4-D spinors find an elegant realization. E↵ective 2-dimensionality is achieved
if the replacement of light-like wormhole throat X3

l with light-like 3-surface Y 3
l ”parallel”

with it in the definition of Dirac determinant corresponds to the U(1) gauge transformation
K ! K + f + f for Kähler function of WCW so that WCW Kähler metric is not a↵ected.
Here f is holomorphic function of WCW (”world of classical worlds”) complex coordinates
and arbitrary function of zero mode coordinates.

4. An elegant description of the interaction between super-conformal representations realized at
partonic 2-surfaces and dynamics of space-time surfaces is achieved since the values of Cartan
charges are feeded to the 3-D Dirac equation which also receives mass term at the same time.
Almost topological QFT at wormhole throats results at the limit when four-momenta vanish:
this is in accordance with the original vision about TGD as almost topological QFT.

5. A detailed view about the physical role of quantum criticality results. Quantum criticality
fixes the values of Kähler coupling strength as the analog of critical temperature. Quantum
criticality implies that second variation of Kähler action vanishes for critical deformations
and the existence of conserved current except in the case of Cartan algebra of isometries.
Quantum criticality allows to fix the values of couplings appearing in the measurement in-
teraction by using the condition K ! K + f + f . p-Adic coupling constant evolution can be
understood also and corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

6. The inclusion of imaginary instanton term to the definition of the modified gamma matrices is
not consistent with the conjugation of the induced spinor fields. Measurement interaction can
be however assigned to both Kähler action and its instanton term. CP breaking, irreversibility
and the space-time description of dissipation are closely related and the CP and T oddness of
the instanton part of the measurement interaction term could provide first level description
for dissipative e↵ects. It must be however emphasized that the mere addition of instanton
term to Kähler function could be enough.

7. A radically new view about matter antimatter asymmetry based on zero energy ontology
emerges and one could understand the experimental absence of antimatter as being due to
the fact antimatter corresponds to negative energy states. The identification of bosons as
wormhole contacts is the only possible option in this framework.

8. Almost stringy propagators and a consistency with the identification of wormhole throats as
lines of generalized Feynman diagrams is achieved. The notion of bosonic emergence leads
to a long sought general master formula for the M -matrix elements. The counterpart for
fermionic loop defining bosonic inverse propagator at QFT limit is wormhole contact with
fermion and cuto↵s in mass squared and hyperbolic angle for loop momenta of fermion and
antifermion in the rest system of emitting boson have precise geometric counterpart.

2. The exponent of Kähler function as Dirac determinant for the modified Dirac action

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography.

1. The Dirac determinant defined by the product of Dirac determinants associated with the
light-like partonic 3-surfaces X3

l associated with a given space-time sheet X4 is the simplest
candidate for vacuum functional identifiable as the exponent of the Kähler function. Individ-
ual Dirac determinant is defined as the product of eigenvalues of the dimensionally reduced
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modified Dirac operator DK,3 and there are good arguments suggesting that the number of
eigenvalues is finite. p-Adicization requires that the eigenvalues belong to a given algebraic
extension of rationals. This restriction would imply a hierarchy of physics corresponding
to di↵erent extensions and could automatically imply the finiteness and algebraic number
property of the Dirac determinants if only finite number of eigenvalues would contribute.
The regularization would be performed by physics itself if this were the case.

2. It remains to be proven that the product of eigenvalues gives rise to the exponent of Kähler
action for the preferred extremal of Kähler action. At this moment the only justification for
the conjecture is that this the only thing that one can imagine.

3. A long-standing conjecture has been that the zeros of Riemann Zeta are somehow relevant for
quantum TGD. Rieman zeta is however naturally replaced Dirac zeta defined by the eigen-
values of DK,3 and closely related to Riemann Zeta since the spectrum consists essentially for
the cyclotron energy spectra for localized solutions region of non-vanishing induced Kähler
magnetic field and hence is in good approximation integer valued up to some cuto↵ integer.
In zero energy ontology the Dirac zeta function associated with these eigenvalues defines
”square root” of thermodynamics assuming that the energy levels of the system in question
are expressible as logarithms of the eigenvalues of the modified Dirac operator defining kind
of fundamental constants. Critical points correspond to approximate zeros of Dirac zeta and
if Kähler function vanishes at criticality as it indeed should, the thermal energies at critical
points are in first order approximation proportional to zeros themselves so that a connection
between quantum criticality and approximate zeros of Dirac zeta emerges.

4. The discretization induced by the number theoretic braids reduces the world of classical
worlds to e↵ectively finite-dimensional space and configuration space Cli↵ord algebra re-
duces to a finite-dimensional algebra. The interpretation is in terms of finite measurement
resolution represented in terms of Jones inclusion M ⇢ N of HFFs with M taking the role
of complex numbers. The finite-D quantum Cli↵ord algebra spanned by fermionic oscillator
operators is identified as a representation for the coset space N/M describing physical states
modulo measurement resolution. In the sectors of generalized imbedding space corresponding
to non-standard values of Planck constant quantum version of Cli↵ord algebra is in question.

1.4.5 The recent vision about preferred extremals and solutions of the
modified Dirac equation

During years several approaches to what preferred extremals of Kähler action and solutions of the
modified Dirac equation could be have been proposed and the challenge is to see whether at least
some of these approaches are consistent with each other. It is good to list various approaches first.

1. For preferred extremals generalization of conformal invariance to 4-D situation is very at-
tractive approach and leads to concrete conditions formally similar to those encountered in
string model. The approach based on basic heuristics for massless equations, on e↵ective 3-
dimensionality, and weak form of electric magnetic duality is also promising. An alternative
approach is inspired by number theoretical considerations and identifies space-time surfaces
as associative or co-associative sub-manifolds of octonionic imbedding space.

2. There are also several approaches for solving the modified Dirac equation. The most promis-
ing approach is assumes that other than right-handed neutrino modes are restricted on 2-D
stringy world sheets and/or partonic 2-surfaces. This strange looking view is a rather nat-
ural consequence of number theoretic vision. The conditions stating that electric charge is
conserved for preferred extremals is an alternative very promising approach.

In this chapter the question whether these various approaches are mutually consistent is dis-
cussed. It indeed turns out that the approach based on the conservation of electric charge leads
under rather general assumptions to the proposal that solutions of the modified Dirac equation are
localized on 2-dimensional string world sheets and/or partonic 2-surfaces. Einstein’s equations are
satisfied for the preferred extremals and this implies that the earlier proposal for the realization of
Equivalence Principle is not needed. This leads to a considerable progress in the understanding of
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super Virasoro representations for super-symplectic and super-Kac-Moody algebra. In particular,
the proposal is that super-Kac-Moody currents assignable to string world sheets define duals of
gauge potentials and their generalization for gravitons: in the approximation that gauge group is
Abelian - motivated by the notion of finite measurement resolution - the exponents for the sum
of KM charges would define non-integrable phase factors. One can also identify Yangian as the
algebra generated by these charges. The approach allows also to understand the special role of the
right handed neutrino in SUSY according to TGD.

1.4.6 Recent View about Kähler Geometry and Spin Structure of ”World
of Classical Worlds”

The construction of Kähler geometry of WCW (”world of classical worlds”) is fundamental to
TGD program. I ended up with the idea about physics as WCW geometry around 1985 and made
a breakthrough around 1990, when I realized that Kähler function for WCW could correspond
to Kähler action for its preferred extremals defining the analogs of Bohr orbits so that classical
theory with Bohr rules would become an exact part of quantum theory and path integral would be
replaced with genuine integral over WCW. The motivating construction was that for loop spaces
leading to a unique Kähler geometry. The geometry for the space of 3-D objects is even more
complex than that for loops and the vision still is that the geometry of WCW is unique from the
mere existence of Riemann connection.

This chapter represents the updated version of the construction providing a solution to the
problems of the previous construction. The basic formulas remain as such but the expressions for
WCW super-Hamiltonians defining WCW Hamiltonians (and matrix elements of WCW metric) as
their anticommutator are replaced with those following from the dynamics of the modified Dirac
action.

1.4.7 Unified Number Theoretical Vision

An updated view aboutM8�H duality is discussed. M8�H duality allows to deduceM4⇥CP2 via
number theoretical compactification. One important correction is that octonionic spinor structure
makes sense only for M8 whereas for M4 ⇥CP2 complefixied quaternions characterized the spinor
structure.

Octonions, quaternions, quaternionic space-time surfaces, octonionic spinors and twistors and
twistor spaces are highly relevant for quantum TGD. In the following some general observations
distilled during years are summarized.

There is a beautiful pattern present suggesting that H = M4 ⇥ CP2 is completely unique on
number theoretical grounds. Consider only the following facts. M4 and CP2 are the unique 4-D
spaces allowing twistor space with Kähler structure. Octonionic projective space OP2 appears
as octonionic twistor space (there are no higher-dimensional octonionic projective spaces). Oc-
totwistors generalise the twistorial construction from M4 to M8 and octonionic gamma matrices
make sense also for H with quaternionicity condition reducing OP2 to to 12-D G2/U(1) ⇥ U(1)
having same dimension as the the twistor space CP3 ⇥ SU(3)/U(1) ⇥ U(1) of H assignable to
complexified quaternionic representation of gamma matrices.

A further fascinating structure related to octo-twistors is the non-associated analog of Lie group
defined by automorphisms by octonionic imaginary units: this group is topologically six-sphere.
Also the analogy of quaternionicity of preferred extremals in TGD with the Majorana condition
central in super string models is very thought provoking. All this suggests that associativity indeed
could define basic dynamical principle of TGD.

Number theoretical vision about quantum TGD involves both p-adic number fields and clas-
sical number fields and the challenge is to unify these approaches. The challenge is non-trivial
since the p-adic variants of quaternions and octonions are not number fields without additional
conditions. The key idea is that TGD reduces to the representations of Galois group of algebraic
numbers realized in the spaces of octonionic and quaternionic adeles generalizing the ordinary ade-
les as Cartesian products of all number fields: this picture relates closely to Langlands program.
Associativity would force sub-algebras of the octonionic adeles defining 4-D surfaces in the space
of octonionic adeles so that 4-D space-time would emerge naturally. M8 � H correspondence in
turn would map the space-time surface in M8 to M4 ⇥ CP2.
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1.4.8 Knots and TGD

Khovanov homology generalizes the Jones polynomial as knot invariant. The challenge is to find
a quantum physical construction of Khovanov homology analous to the topological QFT defined
by Chern-Simons action allowing to interpret Jones polynomial as vacuum expectation value of
Wilson loop in non-Abelian gauge theory.

Witten’s approach to Khovanov homology relies on fivebranes as is natural if one tries to define
2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite the di↵erence
in approaches it is very useful to try to find the counterparts of this approach in quantum TGD
since this would allow to gain new insights to quantum TGD itself as almost topological QFT
identified as symplectic theory for 2-knots, braids and braid cobordisms. This comparison turns
out to be extremely useful from TGD point of view.

1. A highly unique identification of string world sheets and therefore also of the braids whose
ends carry quantum numbers of many particle states at partonic 2-surfaces emerges if one
identifies the string word sheets as singular surfaces in the same manner as is done in Witten’s
approach. This identification need of course not be correct and later in the article a less ad
hoc identification is proposed. Even more, the conjectured slicings of preferred extremals by
3-D surfaces and string world sheets central for quantum TGD can be identified uniquely if
the identification is accepted. The slicing by 3-surfaces would be interpreted in gauge theory
in terms of Higgs= constant surfaces with radial coordinate of CP2 playing the role of Higgs.
The slicing by string world sheets would be induced by di↵erent choices of U(2) subgroup of
SU(3) leaving Higgs=constant surfaces invariant.

2. Also a physical interpretation of the operators Q, F, and P of Khovanov homology emerges.
P would correspond to instanton number and F to the fermion number assignable to right
handed neutrinos. The breaking of M4 chiral invariance makes possible to realize Q physi-
cally. The finding that the generalizations of Wilson loops can be identified in terms of the
gerbe fluxes

R
HAJ supports the conjecture that TGD as almost topological QFT corresponds

essentially to a symplectic theory for braids and 2-knots.

The basic challenge of quantum TGD is to give a precise content to the notion of generalization
Feynman diagram and the reduction to braids of some kind is very attractive possibility inspired
by zero energy ontology. The point is that no n > 2-vertices at the level of braid strands are
needed if bosonic emergence holds true.

1. For this purpose the notion of algebraic knot is introduce and the possibility that it could
be applied to generalized Feynman diagrams is discussed. The algebraic structrures kei,
quandle, rack, and biquandle and their algebraic modifications as such are not enough. The
lines of Feynman graphs are replaced by braids and in vertices braid strands redistribute.
This poses several challenges: the crossing associated with braiding and crossing occurring
in non-planar Feynman diagrams should be integrated to a more general notion; braids are
replaced with sub-manifold braids; braids of braids ....of braids are possible; the redistribution
of braid strands in vertices should be algebraized. In the following I try to abstract the basic
operations which should be algebraized in the case of generalized Feynman diagrams.

2. One should be also able to concretely identify braids and 2-braids (string world sheets) as
well as partonic 2-surfaces and I have discussed several identifications during last years.
Legendrian braids turn out to be very natural candidates for braids and their duals for
the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of
Lagrangian sub-manifolds or two minimal surfaces of space-time surface satisfying the weak
form of electric-magnetic duality. The latter opion turns out to be more plausible. This
identification - if correct - would solve quantum TGD explicitly at string world sheet level
which corresponds to finite measurement resolution.

3. Also a brief summary of generalized Feynman rules in zero energy ontology is proposed. This
requires the identification of vertices, propagators, and prescription for integrating over al
3-surfaces. It turns out that the basic building blocks of generalized Feynman diagrams are
well-defined.
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4. The notion of generalized Feynman diagram leads to a beautiful duality between the descrip-
tions of hadronic reactions in terms of hadrons and partons analogous to gauge-gravity duality
and AdS/CFT duality but requiring no additional assumptions. The model of quark gluon
plasma as s strongly interacting phase is proposed. Color magnetic flux tubes are responsible
for the long range correlations making the plasma phase more like a very large hadron rather
than a gas of partons. One also ends up with a simple estimate for the viscosity/entropy
ratio using black-hole analogy.

1.4.9 Ideas emerging fromTGD

I have gathered to this chapter those ideas related to quantum TGD which are not absolutely
central and whose status is not clear in the long run. I have represented earlier these ideas in
chapters and the outcome was a total chaos and reader did not have a slightest idea what is they
real message. I hope that this organization of material makes it easier for the reader to grasp the
topology of TGD correctly.



Chapter 2

Identification of the Configuration
Space Kähler Function

2.1 Introduction

The motivation or the construction of configuration space (”world of classical worlds” (WCW))geometry
is the postulate that physics reduces to the geometry of classical spinor fields in the the ”world
of the classical worlds” (WCW) identified as the infinite-dimensional WCW of 3-surfaces of some
subspace of M4 ⇥ CP2. The first candidates were M4

+ ⇥ CP2 and M4 ⇥ CP2, where M4 and M4
+

denote Minkowski space and its light cone respectively. The recent identification of WCW is as
the the union of sub-WCWs consisting of light-like 3-surface representing generalized Feynman
diagrams in CD ⇥ CP2, where CD is intersection of future and past directed light-cones of M4.
The details of this identification will be discussed later.

Hermitian conjugation is the basic operation in quantum theory and its geometrization requires
that WCW possesses Kähler geometry. One of the basic features of the Kähler geometry is that it
is solely determined by the so called

Kähler function, which defines both the Kähler form J and the components of the Kähler metric
g in complex coordinates via the formulas [A59]

J = i@k@l̄Kdzk ^ dz̄l ,

ds2 = 2@k@l̄Kdzkdz̄l . (2.1.1)

Kähler form is covariantly constant two-form and can be regarded as a representation of imaginary
unit in the tangent space of the WCW

JmrJ
rn = �g n

m . (2.1.2)

As a consequence Kähler form defines also symplectic structure in WCW.

2.1.1 WCW Kähler metric from Kähler function

The task of finding Kähler geometry for the WCW reduces to that of finding the Kähler function.
The main constraints on the Kähler function result from the requirement of General Coordinate
Invariance (GCI) -or more technically Di↵4 symmetry and Di↵ degeneracy. GCI requires that
the definition of the Kähler function assigns to a given 3-surface X3 a unique space-time surface
X4(X3), the generalized Bohr orbit defining the classical physics associated with X3. The natural
guess inspired by quantum classical correspondence is that Kähler function is defined by what
might be called Kähler action, which is essentially Maxwell action with Maxwell field expressible
in terms of CP2 coordinates and that the space-time surface corresponds to a preferred extremal
of Kähler action.
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One can end up with the identification of the preferred extremal via several routes. Kähler
action contains Kähler coupling strength as a temperature like parameter and this leads to the
idea of quantum criticality fixing this parameter. One could go even even further, and require
that space-time surfaces are critical in the sense that there exist an infinite number of vanishing
second variations of Kähler action defining conserved Noether charges. The approach based on
the modified Dirac action (or Kähler-Dirac action) indeed leads naturally to this picture [K18] .
Kähler coupling strength should be however visible in the solutions of field equations somehow
before one can say that these two criticalities have something to do with each other. Since Kähler
coupling strength does not appear in field equations it can make its way to field equations only
via boundary conditions. This is achieved if one accepts the weak form of self-duality discussed
in [K10] which roughly states that for the partonic 2-surfaces the induced Kähler electric field is
proportional to the Kähler magnetic field strength. The proportionality constant turns out to be
essentially the Kähler coupling strength. The simplest hypothesis is that Kähler coupling strength
has single universal value for given value of Planck constant and the weak form of self-duality fixes
it.

If Kähler action would define a strictly deterministic variational principle, Di↵4 degeneracy and
invariance would be achieved by restricting the consideration to 3-surfaces Y 3 at the boundary of
M4

+ and by defining Kähler function for 3-surfaces X3 at X4(Y 3) and di↵eo-related to Y 3 as
K(X3) = K(Y 3). This reduction might be called quantum gravitational holography. The classical
non-determinism of the Kähler action introduces complications which might be overcome in zero
energy ontology (ZEO). ZEO and strong from of GCI lead to the e↵ective replacement of X3 with
partonic 2-surfaces at the ends of CD plus the 4-D tangent space distribution associated with them
as basic geometric objects so that one can speak about e↵ective 2-dimensionality and strong form
of gravitational holography. In given resolution the e↵ects of non-determinism might be expressible
in terms dark matter hierarchy with levels characterized by heff = n ⇥ h. The hierarchy would
correspond to a hierarchy of sub-algebras of conformal algebra with conformal weights coming as
multiples of n serving acting as gauge symmetries and defining what deformations at quantum
critacility are.

2.1.2 WCW metric from symmetries

A complementary approach to the problem of constructing configuration space geometry is based
on symmetries. The work of Dan [A37] [A37] has demonstrated that the Kähler geometry of
loop spaces is unique from the existence of Riemann connection and fixed completely by the
Kac Moody symmetries of the space. In 3-dimensional context one has even better reasons to
expect uniqueness. The guess is that WCW is a union symmetric spaces labeled by zero modes
not appearing in the line element as di↵erentials and having interpretations as classical degrees
providing a rigorous formulation of quantum measurement theory. The generalized conformal
invariance of metrically 2-dimensional light like 3-surfaces acting as causal determinants is the
corner stone of the construction. The construction works only for 4-dimensional space-time and
imbedding space which is a product of four-dimensional Minkowski space or its future light cone
with CP2.

In the sequel I will first consider the basic properties of the WCW, propose an identification
of the Kähler function and discuss various physical and mathematical motivations behind the
proposed definition. The key feature of the Kähler action is the failure of classical determinism in
its standard form, and various implications of the failure are discussed.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://www.tgdtheory.fi/
cmaphtml.html [L13]. Pdf representation of same files serving as a kind of glossary can be found
at http://www.tgdtheory.fi/tgdglossary.pdf [L14]. The topics relevant to this chapter are
given by the following list.

• General Coordinate Invariance [L19]

• Weak form of electric-magnetic duality [L43]

• Geometry of WCW [L20]

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf


2.2. WCW 25

• Structure of WCW [L33]

• Symmetries of WCW [L34]

• Vacuum functional in TGD [L40]

2.2 WCW

The view about configuration space (”world of classical worlds”, WCW) has developed considerably
during the last two decades. Here only the recent view is summarized in order to not load reader
with unessential details.

2.2.1 Basic notions

The notions of imbedding space, 3-surface (and 4-surface), and WCW or ”world of classical worlds”
(WCW), are central to quantum TGD. The original idea was that 3-surfaces are space-like 3-
surfaces of H = M4⇥CP2 or H = M4

+⇥CP2 (see figs. http://www.tgdtheory.fi/appfigures/
Hoo.jpg, http://www.tgdtheory.fi/appfigures/cp2.jpg, http://www.tgdtheory.fi/appfigures/
Hoo.futurepast,http://www.tgdtheory.fi/appfigures/penrose.jpg, which are also in the ap-
pendix of this book), and WCW consists of all possible 3-surfaces in H. The basic idea was that
the definition of Kähler metric of WCW assigns to each X3 a unique space-time surface X4(X3)
allowing in this manner to realize GCI. During years these notions have however evolved consider-
ably.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision
[K51, K52, K50] .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book. As matter
fact, this gluing idea generalizes to the level of WCW.

2. With the discovery of zero energy ontology [K9, K13] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+\M4
� of future and past directed light-cones

of M4⇥CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip
of CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [K3]
follows as a consequence. The upper resp. lower light-like boundary �M4

+ ⇥ CP2 resp.
�M4

�⇥CP2 of CD can be regarded as the carrier of positive resp. negative energy part of the
state. All net quantum numbers of states vanish so that everything is creatable from vacuum.
Space-time surfaces assignable to zero energy states would would reside inside CD ⇥ CP2s
and have their 3-D ends at the light-like boundaries of CD⇥CP2. Fractal structure is present
in the sense that CDs can contains CDs within CDs, and measurement resolution dictates
the length scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K17] led to a further generalization of
the notion of imbedding space. Generalized imbedding space is obtained by gluing together
Cartesian products of singular coverings and possibly also factor spaces of CD and CP2 to
form a book like structure. There are good physical and mathematical arguments suggesting
that only the singular coverings should be allowed [K50] . The particles at di↵erent pages of
this book behave like dark matter relative to each other. This generalization also brings in
the geometric correlate for the selection of quantization axes in the sense that the geometry
of the sectors of the generalized imbedding space with non-standard value of Planck constant
involves symmetry breaking reducing the isometries to Cartan subalgebra. Roughly speaking,
each CD and CP2 is replaced with a union of CDs and CP2s corresponding to di↵erent choices

http://www.tgdtheory.fi/appfigures/Hoo.jpg
http://www.tgdtheory.fi/appfigures/Hoo.jpg
http://www.tgdtheory.fi/appfigures/cp2.jpg
http://www.tgdtheory.fi/appfigures/Hoo.futurepast
http://www.tgdtheory.fi/appfigures/Hoo.futurepast
http://www.tgdtheory.fi/appfigures/penrose.jpg
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of quantization axes so that no breaking of Poincare and color symmetries occurs at the level
of entire WCW.

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial and the receont
view is an outcome of a long and tedious process involving many hastily done mis-interpretations.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to equiv-
alence implied by GCI. There was a problem related to the realization of GCI since it was
not at all obvious why the preferred extremal X4(Y 3) for Y 3 at X4(X3) and Di↵4 related
X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as
basic dynamical objects, in particular for realizing the GCI in 4-D sense (obviously the identi-
fication resolves the above mentioned problem) and understanding the conformal symmetries
of the theory. Light-like 3-surfaces can be regarded as orbits of partonic 2-surfaces. Therefore
it seems that one must choose between light-like and space-like 3-surfaces or assume general-
ized GCI requiring that equivalently either space-like 3-surfaces or light-like 3-surfaces at the
ends of CDs can be identified as the fundamental geometric objects. General GCI requires
that the basic objects correspond to the partonic 2-surfaces identified as intersections of these
3-surfaces plus common 4-D tangent space distribution.

At the level of WCW metric this suggests that the components of the Kähler form and metric
can be expressed in terms of data assignable to 2-D partonic surfaces. Since the information
about normal space of the 2-surface is needed one has only e↵ective 2-dimensionality. Weak
form of self-duality [K10] however implies that the normal data (flux Hamiltonians associ-
ated with Kähler electric field) reduces to magnetic flux Hamiltonians. This is essential for
conformal symmetries and also simplifies the construction enormously.

It however turned out that this picture is too simplistic. It turned out that the solutions
of the modified Dirac equation are localized at 2-D string world sheets, and this led to a
generalization of the formulation of WCW geometry: given point of partonic 2-surface is
e↵ectively replaced with a string emanating from it and connecting it to another partonic
2-surface. Hence the formulation becomes 3-dimensional but thanks to super-conformal sym-
metries acting like gauge symmetries one obtains e↵ective 2-dimensionality albeit in weaker
sense [K80].

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role
of vertices to form what I call generalized Feynman diagrams. The ends of lines are located
at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams.
As the resolution is improved, new sub-Feynman diagrams emerge so that e↵ective 2-D
character holds true in discretized sense and in given resolution scale only.

4. A further but inessential complication relates to the hierarchy of Planck constants forcing to
generalize the notion of imbedding space and also to the fact that for non-standard values
of Planck constant there is symmetry breaking due to preferred plane M2 preferred homo-
logically trivial geodesic sphere of CP2 having interpretation as geometric correlate for the
selection of quantization axis. For given sector of CH this means union over choices of this
kind.

The basic vision forced by the generalization of GCI has been that space-time surfaces cor-
respond to preferred extremals X4(X3) of Kähler action and are thus analogous to Bohr orbits.
Kähler function K(X3) defining the Kähler geometry of the world of classical worlds would corre-
spond to the Kähler action for the preferred extremal. The precise identification of the preferred
extremals actually has however remained open.
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The study of the modified Dirac equation led to the realization that classical field equations
for Kähler action can be seen as consistency conditions for the modified Dirac action and led to
the identification of preferred extremals in terms of criticality. This identification which follows
naturally also from quantum criticality.

1. The condition that electromagnetic charge is well-defined for the modes of Kähler-Dirac
operator implies that in the generic case the modes are restricted to 2-D surfaces (string
world sheets or possibly also partonic 2-surfaces) with vanishing W fields [K69]. Above weak
scale at least one can also assume that Z0 field vanishes. Also for space-time surfaces with
2-D CP2 projection (cosmic strongs would be examples) the localization is expected to be
possible. This localization is possible only for Kähler action and the set of these 2-surfaces is
discrete except for the latter case. The stringy form of conformal invariance allows to solve
Kähler-Dirac equation just like in string models and the solutions are labelled by integer
valued conformal weights.

2. The next step of progress was the realization that the requirement that the conservation of
the Noether currents associated with the modified Dirac equation requires that the second
variation of the Kähler action vanishes. In strongest form this condition would be satisfied
for all variations and in weak sense only for those defining dynamical symmetries. The
interpretation is as a space-time correlate for quantum criticality and the vacuum degeneracy
of Kähler action makes the criticality plausible.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal
equivalence classes of the deformations can be finite and n would naturally relate to the
hierarchy of Planck constants heff = n⇥ h (see fig. ?? in the appendix of this book).

Weak form of electric-magnetic duality gives a precise formulation for how Kähler coupling
strength is visible in the properties of preferred extremals. A generalization of the ideas of
the catastrophe theory to infinite-dimensional context results. These conditions make sense
also in p-adic context and have a number theoretical universal form.

The notion of number theoretical compactication led to important progress in the understanding
of the preferred extremals and the conjectures were consistent with what is known about the known
extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⇢ M8 a subspace

M2(x) ⇢ M4 having interpretation as the plane of non-physical polarizations. This in the
case that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic
surface is in question, similar assigned should be possible in normal space. This means a close
connection with super string models. Geometrically this would mean that the deformations
of 3-surface in the plane of non-physical polarizations would not contribute to the line element
of WCW. This is as it must be since complexification does not make sense in M2 degrees of
freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M8. The condition
M2(x) ⇢ T (X4(X3

l ))) in principle fixes the tangent space at X3
l , and one has good hopes

that the boundary value problem is well-defined and could fix X4(X3) at least partially as
a preferred extremal of Kähler action. This picture is rather convincing since the choice
M2(x) ⇢ M4 plays also other important roles.

3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose
that X4(X3

l ) has Minkowskian signature. One can assign to each point of the M4 projection
PM4(X4(X3

l )) a sub-space M2(x) ⇢ M4 and its complement E2(x), and the distributions
of these planes are integrable and define what I have called Hamilton-Jacobi coordinates
which can be assigned to the known extremals of Kähler with Minkowskian signature. This
decomposition allows to slice space-time surfaces by string world sheets and their 2-D partonic
duals. Also a slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to
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X3
l follows under certain conditions on the induced metric of X4(X3

l ). This decomposition
exists for known extremals and has played key role in the recent developments. Physically it
means that 4-surface (3-surface) reduces e↵ectively to 3-D (2-D) surface and thus holography
at space-time level. A physically attractive realization of the slicings of space-time surface
by 3-surfaces and string world sheets is discussed in [K23] by starting from the observation
that TGD could define a natural realization of braids, braid cobordisms, and 2-knots.

4. The weakest form of number theoretic compactification [K52] states that light-like 3-surfaces
X3 ⇢ X4(X3) ⇢ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfacesX3 ⇢ X4(X3) ⇢ M4⇥CP2, whereX4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⇢ M8 is a preferred extremal
of Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 ⇥ E4,
where M4 corresponds to hyper-quaternions. The conjecture would be that the value of the
Kähler action in M8 is same as in M4 ⇥ CP2: in fact that 2-surface would have identical
induced metric and Kähler form so that this conjecture would follow trivial. M8�H duality
would in this sense be Kähler isometry.

If one takes M�H duality seriously, one must conclude that one can choose any partonic 2-
surface in the slicing of X4 as a representative. This means gauge invariance reflect in the definition
of Kähler function as U(1) gauge transformation K ! K+f +f having no e↵ect on Kähler metric
and Kähler form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces
in M4

± ⇥ CP2. The basic outcome is that Kähler metric is expressible using the data at partonic
2-surfaces X2 ⇢ �M4

+ ⇥ CP2. The generalization to the actual physical situation requires the
replacement of X2 ⇢ �M4

+⇥CP2 with unions of partonic 2-surfaces located at light-like boundaries
of CDs and sub-CDs.

The notions of space-time sheet and many-sheeted space-time are basic pieces of TGD inspired
phenomenology (see fig. ?? in the appendix of this book). Originally the space-time sheet was
understood to have a boundary as ”sheet” strongly suggests. It has however become clear that
genuine boundaries are not allowed. Rather, space-time sheet is typically double (at least) covering
of M4. The light-like 3-surfaces separating space-time regions with Euclidian and Minkowskian
signature are however very much like boundaries and define what I call generalized Feynman
diagrams. A fascinating possibility is that every material object is accompanied by an Euclidian
region representing the interior of the object and serving as TGD analog for blackhole like object.
Space-time sheets su↵er topological condensation (gluing by wormhole contacts or topological sum
in more mathematical jargon) at larger space-time sheets. Space-time sheets form a length scale
hierarchy. Quantitative formulation is in terms of p-adic length scale hypothesis and hierarchy of
Planck constants proposed to explain dark matter as phases of ordinary matter.

The notion of WCW

From the beginning there was a problem related to the precise definition of WCW (”world of
classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ⇥ CP2 or
M4

+ ⇥ CP2 or perhaps something more delicate.

1. For a long time I believed that the basis question is ”M4
+ or M4?” and that this question

had been settled in favor of M4
+ by the fact that M4

+ has interpretation as empty Roberson-
Walker cosmology. The huge conformal symmetries assignable to �M4

+⇥CP2 were interpreted
as cosmological rather than laboratory symmetries. The work with the conceptual problems
related to the notions of energy and time, and with the symmetries of quantum TGD, however
led gradually to the realization that there are strong reasons for considering M4 instead of
M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of WCW or ”world of
classical worlds” (WCW). The spaces CD⇥CP2 regarded as subsets of H defined the sectors
of WCW.
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3. This framework allows to realize the huge symmetries of �M4
± ⇥CP2 as isometries of WCW.

The gigantic symmetries associated with the �M4
± ⇥ CP2 are also laboratory symmetries.

Poincare invariance fits very elegantly with the two types of super-conformal symmetries of
TGD. The first conformal symmetry corresponds to the light-like surfaces �M4

± ⇥ CP2 of
the imbedding space representing the upper and lower boundaries of CD. Second conformal
symmetry corresponds to light-like 3-surfaceX3

l , which can be boundaries ofX4 and light-like
surfaces separating space-time regions with di↵erent signatures of the induced metric. This
symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW (WCW) is a union of WCWs associated with the
spaces CD ⇥CP2. CDs can contain CDs within CDs so that a fractal like hierarchy having inter-
pretation in terms of measurement resolution results. It must be however emphasized that Kähler
function depends on partonic 2-surfaces at both ends of space-time surface so that WCW is topo-
logically Cartesian product of corresponding symmetric spaces. WCW metric must therefore have
parts corresponding to the partonic 2-surfaces (free part) and also an interaction term depending
on the partonic 2-surface at the opposite ends of the light-like 3-surface. The conclusion is that
geometrization reduces to that for single like of generalized Feynman diagram containing partonic
2-surfaces at its ends. Since the complications due to p-adic sectors and hierarchy of Planck con-
stants are not relevant for the basic construction, it reduces to a high degree to a study of a simple
special case corresponding to a line of generalized Feynman diagram. One can also deduce the free
part of the metric by restricting the consideration to partonic 2-surfaces at single end of generalized
Feynman diagram.

A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holog-
raphy is accepted- can be seen as a fundamental symplectic invariant so that the values of
✏↵�J↵� at X2 define local symplectic invariants not subject to quantum fluctuations in the
sense that they would contribute to the WCW metric. Hence only induced metric corre-
sponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine
theory of gravitation at this level.

2. WCW can be divided into slices for which the induced Kähler forms of CP2 and �M4
± at the

partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic group
of �M4

± ⇥ CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-WCW associated with
given CD in terms of the generalized coset construction for super-symplectic and super Kac-
Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in
quantum fluctuating degrees of freedom for given values of zero modes can be regarded as
being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local
coset space S2⇥CP2 is in question: this was one of the first ideas about WCW which I gave
up as too naive!

2.2.2 Constraints on WCW geometry

The constraints on the WCW result both from the infinite dimension of WCW and from physically
motivated symmetry requirements. There are three basic physical requirements on the WCW
geometry: namely four-dimensional GCI in strong form, Kähler property and the decomposition of
WCW into a union [iG/Hi of symmetric spacesG/Hi, each coset space allowingG-invariant metric
such that G is subgroup of some ’universal group’ having natural action on 3-surfaces. Together
with the infinite dimensionality of WCW these requirements pose extremely strong constraints on
WCW geometry. In the following we shall consider these requirements in more detail.

Di↵4 invariance and Di↵4 degeneracy

Di↵4 plays fundamental role as the gauge group of General Relativity. In string models Diff2

invariance (Diff2 acts on the orbit of the string) plays central role in making possible the elimina-
tion of the time like and longitudinal vibrational degrees of freedom of string. Also in the present
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case the elimination of the tachyons (time like oscillatory modes of 3-surface) is a physical necessity
and Di↵4 invariance provides an obvious manner to do the job.

In the standard path l integral formulation the realization of Di↵4 invariance is an easy task
at the formal level. The problem is however that path integral over four-surfaces is plagued by
divergences and doesn’t make sense. In the present case WCW consists of 3-surfaces and only
Diff3 emerges automatically as the group of re-parameterizations of 3-surface. Obviously one
should somehow define the action of Di↵4 in the space of 3-surfaces. Whatever the action of Di↵4

is it must leave the WCW metric invariant. Furthermore, the elimination of tachyons is expected
to be possible only provided the time like deformations of the 3-surface correspond to zero norm
vector fields of WCW so that 3-surface and its Di↵4 image have zero distance. The conclusion is
that WCW metric should be both Di↵4 invariant and Di↵4 degenerate.

The problem is how to define the action of Di↵4 in C(H). Obviously the only manner to achieve
Di↵4 invariance is to require that the very definition of the WCW metric somehow associates a
unique space time surface to a given 3-surface for Di↵4 to act on. The obvious physical interpre-
tation of this space time surface is as ”classical space time” so that ”Classical Physics” would be
contained in WCW geometry. In fact, this space-time surface is analogous to Bohr orbit so that
semiclassical quantization rules become an exact part of the quantum theory. It is this requirement,
which has turned out to be decisive concerning the understanding of the WCW geometry.

Decomposition of WCW into a union of symmetric spaces G/H

The extremely beautiful theory of finite-dimensional symmetric spaces constructed by Elie Cartan
suggests that WCW should possess decomposition into a union of coset spaces CH = [iG/Hi

such that the metric inside each coset space G/Hi is left invariant under the infinite dimensional
isometry group G. The metric equivalence of surfaces inside each coset space G/Hi does not mean
that 3-surfaces inside G/Hi are physically equivalent. The reason is that the vacuum functional is
exponent of Kähler action which is not isometry invariant so that the 3-surfaces, which correspond
to maxima of Kähler function for a given orbit, are in a preferred position physically. For instance,
one can imagine of calculating functional integral around this maximum perturbatively. Symmet-
ric space property actually allows also much more powerful non-perturbative approach based on
harmonic analysis [K18] . The sum of over i means actually integration over the zero modes of
the metric (zero modes correspond to coordinates not appearing as coordinate di↵erentials in the
metric tensor).

The coset space G/H is a symmetric space only under very special Lie-algebraic conditions.
Denoting the decomposition of the Lie-algebra g of G to the direct sum of H Lie-algebra h and its
complement t by g = h� t, one has

[h, h] ⇢ h , [h, t] ⇢ t , [t, t] ⇢ h .

This decomposition turn out to play crucial role in guaranteeing that G indeed acts as isometries
and that the metric is Ricci flat.

The four-dimensional Diff invariance indeed suggests to a beautiful solution of the problem of
identifying G. The point is that any 3-surface X3 is Diff4 equivalent to the intersection of X4(X3)
with the light cone boundary. This in turn implies that 3-surfaces in the space �H = �M4

+ ⇥ CP2

should be all what is needed to construct WCW geometry. The group G can be identified as
some subgroup of di↵eomorphisms of �H and Hi contains that subgroup of G, which acts as
di↵eomorphisms of the 3-surface X3. Since G preserves topology, WCW must decompose into
union [iG/Hi, where i labels 3-topologies and various zero modes of the metric. For instance, the
elements of the Lie-algebra of G invariant under WCW complexification correspond to zero modes.

The reduction to the light cone boundary, identifiable as the moment of big bang, looks perhaps
odd at first. In fact, it turns out that the classical non-determinism of Kähler action does not allow
the complete reduction to the light cone boundary: physically this is a highly desirable implication
but means a considerable mathematical challenge.

Kähler property

Kähler property implies that the tangent space of the configuration space allows complexification
and that thereexists a covariantly constant two-form Jkl, which can be regarded as a representation
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of the imaginary unit in the tangent space of the WCW:

J r
k Jrl = �Gkl . (2.2.1)

There are several physical and mathematical reasons suggesting that WCW metric should possess
Kähler property in some generalized sense.

1. The deepest motivation comes from the need to geometrize hermitian conjugation which is
basic mathematical operation of quantum theory.

2. Kähler property turns out to be a necessary prerequisite for defining divergence free WCW
integration. We will leave the demonstration of this fact later although the argument as such
is completely general.

3. Kähler property very probably implies an infinite-dimensional isometry loop groupsMap(S1, G)
[A37] shows that loop group allows only

Riemann connection and this metric allows local G as its isometries!

To see this consider the construction of Riemannian connection for Map(X3, H). The defin-
ing formula for the connection is given by the expression

2(rXY, Z) = X(Y, Z) + Y (Z,X)� Z(X,Y )

+ ([X,Y ], Z) + ([Z,X], Y )� ([Y, Z], X) (2.2.2)

X,Y, Z are smooth vector fields in Map(X3, G). This formula defines rXY uniquely pro-
vided the tangent space of Map is complete with respect to Riemann metric. In the finite-
dimensional case completeness means that the inverse of the covariant metric tensor exists
so that one can solve the components of connection from the conditions stating the covariant
constancy of the metric. In the case of the loop spaces with Kähler metric this is however
not the case.

Now the symmetry comes into the game: if X,Y, Z are left (local gauge) invariant vector
fields defined by the Lie-algebra of local G then the first three terms drop away since the
scalar products of left invariant vector fields are constants. The expression for the covariant
derivative is given by

rXY = (AdXY �Ad⇤XY �Ad⇤Y X)/2 (2.2.3)

where Ad⇤X is the adjoint of AdX with respect to the metric of the loop space.

At this point it is important to realize that Freed’s argument does not force the isometry
group of WCW to be Map(X3,M4 ⇥ SU(3))! Any symmetry group, whose Lie algebra is
complete with respect to the WCW metric ( in the sense that any tangent space vector is
expressible as superposition of isometry generators modulo a zero norm tangent vector) is an
acceptable alternative.

The Kähler property of the metric is quite essential in one-dimensional case in that it leads to
the requirement of left invariance as a mathematical consistency condition and we expect that
dimension three makes no exception in this respect. In 3-dimensional case the degeneracy of
the metric turns out to be even larger than in 1-dimensional case due to the four-dimensional
Di↵ degeneracy. So we expect that the metric ought to possess some infinite-dimensional
isometry group and that the above formula generalizes also to the 3-dimensional case and to
the case of local coset space. Note that in M4 degrees of freedom Map(X3,M4) invariance
would imply the flatness of the metric in M4 degrees of freedom.

The physical implications of the above purely mathematical conjecture should not be under-
estimated. For example, one natural looking manner to construct physical theory would be
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based on the idea that configuration space geometry is dynamical and this approach is fol-
lowed in the attempts to construct string theories [B9] . Various physical considerations (in
particular the need to obtain oscillator operator algebra) seem to imply that WCW geometry
is necessarily Kähler. The above result however states that WCW Kähler geometry cannot
be dynamical quantity and is dictated solely by the requirement of internal consistency. This
result is extremely nice since it has been already found that the definition of the WCW met-
ric must somehow associate a unique classical space time and ”classical physics” to a given
3-surface: uniqueness of the geometry implies the uniqueness of the ”classical physics”.

4. The choice of the imbedding space becomes highly unique. In fact, the requirement that
WCW is not only symmetric space but also (contact) Kähler manifold inheriting its (degen-
erate) Kähler structure from the imbedding space suggests that spaces, which are products
of four-dimensional Minkowski space with complex projective spaces CPn, are perhaps the
only possible candidates for H. The reason for the unique position of the four-dimensional
Minkowski space turns out to be that the boundary of the light cone of D-dimensional
Minkowski space is metrically a sphere SD�2 despite its topological dimension D � 1: for
D = 4 one obtains two-sphere allowing Kähler structure and infinite parameter group of
conformal symmetries!

5. It seems possible to understand the basic mathematical structures appearing in string model
in terms of the Kähler geometry rather nicely.

(a) The projective representations of the infinite-dimensional isometry group (not neces-
sarily Map!) correspond to the ordinary representations of the corresponding centrally
extended group [A41]. The representations of Kac Moody group indeed play central
role in string models [B27, B20] and WCW approach would explain their occurrence,
not as a result of some quantization procedure, but as a consequence of symmetry of
the underlying geometric structure.

(b) The bosonic oscillator operators of string models would correspond to centrally extended
Lie-algebra generators of the isometry group acting on spinor fields of the WCW.

(c) The ”fermionic” fields ( Ramond fields, Schwartz,Green ) should correspond to gamma
matrices of the WCW. Fermionic oscillator operators would correspond simply to con-
tractions of isometry generators jkA with complexified gamma matrices of WCW

�±A = jkA�
±
k

�±k = (�k ± Jk
l�

l)/
p
2 (2.2.4)

(Jk
l is the Kähler form of WCW) and would create various spin excitations of WCW

spinor field. �±k are the complexified gamma matrices, complexification made possible
by the Kähler structure of the WCW.

This suggests that some generalization of the so called Super Kac Moody algebra of string
models [B27, B20] should be regarded as a spectrum generating algebra for the solutions of field
equations in configuration space.

Although the Kähler structure seems to be physically well motivated there is a rather heavy
counter argument against the whole idea. Kähler structure necessitates complex structure in the
tangent space of WCW. In CP2 degrees of freedom no obvious problems of principle are expected:
WCW should inherit in some sense the complex structure of CP2.

In Minkowski degrees of freedom the signature of the Minkowski metric seems to pose a serious
obstacle for complexification: somehow one should get rid of two degrees of freedom so that only
two Euclidian degrees of freedom remain. An analogous di�culty is encountered in quantum field
theories: only two of the four possible polarizations of gauge boson correspond to physical degrees
of freedom: mathematically the wrong polarizations correspond to zero norm states and transverse
states span a complex Hilbert space with Euclidian metric. Also in string model analogous situa-
tion occurs: in case of D-dimensional Minkowski space only D � 2 transversal degrees of freedom



2.3. Identification of the Kähler function 33

are physical. The solution to the problem seems therefore obvious: WCW metric must be de-
generate so that each vibrational mode spans e↵ectively a 2-dimensional Euclidian plane allowing
complexification.

We shall find that the definition of Kähler function to be proposed indeed provides a solution
to this problem and also to the problems listed before.

1. The definition of the metric doesn’t di↵erentiate between 1- and N-particle sectors, avoids spin
statistics di�culty and has the physically appealing property that one can associate to each 3-
surface a unique classical space time: classical physics is described by the geometry of WCW
and d the geometry of WCW is determined uniquely by the requirement of mathematical
consistency.

2. Complexification is possible only provided the dimension of the Minkowski space equals to
four and is due to the e↵ective 3-dimensionality of light-cone boundary.

3. It is possible to identify a unique candidate for the necessary infinite-dimensional isometry
group G. G is subgroup of the di↵eomorphism group of �M4

+ ⇥ CP2. Essential role is
played by the fact that the boundary of the four-dimensional light cone, which, despite being
topologically 3-dimensional, is metrically two-dimensional Euclidian sphere, and therefore
allows infinite-parameter groups of isometries as well as conformal and symplectic symmetries
and also Kähler structure unlike the higher-dimensional light cone boundaries. Therefore
WCW metric is Kähler only in the case of four-dimensional Minkowski space and allows
symplectic U(1) central extension without conflict with the no-go theorems about higher
dimensional central extensions.

The study of the vacuum degeneracy of Kähler function defined by Kähler action forces to
conclude that the isometry group must consist of the symplectic transformations of �H =
�M4

+ ⇥ CP2. The corresponding Lie algebra can be regarded as a loop algebra associated
with the symplectic group of S2 ⇥ CP2, where S2 is rM = constant sphere of light cone
boundary. Thus the finite-dimensional group G defining loop group in case of string models
extends to an infinite-dimensional group in TGD context. This group has a monstrous size.
The radial Virasoro localized with respect to S2⇥CP2 defines naturally complexification for
both G and H. The general form of the Kähler metric deduced on basis of this symmetry
has same qualitative properties as that deduced from Kähler function identified as preferred
extremal of Kähler action. Also the zero modes, among them isometry invariants, can be
identified.

4. The construction of the WCW spinor structure is based on the identification of the WCW
gamma matrices as linear superpositions of the oscillator operators associated with the sec-
ond quantized induced spinor fields. The extension of the symplectic invariance to super
symplectic invariance fixes the anti-commutation relations of the induced spinor fields, and
WCW gamma matrices correspond directly to the super generators. Physics as number the-
ory vision suggests strongly that WCW geometry exists for 8-dimensional imbedding space
only and that the choice M4

+ ⇥ CP2 for the imbedding space is the only possible one.

2.3 Identification of the Kähler function

There are three approaches to the construction of the WCW geometry: a direct physics based
guess of the Kähler function, a group theoretic approach based on the hypothesis that CH can be
regarded as a union of symmetric spaces, and the approach based on the construction of WCW
spinor structure first by second quantization of induced spinor fields. Here the first approach is
discussed.

2.3.1 Definition of Kähler function

Kähler metric in terms of Kähler function

Quite generally, Kähler function K defines Kähler metric in complex coordinates via the following
formula
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Jkl = igkl = i@k@lK . (2.3.1)

Kähler function is defined only modulo a real part of holomorphic function so that one has the
gauge symmetry

K ! K + f + f . (2.3.2)

Let X3 be a given 3-surface and let X4 be any four-surface containing X3 as a sub-manifold:
X4 � X3. The 4-surface X4 possesses in general boundary. If the 3-surface X3 has nonempty
boundary �X3 then the boundary of X3 belongs to the boundary of X4: �X3 ⇢ �X4.

Induced Kähler form and its physical interpretation

Induced Kähler form defines a Maxwell field and it is important to characterize precisely its rela-
tionship to the gauge fields as they are defined in gauge theories. Kähler form J is related to the
corresponding Maxwell field F via the formula

J = xF , x =
gK
~ . (2.3.3)

Similar relationship holds true also for the other induced gauge fields. The inverse proportionality
of J to ~ does not matter in the ordinary gauge theory context where one routinely choses units by
putting ~ = 1 but becomes very important when one considers a hierarchy of Planck constants [K17]
.

Unless one has J = (gK/~0), where ~0 corresponds to the ordinary value of Planck constant,
↵K = g2K/4⇡~ together the large Planck constant means weaker interactions and convergence
of the functional integral defined by the exponent of Kähler function and one can argue that
the convergence of the functional integral is what forces the hierarchy of Planck constants. This
is in accordance with the vision that Mother Nature likes theoreticians and takes care that the
perturbation theory works by making a phase transition increasing the value of the Planck constant
in the situation when perturbation theory fails. This leads to a replacement of the M4 (or more
precisely, causal diamond CD) and CP2 factors of the imbedding space (CD ⇥ CP2) with its
r = ~/~0-fold singular covering (one can consider also singular factor spaces). If the components
of the space-time surfaces at the sheets of the covering are identical, one can interpret r-fold value
of Kähler action as a sum of r identical contributions from the sheets of the covering with ordinary
value of Planck constant and forget the presence of the covering. Physical states are however
di↵erent even in the case that one assumes that sheets carry identical quantum states and anyonic
phase could correspond to this kind of phase [K37] .

Kähler action

One can associate to Kähler form Maxwell action and also Chern-Simons anomaly term propor-
tional to

R
X4 J ^ J in well known manner. Chern Simons term is purely topological term and well

defined for orientable 4-manifolds, only. Since there is no deep reason for excluding non-orientable
space-time surfaces it seems reasonable to drop Chern Simons term from consideration. Therefore
Kähler action SK(X4) can be defined as

SK(X4) = k1

Z
X4;X3⇢X4

J ^ (⇤J) . (2.3.4)

The sign of the square root of the metric determinant, appearing implicitly in the formula, is
defined in such a manner that the action density is negative for the Euclidian signature of the
induced metric and such that for a Minkowskian signature of the induced metric Kähler electric
field gives a negative contribution to the action density.

The notational convention
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k1 ⌘ 1

16⇡↵K
, (2.3.5)

where ↵K will be referred as Kähler coupling strength will be used in the sequel. If the preferred
extremals minimize/maximize [K52] the absolute value of the action in each region where action
density has a definite sign, the value of ↵K can depend on space-time sheet.

Kähler function

One can define the Kähler function in the following manner. Consider first the case H = M4
+⇥CP2

and neglect for a moment the non-determinism of Kähler action. Let X3 be a 3-surface at the
light-cone boundary �M4

+ ⇥ CP2. Define the value K(X3) of Kähler function K as the value
of the Kähler action for some preferred extremal in the set of four-surfaces containing X3 as a
sub-manifold:

K(X3) = K(X4
pref ) , X4

pref ⇢ {X4|X3 ⇢ X4} . (2.3.6)

The most plausible identification of preferred extremals is in terms of quantum criticality in the
sense that the preferred extremals allow an infinite number of deformations for which the second
variation of Kähler action vanishes. Combined with the weak form of electric-magnetic duality
forcing appearance of Kähler coupling strength in the boundary conditions at partonic 2-surfaces
this condition might be enough to fix preferred extremals completely.

The precise formulation of Quantum TGD has developed rather slowly. Only quite recently-
33 years after the birth of TGD - I have been forced to reconsider the question whether the precise
identification of Kähler function. Should Kähler function actually correspond to the Kähler action
for the space-time regions with Euclidian signature having interpretation as generalized Feynman
graphs? If so what would be the interpretation for the Minkowskian contribution?

1. If one accepts just the formal definition for the square root of the metric determinant,
Minkowskian regions would naturally give an imaginary contribution to the exponent defining
the vacuum functional. The presence of the phase factor would give a close connection with
the path integral approach of quantum field theories and the exponent of Kähler function
would make the functional integral well-defined.

2. The weak form of electric magnetic duality would reduce the contributions to Chern-Simons
terms from opposite sides of wormhole throats with degenerate four-metric with a constraint
term guaranteeing the duality.

The motivation for this reconsideration came from the applications of ideas of Floer homology
to TGD framework [K63]: the Minkowskian contribution to Kähler action for preferred extremals
would define Morse function providing information about WCW homology. Both Kähler and Morse
would find place in TGD based world order.

2.3.2 What are the values of the Kähler coupling strength?

Since the vacuum functional of the theory turns out to be essentially the exponent exp(K) of
the Kähler function, the dynamics depends on the normalization of the Kähler function. Since
the Theory of Everything should be unique it would be highly desirable to find arguments fixing
the normalization or equivalently the possible values of the Kähler coupling strength ↵K . Also a
discrete spectrum of values is acceptable.

The quantization of Kähler form could result in the following manner. It will be found that
Abelian extension of the isometry group results by coupling spinors of the WCW to a multiple of
Kähler potential. This means that Kähler potential plays role of gauge connection so that Kähler
form must be integer valued by Dirac quantization condition for magnetic charge. So, if Kähler
form is co-homologically nontrivial it is quantized.

Unfortunately, the exact definition of renormalization group concept is not at all obvious. There
is however a much more general but more or less equivalent manner to formulate the condition
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fixing the value of ↵K . Vacuum functional exp(K) is analogous to the exponent exp(�H/T ) ap-
pearing in the definition of the partition function of a statistical system and S-matrix elements and
other interesting physical quantities are integrals of type hOi =

R
exp(K)O

p
GdV and therefore

analogous to the thermal averages of various observables. ↵K is completely analogous to tempera-
ture. The critical points of a statistical system correspond to critical temperatures Tc for which the
partition function is non-analytic function of T�Tc and according RGE hypothesis critical systems
correspond to fixed points of renormalization group evolution. Therefore, a mathematically more
precise manner to fix the value of ↵K is to require that some integrals of type hOi (not necessary
S-matrix elements) become non-analytic at 1/↵K � 1/↵c

K .
This analogy suggests also a physical motivation for the unique value or value spectrum of

↵K . Below the critical temperature critical systems su↵er something analogous to spontaneous
magnetization. At the critical point critical systems are characterized by long range correlations
and arbitrarily large volumes of magnetized and non-magnetized phases are present. Spontaneous
magnetization might correspond to the generation of Kähler magnetic fields: the most probable
3-surfaces are Kähler magnetized for subcritical values of ↵K . At the critical values of ↵K the most
probable 3-surfaces contain regions dominated by either Kähler electric and or Kähler magnetic
fields: by the compactness of CP2 these regions have in general outer boundaries.

This suggests that 3-space has hierarchical, fractal like structure: 3-surfaces with all sizes (and
with outer boundaries) are possible and they have su↵ered topological condensation on each other.
Therefore the critical value of ↵K allows the richest possible topological structure for the most
probable 3-space. In fact, this hierarchical structure is in accordance with the basic ideas about
renormalization group invariance. This hypothesis has highly nontrivial consequences even at the
level of ordinary condensed matter physics.

Renormalization group invariance is closely related with criticality. The self duality of the
Kähler form and Weyl tensor of CP2 indeed suggest RG invariance. The point is that in N = 4
super-symmetric field theories duality transformation relates the strong coupling limit for ordinary
particles with the weak coupling limit for magnetic monopoles and vice versa. If the theory is
self-dual these limits must be identical so that action and coupling strength must be RG invariant
quantities. This form of self-duality cannot hold true in TGD. The weak form of self-duality
discussed in [K10] roughly states that for the partonic 2-surface the induce Kähler electric field
is proportional to the Kähler magnetic field strength. The proportionality constant is essentially
Kähler coupling strength. The simplest hypothesis is that Kähler coupling strength has single
universal value and the weak form of self-duality fixes it. The proportionality ↵K = g2K/4⇡~ and
the proposed quantization of Planck constant requiring a generalization of the imbedding space
imply that Kähler coupling strength varies but is constant at a given page of the ”Big Book”
defined by the generalized imbedding space [K17] .

2.3.3 What preferred extremal property means?

The requirement that the 4-surface having given 3-surface as its sub-manifold is absolute minimum
of the Kähler action is the most obvious guess for the principle selecting the preferred extremals
and has been taken as a working hypothesis for about one and half decades. Quantum criticality
of Quantum TGD should have however led to the idea that preferred extremals are critical in
the sense that space-time surface allows deformations for which second variation of Kähler action
vanishes so that the corresponding Noether currents are conserved.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal equivalence
classes of the deformations can be finite and n would naturally relate to the hierarchy of Planck
constants heff = n⇥ h (see fig. http://www.tgdtheory.fi/appfigures/planckhierarchy.jpg,
which is also in the appendix of this book).

Further insights emerged through the realization that Noether currents assignable to the mod-
ified Dirac equation are conserved only if the first variation of the modified Dirac operator DK

defined by Kähler action vanishes. This is equivalent with the vanishing of the second variation
of Kähler action -at least for the variations corresponding to dynamical symmetries having inter-
pretation as dynamical degrees of freedom which are below measurement resolution and therefore
e↵ectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to

http://www.tgdtheory.fi/appfigures/planckhierarchy.jpg
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quantum criticality so that the basic vision about quantum dynamics of quantum TGD would lead
directly to a precise identification of the preferred extremals.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of Kähler action would represent extremals for which the second variation vanishes
identically (the ”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By e↵ective 2-dimensionality
(or holography or quantum classical correspondence) meaning that the configuration space
metric is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l

with boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the
Kähler metric of WCW represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to su�cient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical
correspondence requires 1-1 correspondence between zero modes and these variables. This
would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2) codes
for the interior. Preferred extremal property identified as criticality condition would realize
the holography by fixing the values of zero modes once X2 is known and give rise to the
holographic correspondence X2 ! X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very cautious
since the boundary conditions at X3

l involve normal derivative and might bring in delicacies
forcing to modify the simplest heuristic picture.

One must be very cautious with what one means with the preferred extremal property and
criticality.

1. Does one assign criticality with the partonic 2-surfaces at the ends of CDs? Does one restrict
it with the throats for which light-like 3-surface has also degenerate induced 4-metric? Or
does one assume stronger form of holography requiring a slicing of space-time surface by
partonic 2-surfaces and string world sheets and assign criticality to all partonic 2-surfaces.
This kind of slicing is suggested by the study of the extremals [K5] , required by the number
theoretic vision (M8 � H duality [K50] ), and also by the purely physical condition that a
stringy realization of GCI is possible.

2. What is the exact meaning of the preferred extremal property? The assumption that the
variations of Kähler action leaving 3-surfaces at the ends of CDs invariant would not be
consistent with the e↵ective 2-dimensionality. The assumption that the critical deformations
leave invariant only partonic 2-surfaces would imply genuine 2-dimensionality. Should one
assume that critical deformations leave invariant partonic 2-surface and 3-D tangent space
in the direction of space-like 3-surface or light-like 3-surface but not both. This would be
consistent with e↵ective 3-dimensionality and would explain why Kac-Moody symmetries
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associated with the light-like 3-surfaces act as gauge symmetries. This is also essential for
the realization of Poincare invariance since the quantization of the light-cone proper time
distance between CDs implies that infinitesimal Poincare transformations lead out of CD
unless compensated by Kac-Moody type transformations acting like gauge transformations.
In the similar manner it would explain why symplectic transformations of �CD act like gauge
transformations.

3. Could one pose the criticality condition for all partonic 2-surfaces in the slicing or only for the
throats of light-like 3-surfaces? This hypothesis looks natural but is not necessary. Light-like
throats are very singular objects criticality might apply only to their variations only in the
limiting sense and it might be necessary to assume criticality for all partonic 2-surfaces.

2.3.4 Why non-local Kähler function?

Kähler function is non-local functional of 3-surface. Non-locality of the Kähler function seems to be
at odds with basic assumptions of local quantum field theories. Why this rather radical departure
from the basic assumptions of local quantum field theory? The answer is shortly given: WCW
integration appears in the definition of the inner product for WCW spinor fields and this inner
product must be free from perturbative divergences. Consider now the argument more closely.

In the case of finite-dimensional symmetric space with Kähler structure the representations
of the isometry group necessitate the modification of the integration measure defining the inner
product so that the integration measure becomes proportional to the exponent exp(K) of the Kähler
function [B28]. The generalization to infinite-dimensional case is obvious. Also the requirement
of Kac-Moody symmetry leads to the presence of this kind of vacuum functional as will be found
later. The exponent is in fact uniquely fixed by finiteness requirement. WCW integral is of the
following form

Z
S̄1exp(K)S1

p
gdX . (2.3.7)

One can develop perturbation theory using local complex coordinates around a given 3-surface in
the following manner. The (1, 1)-part of the second variation of the Kähler function defines the
metric and therefore propagator as contravariant metric and the remaining (2, 0)� and (0, 2)-parts
of the second variation are treated perturbatively. The most natural choice for the 3-surface are
obviously the 3-surfaces, which correspond to extrema of the Kähler function.

When perturbation theory is developed around the 3-surface one obtains two ill-defined deter-
minants.

1. The Gaussian determinant coming from the exponent, which is just the inverse square root
for the matrix defined by the metric defining (1, 1)-part of the second variation of the Kähler
function in local coordinates.

2. The metric determinant. The matrix representing covariant metric is however same as the
matrix appearing in Gaussian determinant by the defining property of the Kähler metric: in
local complex coordinates the matrix defined by second derivatives is of type (1, 1). Therefore
these two ill defined determinants (recall the presence of Di↵ degeneracy) cancel each other
exactly for a unique choice of the vacuum functional!

Of course, the cancellation of the determinants is not enough. For an arbitrary local action one
encounters the standard perturbative divergences. Since most local actions (Chern-Simons term is
perhaps an exception [B17] ) for induced geometric quantities are extremely nonlinear there is no
hope of obtaining a finite theory. For non-local action the situation is however completely di↵erent.
There are no local interaction vertices and therefore no products of delta functions in perturbation
theory.

A further nice feature of the perturbation theory is that the propagator for small deformations
is nothing but the contravariant metric. Also the various vertices of the theory are closely related
to the metric of WCW since they are determined by the Kähler function so that perturbation
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theory would have a beautiful geometric interpretation. Furthermore, since four-dimensional Di↵
degeneracy implies that the propagator doesn’t couple to un-physical modes.

It should be noticed that divergence cancellation arguments do not necessarily exclude Chern
Simons term from vacuum functional defined as imaginary exponent of exp(ik2

R
X4 J^J). The term

is not well defined for non-orientable space-time surfaces and one must assume that k2 vanishes for
these surfaces. The presence of this term might provide first principle explanation for CP breaking.
If k2 is integer multiple of 1/(8⇡) Chern Simons term gives trivial contribution for closed space-
time surfaces since instanton number is in question. By adding a suitable boundary term of form
exp(ik3

R
�X3 J ^ A) it is possible to guarantee that the exponent is integer valued for 4-surfaces

with boundary, too.
There are two arguments suggesting that local Chern Simons term would not introduce di-

vergences. First, 3-dimensional Chern Simons term for ordinary Abelian gauge field is known to
define a divergence free field theory [B17] . The term doesn’t depend at all on the induced metric
and therefore contains no dimensional parameters (CP2 radius) and its expansion in terms of CP2

coordinate variables is of the form allowed by renormalizable field theory in the sense that only
quartic terms appear. This is seen by noticing that there always exist symplectic coordinates,
where the expression of the Kähler potential is of the form

A =
X
k

PkdQ
k . (2.3.8)

The expression for Chern-Simons term in these coordinates is given by

k2

Z
X3

X
k,l

PldPk ^ dQk ^ dQl , (2.3.9)

and clearly quartic CP2 coordinates. A further nice property of the Chern Simons term is that
this term is invariant under symplectic transformations of CP2, which are realized as U(1) gauge
transformation for the Kähler potential.

2.4 Some properties of Kähler action

In this section some properties of Kähler action and Kähler function are discussed in light of
experienced gained during about 15 years after the introduction of the notion.

2.4.1 Vacuum degeneracy and some of its implications

The vacuum degeneracy is perhaps the most characteristic feature of the Kähler action. Although
it is not associated with the preferred extremals of Kähler action, there are good reasons to expect
that it has deep consequences concerning the structure of the theory.

Vacuum degeneracy of the Kähler action

The basic reason for choosing Kähler action is its enormous vacuum degeneracy, which makes long
range interactions possible (the well known problem of the membrane theories is the absence of
massless particles [B25] ). The Kähler form of CP2 defines symplectic structure and any 4-surface
for which CP2 projection is so called Lagrangian manifold (at most two dimensional manifold with
vanishing induced Kähler form), is vacuum extremal due to the vanishing of the induced Kähler
form. More explicitly, in the local coordinates, where the vector potential A associated with the
Kähler form reads as A =

P
k PkdQk. Lagrangian manifolds are expressible locally in the following

form

Pk = @kf(Q
i) . (2.4.1)
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where the function f is arbitrary. Notice that for the general YM action surfaces with one-
dimensional CP2 projection are vacuum extremals but for Kähler action one obtains additional
degeneracy.

There is also a second kind of vacuum degeneracy, which is relevant to the elementary particle
physics. The so called CP2 type vacuum extremals are warped imbeddings X4 of CP2 to H such
that Minkowski coordinates are functions of a single CP2 coordinate, and the one-dimensional
projection of X4 is random light like curve. These extremals have a non-vanishing action but
vanishing Poincare charges. Their small deformations are identified as space-time counterparts of
fermions and their super partners. Wormhole throats identified as pieces of these extremals are
identified as bosons and their super partners.

The conditions stating light likeness are equivalent with the Virasoro conditions of string models
and this actually led to the eventualo realization that conformal invariance is a basic symmetry of
TGD and that WCW can be regarded as a union of symmetric spaces with isometry groups having
identification as symplectic and Kac-Moody type groups assignable to the partonic 2-surfaces.

Approximate symplectic invariance

Vacuum extremals have di↵eomorphisms of M4
+ and M4

+ local symplectic transformations as sym-
metries. For non-vacuum extremals these symmetries leave induced Kähler form invariant and
only induced metric breaks these symmetries. Symplectic transformations of CP2 act on the
Maxwell field defined by the induced Kähler form in the same manner as ordinary U(1) gauge
symmetries. They are however not gauge symmetries since gauge invariance is still present. In
fact, the construction of WCW geometry relies on the assumption that symplectic transformations
of �M4

+ ⇥ CP2 which infinitesimally correspond to combinations of M4
+ local CP2 symplectic and

CP2-local M4
+ symplectic transformations act as isometries of WCW. In zero energy ontology these

transformations act simultaneously on all partonic 2-surfaces characterizing the space-time sheet
representing a generalized Feynman diagram inside CD.

The fact that CP2 symplectic transformations do not act as genuine gauge transformations
means that U(1) gauge invariance is e↵ectively broken. This has non-trivial implications. The field
equations allow purely geometric vacuum 4-currents not possible in Maxwell’s electrodynamics [K5]
. For the known extremals (massless extremals) they are light-like and a possible interpretation is
in terms of Bose-Einstein condensates of collinear massless bosons.

Spin glass degeneracy

Vacuum degeneracy means that all surfaces belonging toM4
+⇥Y 2, Y 2 any Lagrangian sub-manifold

of CP2 are vacua irrespective of the topology and that symplectic transformations of CP2 generate
new surfaces Y 2. If preferred extremals are obtained as small deformations of vacuum extremals
(for which the criticality is maximal), one expects therefore enormous ground state degeneracy,
which could be seen as 4-dimensional counterpart of the spin glass degeneracy. This degeneracy
corresponds to the hypothesis that WCW is a union of symmetric spaces labeled by zero modes
which do not appear at the line-element of the WCW metric.

Zero modes define what might be called the counterpart of spin glass energy landscape and
the maxima Kähler function as a function of zero modes define a discrete set which might be
called reduced configuration space. Spin glass degeneracy turns out to be crucial element for
understanding how macro-temporal quantum coherence emerges in TGD framework. One of the
basic ideas about p-adicization is that the maxima of Kähler function define the TGD counterpart
of spin glass energy landscape [K51, K20] . The hierarchy of discretizations of the symmetric
spaces corresponding to a hierarchy of measurement resolutions [K18] could allow an identification
in terms of a hierarchy spin glass energy landscapes so that the algebraic points of the WCW
would correspond to the maxima of Kähler function. The hierarchical structure would be due
to the failure of strict non-determinism of Kähler action allowing in zero energy ontology to add
endlessly details to the space-time sheets representing zero energy states in shorter scale.

Generalized quantum gravitational holography

The original naive belief was that the construction of the configuration space geometry reduces to
�H = �M4

+⇥CP2. An analogous idea in string model context became later known as quantum grav-



2.4. Some properties of Kähler action 41

itational holography. The basic implication of the vacuum degeneracy is classical non-determinism,
which is expected to reflect itself as the properties of the Kähler function and WCW geometry.
Obviously classical non-determinism challenges the notion of quantum gravitational holography.

The hope was that a generalization of the notion of 3-surface is enough to get rid of the
degeneracy and save quantum gravitational holography in its simplest form. This would mean
that one just replaces space-like 3-surfaces with ”association sequences” consisting of sequences of
space-like 3-surfaces with time like separations as causal determinants. This would mean that the
absolute minima of Kähler function would become degenerate: same space-like 3-surface at �H
would correspond to several association sequences with the same value of Kähler function.

The life turned out to be more complex than this. CP2 type extremals have Euclidian signature
of the induced metric and therefore CP2 type extremals glued to space-time sheet with Minkowskian
signature of the induced metric are surrounded by light like surfaces X3

l , which might be called
elementary particle horizons. The non-determinism of the CP2 type extremals suggests strongly
that also elementary particle horizons behave non-deterministically and must be regarded as causal
determinants having time like projection in M4

+. Pieces of CP2 type extremals are good candidates
for the wormhole contacts connecting a space-time sheet to a larger space-time sheet and are also
surrounded by an elementary particle horizons and non-determinism is also now present. That this
non-determinism would allow the proposed simple description seems highly implausible.

Zero energy ontology realized in terms of a hierarchy of CDs seems to provide the most plausible
treatment of the non-determinism and has indeed led to a breakthrough in the construction and
understanding of quantum TGD. At the level of generalized Feynman diagrams sub-CDs containing
zero energy states represent a hierarchy of radiative corrections so that the classical determinism
is direct correlate for the quantum non-determinism. Determinism makes sense only when one
has specified the length scale of measurement resolution. One can always add a CD containing a
vacuum extremal to get a new zero energy state and a preferred extremal containing more details.

Classical non-determinism saves the notion of time

Although classical non-determinism represents a formidable mathematical challenge it is a must
for several reasons. Quantum classical correspondence, which has become a basic guide line in
the development of TGD, states that all quantum phenomena have classical space-time correlates.
This is not new as far as properties of quantum states are considered. What is new that also
quantum jumps and quantum jump sequences which define conscious existence in TGD Universe,
should have classical space-time correlates: somewhat like written language is correlate for the
contents of consciousness of the writer. Classical non-determinism indeed makes this possible.
Classical non-determinism makes also possible the realization of statistical ensembles as ensembles
formed by strictly deterministic pieces of the space-time sheet so that even thermodynamics has
space-time representations. Space-time surface can thus be seen as symbolic representations for
the quantum existence.

In canonically quantized general relativity the loss of time is fundamental problem. If quantum
gravitational holography would work in the most strict sense, time would be lost also in TGD since
all relevant information about quantum states would be determined by the moment of big bang.
More precisely, geometro-temporal localization for the contents of conscious experience would not
be possible. Classical non-determinism together with quantum-classical correspondence however
suggests that it is possible to have quantum jumps in which non-determinism is concentrated in
space-time region so that also conscious experience contains information about this region only.

2.4.2 Four-dimensional General Coordinate Invariance

The proposed definition of the Kähler function is consistent with GCI and implies also 4-dimensional
Di↵ degeneracy of the Kähler metric. Zero energy ontology inspires strengthening of the GCI in
the sense that space-like 3-surfaces at the boundaries of CD are physically equivalent with the
light-like 3-surfaces connecting the ends. This implies that basic geometric objects are partonic
2-surfaces at the boundaries of CDs identified as the intersections of these two kinds of surfaces.
Besides this the distribution of 4-D tangent planes at partonic 2-surfaces would code for physics so
that one would have only e↵ective 2-dimensionality. The failure of the non-determinism of Kähler
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action in the standard sense of the word a↵ects the situation also and one must allow a fractal
hierarchy of CDs inside CDs having interpretation in terms of radiative corrections.

Resolution of tachyon di�culty and absence of Di↵ anomalies

In TGD as in string models the tachyon di�culty is potentially present: unless the time like
vibrational excitations possess zero norm they contribute tachyonic term to the mass squared
operator of Super Kac Moody algebra. This di�culty is familiar already from string models
[B27, B20] .

The degeneracy of the metric with respect to the time like vibrational excitations guarantees
that time like excitations do not contribute to the mass squared operator so that mass spectrum
is tachyon free. It also implies the decoupling of the tachyons from physical states: the propagator
of the theory corresponds essentially to the inverse of the Kähler metric and therefore decouples
from time like vibrational excitations. The experience with string model suggests that if metric is
degenerate with respect to di↵eomorphisms of X4(X3) there are indeed good hopes that time like
excitations possess vanishing norm with respect to WCW metric.

The four-dimensional Di↵ invariance of the Kähler function implies that Di↵ invariance is
guaranteed in the strong sense since the scalar product of two Di↵ vector fields given by the matrix
associated with (1, 1) part of the second variation of the Kähler action vanishes identically. This
property gives hopes of obtaining theory, which is free from Di↵ anomalies: in fact loop space
metric is not Di↵ degenerate and this might be the underlying reason to the problems encountered
in string models [B27, B20] .

Complexification of WCW

Strong form of GCI plays a fundamental role in the complexification of WCW. GCI in strong form
reduces the basic building brick of WCW to the pairs of partonic 2-surfaces and their 4-D tangent
space data associated with ends of light-like 3-surface at light-like boundaries of CD. At boths
end the imbedding space is e↵ectively reduces to �M4

+ ⇥ CP2 (forgetting the complications due
to non-determinism of Kähler action). Light cone boundary in turn is metrically 2-dimensional
Euclidian sphere allowing infinite-dimensional group of conformal symmetries and Kähler structure.
Therefore one can say that in certain sense configuration space metric inherits the Kähler structure
of S2 ⇥ CP2. This mechanism works in case of four-dimensional Minkowski space only: higher-
dimensional spheres do not possess even Kähler structure. In fact, it turns out that the quantum
fluctuating degrees of freedom can be regarded in well-defined sense as a local variant of S2 ⇥
CP2 and thus as an infinite-dimensional analog of symmetric space as the considerations of [K10]
demonstrate.

The details of the complexification were understood only after the construction of WCW ge-
ometry and spinor structure in terms of second quantized induced spinor fields [K9] . This also
allows to make detailed statements about complexification [K10] .

Contravariant metric and Di↵4 degeneracy

Di↵ degeneracy implies that the definition of the contravariant metric, which corresponds to the
propagator associated to small deformations of minimizing surface is not quite straightforward. We
believe that this problem is only technical. Certainly this problem is not new, being encountered
in both GRT and gauge theories [B10, B16] . In TGD a solution of the problem is provided by the
existence of infinite-dimensional isometry group. If the generators of this group form a complete
set in the sense that any vector of the tangent space is expressible as as sum of these generators
plus some zero norm vector fields then one can restrict the consideration to this subspace and in
this subspace the matrix g(X,Y ) defined by the components of the metric tensor indeed indeed
possesses well defined inverse g�1(X,Y ). This procedure is analogous to gauge fixing conditions
in gauge theories and coordinate fixing conditions in General Relativity.

It has turned that the representability of WCW as a union of symmetric spaces makes possible
an approach to WCW integration based on harmonic analysis replacing the perturbative approach
based on perturbative functional integral. This approach allows also a p-adic variant and leads
an e↵ective discretization in terms of discrete variants of WCW for which the points of symmetric
space consist of algebraic points. There is an infinite number of these discretizations [K51] and the
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interpretation is in terms of finite measurement resolution. This gives a connection with the p-
adicization program, infinite primes, inclusions of hyper-finite factors as representation of the finite
measurement resolution, and the hierarchy of Planck constants [K50] so that various approaches
to quantum TGD converge nicely.

General Coordinate Invariance and WCW spinor fields

GCI applies also at the level of quantum states. WCW spinor fields are Di↵4 invariant. This in
fact fixes not only classical but also quantum dynamics completely. The point is that the values
of the WCW spinor fields must be essentially same for all Di↵4 related 3-surfaces at the orbit X4

associated with a given 3-surface. This would mean that the time development of Di↵4 invariant
configuration spinor field is completely determined by its initial value at the moment of the big
bang!

This is of course a naive over statement. The non-determinism of Kähler action and zero
energy ontology force to take the causal diamond (CD) defined by the intersection of future and
past directed light-cones as the basic structural unit of WCW, and there is fractal hierarchy of CDs
within CDs so that the above statement makes sense only for giving CD in measurement resolution
neglecting the presence of smaller CDs. Strong form of GCI also implies factorization of WCW
spinor fields into a sum of products associated with various partonic 2-surfaces. In particular, one
obtains time-like entanglement between positive and negative energy parts of zero energy states
and entanglement coe�cients define what can be identified as M -matrix expressible as a ”complex
square root” of density matrix and reducing to a product of positive definite diagonal square root
of density matrix and unitary S-matrix. The collection of orthonormal M -matrices in turn define
unitary U -matrix between zero energy states. M -matrix is the basic object measured in particle
physics laboratory.

2.4.3 WCW geometry, generalized catastrophe theory, and phase tran-
sitions

The definition of WCW geometry has nice catastrophe theoretic interpretation. To understand
the connection consider first the definition of the ordinary catastrophe theory [A65] .

1. In catastrophe theory one considers extrema of the potential function depending on dynamical
variables x as function of external parameters c. The basic space decomposes locally into
cartesian product E = C ⇥ X of control variables c, appearing as parameters in potential
function V (c, x) and of state variables x appearing as dynamical variables. Equilibrium states
of the system correspond to the extrema of the potential V (x, c) with respect to the variables
x and in the absence of symmetries they form a sub-manifold of M with dimension equal to
that of the parameter space C. In some regions of C there are several extrema of potential
function and the extremum value of x as a function of c is multi-valued. These regions of
C ⇥ X are referred to as catastrophes. The simplest example is cusp catastrophe (see Fig.
2.4.3) with two control parameters and one state variable.

2. In catastrophe regions the actual equilibrium state must be selected by some additional phys-
ical requirement. If system obeys flow dynamics defined by first order di↵erential equations
the catastrophic jumps take place along the folds of the cusp catastrophe (delay rule). On
the other hand, the Maxwell rule obeyed by thermodynamic phase transitions states that
the equilibrium state corresponds to the absolute minimum of the potential function and
the state of system changes in discontinuous manner along the Maxwell line in the middle
between the folds of the cusp (see Fig. 2.4.3).

3. As far as discontinuous behavior is considered fold catastrophe is the basic catastrophe: all
catastrophes contain folds as there ’satellites’ and one aim of the catastrophe theory is to
derive all possible manners for the stable organization of folds into higher catastrophes. The
fundamental result of the catastrophe theory is that for dimensions d of C smaller than 5
there are only 7 basic catastrophes and polynomial potential functions provide a canonical
representation for the catastrophes: fold catastrophe corresponds to third order polynomial
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(in fold the two real roots become a pair of complex conjugate roots), cusp to fourth order
polynomial, etc.

Consider now the TGD counterpart of this. TGD allows allows two kinds of catastrophe
theories.

1. The first one is related to Kähler action as a local functional of 4-surface. The nature of this
catastrophe theory depends on what one means with the preferred extremals.

2. Second catastrophe theory corresponds to Kähler function a non-local functional of 3-surface.
The maxima of the vacuum functional defined as the exponent of Kähler function define
what might called e↵ective space-times, and discontinuous jumps changing the values of the
parameters characterizing the maxima are possible.

Consider first the option based on Kähler action.

1. Potential function corresponds to Kähler action restricted to the solutions of Euler Lagrange
equations. Catastrophe surface corresponds to the four-surfaces found by extremizing Kähler
action with respect to to the variables of X (time derivatives of coordinates of C specifying
X3 in Ha) keeping the variables of C specifying 3-surface X3 fixed. Preferred extremal
property is analogous to the Bohr quantization since canonical momenta cannot be chosen
freely as in the ordinary initial value problems of the classical physics. Preferred extremals
are by definition at criticality. Behavior variables correspond to the deformations of the 4-
surface keeping partonic 2-surfaces and 3-D tangent space data fixed and preserving extremal
property. Control variables would correspond to these data.

2. At criticality the rank of the infinite-dimensional matrix defined by the second functional
derivatives of the Kähler action is reduced. Catastrophes form a hierarchy characterized by
the reduction of the rank of this matrix and Thom’s catastrophe theory generalizes to infinite-
dimensional context. Criticality in this sense would be one aspect of quantum criticality
having also other aspects. No discrete jumps would occur and system would only move along
the critical surface becoming more or less critical.

3. There can exist however several critical extremals assignable to a given partonic 2-surface
but have nothing to do with the catastrophes as defined in Thom’s approach. In presence of
degeneracy one should be able to choose one of the critical extremals or replace this kind of
regions of WCW by their multiple coverings so that single partonic 2-surface is replaced with
its multiple copy. The degeneracy of the preferred extremals could be actually a deeper reason
for the hierarchy of Planck constants involving in its most plausible version n-fold singular
coverings of CD and CP2. This interpretation is very satisfactory since the generalization of
the imbedding space and hierarchy of Planck constants would follow naturally from quantum
criticality rather than as separate hypothesis.

4. The existence of the catastrophes is implied by the vacuum degeneracy of the Kähler action.
For example, for pieces of Minkowski space in M4

+ ⇥CP2 the second variation of the Kähler
action vanishes identically and only the fourth variation is non-vanishing: these 4-surfaces
are analogous to the tip of the cusp catastrophe. There are also space-time surfaces for
which the second variation is non-vanishing but degenerate and a hierarchy of subsets in
the space of extremal 4-surfaces with decreasing degeneracy of the second variation defines
the boundaries of the projection of the catastrophe surface to the space of 3-surfaces. The
space-times for which second variation is degenerate contain as subset the critical and initial
value sensitive absolute minimum space-times.

The natural expectation is that the number of critical deformations is infinite and corresponds
to conformal symmetries naturally assignable to criticality. The number n of conformal equivalence
classes of the deformations can be finite and n would naturally relate to the hierarchy of Planck
constants heff = n⇥ h (see fig. http://www.tgdtheory.fi/appfigures/planckhierarchy.jpg,
which is also in the appendix of this book).

Consider next the catastrophe theory defined by Kähler function.

http://www.tgdtheory.fi/appfigures/planckhierarchy.jpg
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1. In this case the most obvious identification for the behavior variables would be in terms of
the space of all 3-surfaces in CD ⇥ CP2 - and if one believes in holography and zero energy
ontology - the 2-surfaces assignable the boundaries of causal diamonds (CDs).

2. The natural control variables are zero modes whereas behavior variables would correspond
to quantum fluctuating degrees of freedom contributing to the WCW metric. The induced
Kähler form at partonic 2-surface would define infinitude of purely classical control variables.
There is also a correlation between zero modes identified as degrees of freedom assignable to
the interior of 3-surface and quantum fluctuating degrees of freedom assigned to the partonic
2-surfaces. This is nothing but holography and e↵ective 2-dimensionality justifying the basic
assumption of quantum measurement theory about the correspondence between classical
and quantum variables. The absence of several maxima implies also the presence of saddle
surfaces at which the rank of the matrix defined by the second derivatives is reduced. This
could lead to a non-positive definite metric. It seems that it is possible to have maxima of
Kähler function without losing positive definiteness of the metric since metric is defined as
(1,1)-type derivatives with respect to complex coordinates. In case of CP2 however Kähler
function has single degenerate maximum corresponding to the homologically trivial geodesic
sphere at r = 1. It might happen that also in the case of infinite-D symmetric space finite
maxima are impossible.

3. The criticality of Kähler function would be analogous to thermodynamical criticality and to
the criticality in the sense of catastrophe theory. In this case Maxwell’s rule is possible and
even plausible since quantum jump replaces the dynamics defined by a continuous flow.

Cusp catastrophe provides a simple concretization of the situation for the criticality of Kähler
action (as distinguished from that for Kähler function).

1. The set M of the critical 4-surfaces corresponds to the V -shaped boundary of the 2-D cusp
catastrophe in 3-D space to plane. In general case it forms codimension one set in WCW.
In TGD Universe physical system would reside at this line or its generalization to higher
dimensional catastrophes. For the criticality associated with Kähler action the transitions
would be smooth transitions between di↵erent criticalities characterized by the rank defined
above: in the case of cusp from the tip of cusp to the vertex of cusp or vice versa. Evolution
could mean a gradual increase of criticality in this sense. If preferred extremals are not
unique, cusp catastrophe does not provide any analogy. The strong form of criticality would
mean that the system would be always ”at the tip of cusp” in metaphoric sense. Vacuum
extremals are maximally critical in trivial sense, and the deformations of vacuum extremals
could define the hierarchy of criticalities.

2. For the criticality of Kähler action Maxwell’s rule stating that discontinuous jumps occur
along the middle line of the cusp is in conflict with catastrophe theory predicting that jumps
occurs along at criticality. For the criticality of Kähler function -if allowed at all by symmetric
space property- Maxwell’s rule can hold true but cannot be regarded as a fundamental law.
It is of course known that phase transitions can occur in di↵erent manners (super heating
and super cooling).
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Figure 2.1: Cusp catastrophe

2.5 Weak form electric-magnetic duality and its implica-
tions

The notion of electric-magnetic duality [B2] was proposed first by Olive and Montonen and is
central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two di↵erent phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric
monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant
rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kähler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K10] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this con-
cept leads to precise predictions. The point is that elementary particles do not generate monopole
fields in macroscopic length scales: at least when one considers visible matter. The first question is
whether elementary particles could have vanishing magnetic charges: this turns out to be impossi-
ble. The next question is how the screening of the magnetic charges could take place and leads to
an identification of the physical particles as string like objects identified as pairs magnetic charged
wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,�1,�1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads
to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kähler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
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all isometry currents are proportional to Kähler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field
associated with Chern-Simons action). Intuitively this picture is attractive. A more general
ansatz would allow several Beltrami flows meaning multi-hydrodynamics. The integrability
conditions boil down to two scalar functions: the first one satisfies massless d’Alembert
equation in the induced metric and the the gradients of the scalar functions are orthogonal.
The interpretation in terms of momentum and polarization directions is natural. Also Chern-
Simons Dirac equation implies the localization of solutions to flow lines, and this is consistent
with the localization solutions of Kähler-Dirac equation to string world sheets.

2.5.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Num-
ber theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the imbedding space coordinates in
the space-time regions with Minkowskian resp. Euclidian signature of the induced metric. This
is a condition on modified gamma matrices and hyper-quaternionicity states that they span a
hyper-quaternionic sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of �M4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Kähler form assignable to the complement of the tangent
space of X2 ⇢ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The
presence of the induced metric is however troublesome since the presence of the induced
metric means that the simple transformation properties of flux Hamiltonians under symplectic
transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This ap-
proach involves also quaternions. These arguments suggest that the duality in some form
might work. The full electric magnetic duality is certainly too strong and implies that space-
time surface at the partonic 2-surface corresponds to piece of CP2 type vacuum extremal
and can hold only in the deep interior of the region with Euclidian signature. In the region
surrounding wormhole throat at both sides the condition must be replaced with a weaker
condition.
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4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2)
such (x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates
labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces
and string world sheets making sense in the regions of space-time sheet with Minkowskian
signature. The assumption about the slicing allows to preserve general coordinate invariance.
The weakest condition is that the generalized Kähler electric fluxes are apart from constant
proportional to Kähler magnetic fluxes. This requires the condition

J03pg4 = KJ12 . (2.5.1)

A more general form of this duality is suggested by the considerations of [K22] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for
preferred extremals to Chern-Simons terms [B1] at the boundaries of CD and at light-like
wormhole throats. This form is following

Jn�pg4 = K✏⇥ ✏n���J��
p
g4 . (2.5.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. ✏ is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric
at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (2.5.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on
Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant
then K could be a non-constant function of X2 depending on string world sheet coordinates.
The light-like radial coordinate of the light-cone boundary indeed defines a symplectically
invariant slicing and this slicing could be shifted along the time axis defined by the tips of
CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm =
e

~

I
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.
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2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L1] , [L1]
read as

� =
eFem

~ = 3J � sin2(✓W )R03 ,

Z0 =
gZFZ

~ = 2R03 . (2.5.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem

and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~Fem + sin2(✓W )
gZ
6~FZ . (2.5.5)

3. The weak duality condition when integrated over X2 implies

e2

3~Qem +
g2Zp

6
QZ,V = K

I
J = Kn ,

QZ,V =
I3V
2

�Qem , p = sin2(✓W ) . (2.5.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3L+sin2(✓W )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.

The coe�cients are dimensionless and expressible in terms of the gauge coupling strengths
and using ~ = r~0 one can write

↵emQem + p
↵Z

2
QZ,V =

3

4⇡
⇥ rnK ,

↵em =
e2

4⇡~0
, ↵Z =

g2Z
4⇡~0

=
↵em

p(1� p)
. (2.5.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-
surface. The linear coupling of the modified Dirac operator to conserved charges implies
correlation between the geometry of space-time sheet and quantum numbers assigned to the
partonic 2-surface. The assumption of standard quantized values for Qem and QZ would
be also seen as the identification of the fine structure constants ↵em and ↵Z . This however
requires weak isospin invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric
field equals to the Kähler charge gK would give the condition K = g2K/~, where gK is Kähler
coupling constant which should invariant under coupling constant evolution by quantum
criticality. Within experimental uncertainties one has ↵K = g2K/4⇡~0 = ↵em ' 1/137, where
↵em is finite structure constant in electron length scale and ~0 is the standard value of Planck
constant.
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2. The quantization of Planck constants makes the condition highly non-trivial. The most gen-
eral quantization of r is as rationals but there are good arguments favoring the quantization
as integers corresponding to the allowance of only singular coverings of CD andn CP2. The
point is that in this case a given value of Planck constant corresponds to a finite number
pages of the ”Big Book”. The quantization of the Planck constant implies a further quan-
tization of K and would suggest that K scales as 1/r unless the spectrum of values of Qem

and QZ allowed by the quantization condition scales as r. This is quite possible and the
interpretation would be that each of the r sheets of the covering carries (possibly same) el-
ementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The
interpretation in terms of anyonic phases [K37] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also
Kähler function is proportional to 1/↵K and therefore to ~. This implies that for large
values of ~ Kähler coupling strength g2K/4⇡ becomes very small and large fluctuations are
suppressed in the functional integral. The basic motivation for introducing the hierarchy of
Planck constants was indeed that the scaling ↵ ! ↵/r allows to achieve the convergence
of perturbation theory: Nature itself would solve the problems of the theoretician. This of
course does not mean that the physical states would remain as such and the replacement of
single particles with anyonic states in order to satisfy the condition for K would realize this
concretely.

4. The condition K = g2K/~ implies that the Kähler magnetic charge is always accompanied by
Kähler electric charge. A more general condition would read as

K = n⇥ g2K
~ , n 2 Z . (2.5.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kähler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that
abelian Z0 flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (2.5.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for CP2 type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of CP2 radius and ↵K the e↵ective replacement g2K ! 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could
be self-dual so that the density of Kähler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP2 is such that in CP2 coordinates for the Euclidian region the tensor (g↵�gµ⌫ � g↵⌫gµ�)/

p
g

remains invariant. This is certainly the case for CP2 type vacuum extremals since by the light-
likeness of M4 projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.
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Reduction of the quantization of Kähler electric charge to that of electromagnetic
charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field,
which is a linear combination of induced Kahler field and classical Z0 field

� = 3J � sin2✓WR03 ,

Z0 = 2R03 . (2.5.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman
diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to
the fermion content of the partonic 2-surfaces reduces to the classical Kähler electric flux
at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must
increase smoothly from a vanishing value at both sides of wormhole throat to its value in the
deep interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kähler form and classical Z0 fields and color gauge fields are e↵ec-
tively absent. Only in phases with a large value of Planck constant classical Z0 field and
other classical weak fields and color gauge field could make themselves visible. Cell mem-
brane could be one such system [K41]. This conforms with the general picture about color
confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-
vanishing only in Euclidian regions of space-time so that both Reissner-Nordström metric and
CP2 are allowed as simplest possible solutions of field equations [K56]. The extremely small
value of the observed cosmological constant needed in GRT type cosmology could be equal
to the large cosmological constant associated with CP2 metric multiplied with the 3-volume
fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmo-
logical constant term in Euclidian regions. The weak form of electric-magnetic duality would
guarantee also now the preferred extremal property and prevent the reduction to a mere
topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.
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2.5.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be
a wormhole throat. If the magnetically charged wormhole contact is electromagnetically
neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion
only the electromagnetic charge of the fermion is visible on longer length scales. The distance
of this wormhole throat from the fermionic one should be of the order weak boson Compton
length. An interpretation as a bound state of fermion and a wormhole throat state with the
quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing
throat would have quantum numbers of X�1/2 = ⌫L⌫R or X1/2 = ⌫L⌫R. ⌫L⌫R would
not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-
partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism
would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and
corresponding space-time sheets and leave only electromagnetic interaction as a long ranged
interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I3V cancel each other at both space-time sheets involved so that one obtains at both
space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed
magnetic character of fundamental particles should become visible at TeV energies so that
LHC might have surprises in store!

Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be e↵ectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region
in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced W boson
fields are vanishing. The vanishing of classical Z0 field can be poses as additional condition - at
least in scales above weak scale. In the generic case this requires that the spinor mode is restricted
to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD
reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting
the modes are expected to allow restriction to 2-surfaces. This localization is possible only for
Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
e↵ective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from di↵erent space-time sheet tend to vanish above weak scale and that
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well-definedness of em charge at classical level follows from the e↵ective absence of classical weak
gauge fields.

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state q±1/2 � X⌥1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (±2,⌥1,⌥1). This brings in mind the spectrum
of color hyper charges coming as (±2,⌥1,⌥1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kähler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered CP2

and believed on M4 ⇥ S2.
p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark

variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

p
2 in the most

general case. The dark variants of the particle would have the same mass as the original one. In
particular, Mersenne primes Mk = 2k � 1 and Gaussian Mersennes MG,k = (1 + i)k � 1 has been
proposed to define zoomed copies of these physics. At the level of magnetic confinement this would
mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107�89)/2 = 512. The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of M89 physics takes place in some shorter
scale and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons
would be by a factor 2(89�61)/2 = 214 higher and about 1.6 ⇥ 104 TeV. M89 quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths Le(k) =

p
5L(k): they are associated with Gaussian

Mersennes MG,k, k = 151, 157, 163, 167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [D3] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and
anti-fermions at the wormhole throat but these do not give rise to graviton like states [K19] . The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
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in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however di�cult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make
possible twistor description of virtual particles allowing only massless particles (in 4-D sense
usually and in 8-D sense in TGD framework). The notion of virtual fermion makes sense
only if one assumes in the interaction region a topological condensation creating another
wormhole throat having no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one
describe the state as superposition of non-parallel on mass shell states so that the composite
state would be automatically massive? The description as superposition of on mass shell
states does not conform with the idea that bound state formation requires binding energy.
In TGD framework the notion of negentropic entanglement has been suggested to make
possible the analogs of bound states consisting of on mass shell states so that the binding
energy is zero [K28] . If this kind of states are in question the description of virtual states in
terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that
there is infinite number of this kind of states serving as analogs for the excitations of string
like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations
are possible. If this picture is correct, the situation would not change in an essential manner
from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K29] .

2.5.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated
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also for the modified Dirac action action. I gave up this proposal but the following argument shows
that Kähler action with weak form of electric-magnetic duality e↵ectively reduces to Chern-Simons
action plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term j↵KA↵

plus and integral of the boundary term Jn�A�
p
g4 over the wormhole throats and of the

quantity J0�A�
p
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jn� = 4⇡↵K✏n���J�� at throats and to J0� =
4⇡↵K✏0���J�� at the ends, the Kähler function reduces to the counterpart of Chern-Simons
action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 ! r~0 would e↵ectively describe this. Boundary conditions would however
give 1/r factor so that ~ would disappear from the Kähler function! The original attempt to
realize quantum TGD as an almost topological QFT was in terms of Chern-Simons action
but was given up. It is somewhat surprising that Kähler action gives Chern-Simons action
in the vacuum sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to
an almost topological QFT. The attribute ”almost” would come from the fact that one has non-
vanishing classical Noether charges defined by Kähler action and non-trivial quantum dynamics in
M4 degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which
is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of
Coulomb interaction term deserve a detailed analysis.

1. For the known extremals j↵K either vanishes or is light-like (”massless extremals” for which
weak self-duality condition does not make sense [K5] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kähler action. This implies that the M4 part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M4 degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
variations of Kähler function must respect the weak electro-magnetic duality which relates
Kähler electric field depending on the induced 4-metric at 3-surface to the Kähler magnetic
field. Therefore the dependence on M4 coordinates creeps via a Lagrange multiplier term

Z
⇤↵(J

n↵ �K✏n↵��J� gamma)
p
g4d

3x . (2.5.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question
about how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides CP2 Kähler form
there would be the Kähler form assignable to the light-cone boundary reducing to that for
rM = constant sphere - call it J1. The generalization of the weak form of self-duality
would be Jn� = ✏n���K(J�� + ✏J1

��). This form implies that the boundary term gives a

non-trivial contribution to the M4 part of the WCW metric even without the constraint
from electric-magnetic duality. Kähler charge is not a↵ected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kähler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.
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4. The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation � is

j↵K@↵� = �j↵A↵ . (2.5.12)

This di↵erential equation can be reduced to an ordinary di↵erential equation along the flow
lines jK by using dx↵/dt = j↵K . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate di↵erential
is proportional to the covariant form of Kähler current: dt = �jK . This condition in turn
implies d2t = d(�jK) = d(�jK) = d� ^ jK + �djK = 0 implying jK ^ djK = 0 or more
concretely,

✏↵���jK� @�j
K
delta = 0 . (2.5.13)

jK is a four-dimensional counterpart of Beltrami field [B19] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler
action [K5] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jK ^ J = 0. One manner to guarantee this is the
topologization of the Kähler current meaning that it is proportional to the instanton current:
jK = �jI , where jI = ⇤(J ^A) is the instanton current, which is not conserved for 4-D CP2

projection. The conservation of jK implies the condition j↵I @↵� = @↵j↵� and from this � can
be integrated if the integrability condition jI^djI = 0 holds true implying the same condition
for jK . By introducing at least 3 or CP2 coordinates as space-time coordinates, one finds that
the contravariant form of jI is purely topological so that the integrability condition fixes the
dependence on M4 coordinates and this selection is coded into the scalar function �. These
functions define families of conserved currents j↵K� and j↵I � and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A ! A+r� for which the scalar function the integral

R
j↵K@↵� reduces to a total divergence

a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

D↵(j
↵�) = 0 . (2.5.14)

As a consequence Coulomb term reduces to a di↵erence of the conserved charges Qe
� =R

j0�
p
g4d3x at the ends of the CD vanishing identically. The change of the Chern-Simons

type term is trivial if the total weighted Kähler magnetic fluxQm
� =

PR
J�dA over wormhole

throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
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charges would provide a representation for the charges associated with the infinitesimal criti-
cal deformations not a↵ecting Kähler action. The gauge transformed Kähler gauge potential
couples to the modified Dirac equation and its e↵ect could be visible in the value of Kähler
function and therefore also in the properties of the preferred extremal. The e↵ect on WCW
metric would however vanish since K would transform only by an addition of a real part of
a holomorphic function.

7. A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred ex-
tremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of �CD ⇥ CP2 generating the gauge transfor-
mation represented by �. This interpretation makes sense if the fluxes defined by Qm

� and
corresponding Hamiltonians a↵ect only zero modes rather than quantum fluctuating degrees
of freedom.

8. Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic orbits
and Kähler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged. Mea-
surement interaction terms would correspond to Lagrange multiplier terms at the ends of
space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to modified Dirac action
as boundary term.

Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kähler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition would
be that the action of C-S-D operator equals to that of massless M4 Dirac operator. C-S-D
Dirac action would give rise to massless Dirac propagator. Twistor Grassmann approach
suggests that also the virtual fermions reduce e↵ectively to massless on-shell states but have
non-physical helicity.

2.5.4 About the notion of measurement interaction

The notion of measurement has been central notion in quantum TGD but the precise definition of
this notion is far from clear. In the following two possibly equivalent formulations are considered.
The first formulation relies on the gauge transformations leaving Coulomb term of Kähler action
unchanged and the second one to the interpretation of TGD as a square root of thermodynamics
allowing to fix the values of conserved classical charges for zero energy energy state using Lagrange
multipliers analogous to chemical potentials.

1. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A ! A+r� for which the scalar function the integral

R
j↵K@↵� reduces to a total divergence

a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

D↵(j
↵�) = 0 . (2.5.15)

As a consequence Coulomb term reduces to a di↵erence of the conserved charges Qe
� =R

j0�
p
g4d3x at the ends of the CD vanishing identically. The change of the Chern-Simons

type term is trivial if the total weighted Kähler magnetic fluxQm
� =

PR
J�dA over wormhole

throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.
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2. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal crit-
ical deformations not a↵ecting Kähler action.

The gauge transformed Kähler potential couples to the modified Dirac equation and its e↵ect
could be visible in the value of Kähler function and therefore also in the properties of the pre-
ferred extremal. The e↵ect on WCW metric would however vanish since K would transform
only by an addition of a real part of a holomorphic function. Kähler function is identified as
a Dirac determinant of Chern-Simons Dirac operator (after many turns and twists) and the
spectrum of this operator should not be invariant under these gauge transformations if this
picture is correct. This is is achieved if the gauge transformation is carried only in the Dirac
action corresponding to instanton term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action
can be guessed to correspond just to the Chern-Simons contribution from the instanton term.

3. A reasonable looking guess for the explicit realization of the quantum classical correspon-
dence between quantum numbers and space-time geometry is that the deformation of the
preferred extremal due to the addition of the measurement interaction term is induced by a
U(1) gauge transformation induced by a transformation of �CD⇥CP2 generating the gauge
transformation represented by �. This interpretation makes sense if the fluxes defined by
Qm

� and corresponding Hamiltonians a↵ect only zero modes rather than quantum fluctuating
degrees of freedom.

In zero energy ontology (ZEO) TGD can be seen as square root of thermodynamics and this
suggests an alternative manner to define what measurement interaction term means.

1. The condition that the space-time sheets appearing in superposition of space-time surfaces
with given quantum numbers in Cartan algebra have same classical quantum numbers as-
sociated with Kähler action can be realized in terms of Lagrange multipliers in standard
manner. These kind of terms would be analogous to various chemical potential terms in
the partition function. One could call them measurement interaction terms. Measurement
interaction terms would code the values of quantum charges to the space-time geometry.

Kähler action contains also Chern-Simons term at partonic orbits compensating the Chern-
Simons terms coming from Kähler action when weak form of electric-magnetic duality is as-
sumed. This guarantees that Kähler action for preferred extremals reduces to Chern-Simons
terms at the space-like ends of the spacetime surface and one obtains almost topological
QFT.

2. If Kähler-Dirac action is constructed from Kähler action in super-symmetric manner by
defining the modified gamma matrices in terms of canonical momentum densities one obtains
also the fermionic counterparts of the Lagrange multiplier terms at partonic orbits and could
call also them measurement interaction terms. Besides this one has also the Chern-Simons
Dirac terms associated with the partonic orbits giving ordinary massless Dirac propagator.
In presence of measurement interaction terms at the space-like ends of the space-time surface
the boundary conditions �n = 0 at the ends would be modified by the addition of term
coming from the modified gamma matrix associated with the Lagrange multiplier terms. The
original generalized massless generalized eigenvalue spectrum pk�k of �n would be modified
to massive spectrum given by the condition

(�n +
X
i

�i�
↵
Q

i

D↵) = 0 ,

where Qi refers to i:th conserved charge.
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An interesting question is whether these two manners to introduce measurement interaction
terms are actually equivalent.

To sum up, one could understand the basic properties of WCW metric in this framework. E↵ec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two di↵erent time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the
terms from light-like wormhole throats giving interaction term between positive and negative en-
ergy parts of the state. Hence Kähler function could be calculated without any knowledge about
the interior of the space-time sheets and TGD would reduce to almost topological QFT as specu-
lated earlier. Needless to say this would have immense boost to the program of constructing WCW
Kähler geometry.

2.5.5 A general solution ansatz based on almost topological QFT prop-
erty

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological field
theory. This requires that the flow parameters associated with the flow lines of isometry currents
and Kähler current extend to global coordinates. This leads to integrability conditions implying
generalized Beltrami flow and Kähler action for the preferred extremals reduces to Chern-Simons
action when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kähler current.
In the more general case one would have several hydrodynamic flows. Also the braidings (several
of them for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined
by the flow lines of conserved currents. The independent behavior of particles at di↵erent flow
lines can be seen as a realization of the complete integrability of the theory. In free quantum field
theories on mass shell Fourier components are in a similar role but the geometric interpretation
in terms of flow is of course lacking. This picture should generalize also to the solution of the
modified Dirac equation.

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and
leads to the isometry group T ⇥SO(3)⇥SU(3) corresponding to time translations, rotations,
and color group. The Cartan algebra is four-dimensional and field equations reduce to the
conservation laws of energy E, angular momentum J , color isospin I3, and color hypercharge
Y .

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y .

D↵

⇥
D�(J

↵�HA)� j↵KHA + T↵�jlAhkl@�h
l
⇤

= 0 . (2.5.16)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kähler
form and vanishes so that one has

D↵

⇥
j↵KHA � T↵�jkAhkl@�h

l
⇤

= 0 . (2.5.17)

For energy one has HA = 1 and energy current associated with the flow lines is proportional
to the Kähler current. Its divergence vanishes identically.
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3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving j↵KJ↵� and contraction of second fundamental form with energy momentum
tensor so that one obtains

j↵KD↵H
A = j↵KJ �

↵ jA� + T↵�Hk
↵�j

A
k . (2.5.18)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydro-
dynamics analogous to that for a continuous distribution of particles iniatially at the end of X3 of
the light-like 3-surface moving along flow lines defined by currents jA satisfying the integrability
condition jA^djA = 0. Field theory would reduce e↵ectively to particle mechanics along flow lines
with conserved charges defined by various isometry currents. The strongest condition is that all
isometry currents jA and also Kähler current jK are proportional to the same current j. The more
general option corresponds to multi-hydrodynamics.

1. Solution ansatz

Conserved currents are analogous to hydrodynamical currents in the sense that the flow pa-
rameter along flow lines extends to a global space-time coordinate. The conserved current is
proportional to the gradient r� of the coordinate varying along the flow lines: J =  r� and by
a proper choice of  one can allow to have conservation. The initial values of  and � can be
selected freely along the flow lines beginning from either the end of the space-time surface or from
wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (e↵ective 2-dimensionality is re-
quired for preferred extremals), the initial values of scalar functions can be chosen freely only at
the partonic 2-surfaces. The freedom to chose the intial values of the charges conserved along flow
lines at the partonic 2-surfaces means the existence of an infinite number of conserved charges so
that the theory would be integrable and even in two di↵erent coordinate directions. The basic
di↵erence as compared to ordinary conservation laws is that the conserved currents are parallel
and their flow parameter extends to a global coordinate.

1. The most general assumption is that the conserved isometry currents

J↵
A = j↵KHA � T↵�jkAhkl@�h

l (2.5.19)

and Kähler current as well as instanto current are integrable in the sense that JA^JA = 0 and
jK ^ jK = 0 hold true. One could imagine the possibility that the currents are not parallel.
If instanton current and Kähler current are proportional to each other, Coulomb interaction
term in the Kähler action vanishes and almost topological QFT property is achieved.

2. The integrability condition dJA ^ JA = 0 is satisfied if one one has

JA =  Ad�A . (2.5.20)

The ansatz allows a gauge transformation induced by a symplectic transformation of S2.�A

is same for Kähler current and instanton current.

3. The conservation of JA gives

d ⇤ ( Ad�A) = 0 . (2.5.21)
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This would mean separate hydrodynamics for each of the currents involved. In principle
there is not need to assume any further conditions and one can imagine infinite basis of
scalar function pairs ( A,�A) since criticality implies infinite number deformations implying
conserved Noether currents.

4. The conservation condition reduces to d’Alembert equation in the induced metric if one
assumes that r A is orthogonal with every d�A.

d ⇤ d�A = 0 , d A · d�A = 0 . (2.5.22)

Taking x = �A as a coordinate the orthogonality condition states gxj@j A = 0 and in
the general case one cannot solve the condition by simply assuming that  A depends on
the coordinates transversal to �A only. These conditions bring in mind p · p = 0 and p · e
condition for massless modes of Maxwell field having fixed momentum and polarization. d�A

would correspond to p and d A to polarization. The condition that each isometry current
corresponds its own pair ( A,�A) would mean that each isometry current corresponds to
independent light-like momentum and polarization. Ordinary free quantum field theory
would support this view whereas hydrodynamics and QFT limit of TGD would support
single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isom-
etry charges flow along same flow lines so that one would have

JA =  Ad� . (2.5.23)

In this case same � would satisfy simultaneously the d’Alembert type equations.

d ⇤ d� = 0 , d A · d� = 0. (2.5.24)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have di↵erent polarizations. The spinor modes associated with light-light
like 3-surfaces carry parallel four-momenta, which suggest that this option is correct. This
allows a very general family of solutions and one can have a complete 3-dimensional basis of
functions  A with gradient orthogonal to d�.

2. Isometry invariance under T ⇥SO(3)⇥SU(3) allows to consider the possibility that one has

JA = kA Ad�G(A) , d ⇤ (d�G(A)) = 0 , d A · d�G(A)) = 0 . (2.5.25)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for
color currents. Energy would thus flow along its own flux lines, angular momentum along its
own flow lines, and color quantum numbers along their own flow lines. For instance, color
currents would di↵er from each other only by a numerical constant. The replacement of  A

with  G(A) would be too strong a condition since Killing vector fields are not related by a
constant factor.
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To sum up, the most general option is that each conserved current JA defines its own integrable
flow lines defined by the scalar function pair ( A,�A). A complete basis of scalar functions
satisfying the d’Alembert type equation guaranteeing current conservation could be imagined with
restrictions coming from the e↵ective 2-dimensionality reducing the scalar function basis e↵ectively
to the partonic 2-surface. The diametrically opposite option corresponds to the basis obtained by
assuming that only single � is involved.

The proposed solution ansatz can be compared to the earlier ansatz [K22] stating that Kähler
current is topologized in the sense that for D(CP2) = 3 it is proportional to the identically
conserved instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP2) = 4
(Maxwell phase). This hypothesis requires that instanton current is Beltrami field for D(CP2) = 3.
In the recent case the assumption that also instanton current satisfies the Beltrami hypothesis in
strong sense (single function �) generalizes the topologization hypothesis for D(CP2) = 3 and
guarantees that Coulomb term in Kähler action vanishes identically. A weaker form is obtained by
replacing Kähler potential by its gauge transform in which case one also obtains a boundary term.
As a matter fact, the topologization hypothesis applies to isometry currents also for D(CP2) = 4
although instanton current is not conserved anymore. One can consider variants of instanton
current since both (A1, J1) and (A, J) are available.

Can one require the extremal property in the case of Chern-Simons action?

E↵ective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-
Simons action. The strongest condition would be that space-time surfaces allow orthogonal slicings
by 3-surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kähler magnetic field B = ⇤J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degen-
erate and the contravariant metric must be restricted to the complement of the light-like direction.
This means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like
3-surfaces one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as
sources. The interpretation in terms of analogs of Coulomb potentials created by 2-D charge
distributions would be natural.

If J+J1 appears in Kähler action the extremals need not have 2-dimensional CP2 projection as
they must have for J option, and one can hope of obtaining large enough solution family consistent
with e↵ective 2-dimensionality. The field equations can be reduced to conservation conditions for
the isometry currents for SO(3)⇥ SU(3) along flow lines.

2.5.6 Holomorphic factorization of Kähler function

One can guess the general form of the core part of the Kähler function as function of complex
coordinates assignable to the partonic surfaces at positive and negative energy ends of CD. It its
convenient to restrict the consideration to the simplest possible non-trivial case which is represented
by single propagator line connecting the ends of CD.

1. The propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group. This coset space is as a manifold Cartesian product
(G/H) ⇥ (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. The exponent of Kähler function depends on both ends of the line and this means that the
geometries at the ends are correlated in the sense that that Kähler form contains interaction
terms between the line ends. It is however not quite clear whether it contains separate
”kinetic” or self interaction terms assignable to the line ends. For Kähler function the kinetic
and interaction terms should have the following general expressions as functions of complex
WCW coordinates:
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Kkin,i =
X
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
X
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (2.5.26)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field the-
ories. Kkin would correspond to the Chern-Simons term assignable to the ends of the line
and Kint to the Chern-Simons terms assignable to the wormhole throats.

2.5.7 Could the dynamics of Kähler action predict the hierarchy of
Planck constants?

The original justification for the hierarchy of Planck constants came from the indications that
Planck constant could have large values in both astrophysical systems involving dark matter and
also in biology. The realization of the hierarchy in terms of the singular coverings and possibly
also factor spaces of CD and CP2 emerged from consistency conditions. The formula for the
Planck constant involves heuristic guess work and physical plausibility arguments. There are good
arguments in favor of the hypothesis that only coverings are possible. Only a finite number of pages
of the Big Book correspond to a given value of Planck constant, biological evolution corresponds to a
gradual dispersion to the pages of the Big Book with larger Planck constant, and a connection with
the hierarchy of infinite primes and p-adicization program based on the mathematical realization
of finite measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quantum TGD
rather than as a separate hypothesis. The following arguments suggest that this might be possible.
One finds also a precise geometric interpretation of preferred extremal property interpreted as
criticality in zero energy ontology.

1-1 correspondence between canonical momentum densities and time derivatives fails
for Kähler action

The basic motivation for the geometrization program was the observation that canonical quantiza-
tion for TGD fails. To see what is involved let us try to perform a canonical quantization in zero
energy ontology at the 3-D surfaces located at the light-like boundaries of CD ⇥ CP2.

1. In canonical quantization canonical momentum densities ⇡0
k ⌘ ⇡k = @LK/@(@0hk), where

@0hk denotes the time derivative of imbedding space coordinate, are the physically natural
quantities in terms of which to fix the initial values: once their value distribution is fixed
also conserved charges are fixed. Also the weak form of electric-magnetic duality given by
J03pg4 = 4⇡↵KJ12 and a mild generalization of this condition to be discussed below can be
interpreted as a manner to fix the values of conserved gauge charges (not Noether charges) to
their quantized values since Kähler magnetic flux equals to the integer giving the homology
class of the (wormhole) throat. This condition alone need not characterize criticality, which
requires an infinite number of deformations ofX4 for which the second variation of the Kähler
action vanishes and implies infinite number conserved charges. This in fact gives hopes of
replacing ⇡k with these conserved Noether charges.

2. Canonical quantization requires that @0hk in the energy is expressed in terms of ⇡k. The
equation defining ⇡k in terms of @0hk is however highly non-linear although algebraic. By
taking squares the equations reduces to equations for rational functions of @0hk. @0hk appears
in contravariant and covariant metric at most quadratically and in the induced Kähler electric
field linearly and by multiplying the equations by det(g4)3 one can transform the equations
to a polynomial form so that in principle @0hk can obtained as a solution of polynomial
equations.
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3. One can always eliminate one half of the coordinates by choosing 4 imbedding space co-
ordinates as the coordinates of the space-time surface so that the initial value conditions
reduce to those for the canonical momentum densities associated with the remaining four
coordinates. For instance, for space-time surfaces representable as map M4 ! CP2 M4

coordinates are natural and the time derivatives @0sk of CP2 coordinates are multi-valued.
One would obtain four polynomial equations with @0sk as unknowns. In regions where CP2

projection is 4-dimensional -in particular for the deformations of CP2 vacuum extremals the
natural coordinates are CP2 coordinates and one can regard @0mk as unknowns. For the
deformations of cosmic strings, which are of form X4 = X2 ⇥ Y 2 ⇢ M4 ⇥ CP2, one can use
coordinates of M2 ⇥ S2, where S2 is geodesic sphere as natural coordinates and regard as
unknowns E2 coordinates and remaining CP2 coordinates.

4. One can imagine solving one of the four polynomials equations for time derivaties in terms of
other obtaining N roots. Then one would substitute these roots to the remaining 3 conditions
to obtain algebraic equations from which one solves then second variable. Obviously situation
is very complex without additional symmetries. The criticality of the preferred extremals
might however give additional conditions allowing simplifications. The reasons for giving
up the canonical quantization program was following. For the vacuum extremals of Kähler
action ⇡k are however identically vanishing and this means that there is an infinite number of
value distributions for @0hk. For small deformations of vacuum extremals one might however
hope a finite number of solutions to the conditions and thus finite number of space-time
surfaces carrying same conserved charges.

If one assumes that physics is characterized by the values of the conserved charges one must
treat the the many-valuedness of @0hk. The most obvious guess is that one should replace the
space of space-like 4-surfaces corresponding to di↵erent roots @0hk = F k(⇡l) with four-surfaces in
the covering space of CD ⇥ CP2 corresponding to di↵erent branches of the many-valued function
@0hk = F (⇡l) co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of @0hk correspond to the coverings
associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the covering spaces
associated with the hierarchy of Planck constants. This would conform with quantum classical cor-
respondence. The hierarchy of Planck constants and hierarchy of covering spaces was introduced to
cure the failure of the perturbation theory at quantum level. At classical level the multi-valuedness
of @0hk means a failure of perturbative canonical quantization and forces the introduction of the
covering spaces. The interpretation would be that when the density of matter becomes critical the
space-time surface splits to several branches so that the density at each branches is sub-critical. It
is of course not at all obvious whether the proposed structure of the Big Book is really consistent
with this hypothesis and one also consider modifications of this structure if necessary. The manner
to proceed is by making questions.

1. The proposed picture would give only single integer characterizing the covering. Two integers
assignable to CD and CP2 degrees of freedom are however needed. How these two coverings
could emerge?

(a) One should fix also the values of ⇡n
k = @LK/@hk

n, where n refers to space-like normal
coordinate at the wormhole throats. If one requires that charges do not flow between
regions with di↵erent signatures of the metric the natural condition is ⇡n

k = 0 and
allows also multi-valued solution. Since wormhole throats carry magnetic charge and
since weak form of electric-magnetic duality is assumed, one can assume that CP2

projection is four-dimensional so that one can use CP2 coordinates and regard @0mk

as un-knows. The basic idea about topological condensation in turn suggests that M4

projection can be assumed to be 4-D inside space-like 3-surfaces so that here @0sk are
the unknowns. At partonic 2-surfaces one would have conditions for both ⇡0

k and ⇡n
k .

One might hope that the numbers of solutions are finite for preferred extremals because
of their symmetries and given by na for @0mk and by nb for @0sk. The optimistic guess
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is that na and nb corresponds to the numbers of sheets for singular coverings of CD
and CP2. The covering could be visualized as replacement of space-time surfaces with
space-time surfaces which have nanb branches. nb branches would degenerate to single
branch at the ends of diagrams of the generaled Feynman graph and na branches would
degenerate to single one at wormhole throats.

(b) This picture is not quite correct yet. The fixing of ⇡0
k and ⇡n

k should relate closely to
the e↵ective 2-dimensionality as an additional condition perhaps crucial for criticality.
One could argue that both ⇡0

k and ⇡n
k must be fixed at X3 and X3

l in order to e↵ectively
bring in dynamics in two directions so that X3 could be interpreted as a an orbit of
partonic 2-surface in space-like direction and X3

l as its orbit in light-like direction. The
additional conditions could be seen as gauge conditions made possible by symplectic and
Kac-Moody type conformal symmetries. The conditions for ⇡k

0 would give nb branches
in CP2 degrees of freedom and the conditions for ⇡n

k would split each of these branches
to na branches.

(c) The existence of these two kinds of conserved charges (possibly vanishing for ⇡n
k ) could

relate also very closely to the slicing of the space-time sheets by string world sheets and
partonic 2-surfaces.

2. Should one then treat these branches as separate space-time surfaces or as a single space-time
surface? The treatment as a single surface seems to be the correct thing to do. Classically
the conserved changes would be nanb times larger than for single branch. Kähler action need
not (but could!) be same for di↵erent branches but the total action is nanb times the average
action and this e↵ectively corresponds to the replacement of the ~0/g2K factor of the action
with ~/g2K , r ⌘ ~/~0 = nanb. Since the conserved quantum charges are proportional to ~ one
could argue that r = nanb tells only that the charge conserved charge is nanb times larger
than without multi-valuedness. ~ would be only e↵ectively nanb fold. This is of course poor
man’s argument but might catch something essential about the situation.

3. How could one interpret the condition J03pg4 = 4⇡↵KJ12 and its generalization to be dis-
cussed below in this framework? The first observation is that the total Kähler electric charge
is by ↵K / 1/(nanb) same always. The interpretation would be in terms of charge fraction-
ization meaning that each branch would carry Kähler electric charge QK = ngK/nanb. I
have indeed suggested explanation of charge fractionization and quantum Hall e↵ect based
on this picture.

4. The vision about the hierarchy of Planck constants involves also assumptions about imbed-
ding space metric. The assumption that the M4 covariant metric is proportional to ~2 follows
from the physical idea about ~ scaling of quantum lengths as what Compton length is. One
can always introduce scaled M4 coordinates bringing M4 metric into the standard form by
scaling up the M4 size of CD. It is not clear whether the scaling up of CD size follows au-
tomatically from the proposed scenario. The basic question is why the M4 size scale of the
critical extremals must scale like nanb? This should somehow relate to the weak self-duality
conditions implying that Kähler field at each branch is reduced by a factor 1/r at each
branch. Field equations should posses a dynamical symmetry involving the scaling of CD by
integer k and J0�pg4 and Jn�pg4 by 1/k. The scaling of CD should be due to the scaling
up of the M4 time interval during which the branched light-like 3-surface returns back to a
non-branched one.

5. The proposed view about hierarchy of Planck constants is that the singular coverings reduce
to single-sheeted coverings at M2 ⇢ M4 for CD and to S2 ⇢ CP2 for CP2. Here S2 is any
homologically trivial geodesic sphere of CP2 and has vanishing Kähler form. Weak self-duality
condition is indeed consistent with any value of ~ and impies that the vacuum property for
the partonic 2-surface implies vacuum property for the entire space-time sheet as holography
indeed requires. This condition however generalizes. In weak self-duality conditions the value
of ~ is free for any 2-D Lagrangian sub-manifold of CP2.

The branching alongM2 would mean that the branches of preferred extremals always collapse
to single branch when their M4 projection belongs to M2. Magnetically charged light-light-
like throats cannot have M4 projection in M2 so that self-duality conditions for di↵erent
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values of ~ do not lead to inconsistencies. For space-like 3-surfaces at the boundaries of
CD the condition would mean that the M4 projection becomes light-like geodesic. Straight
cosmic strings would have M2 as M4 projection. Also CP2 type vacuum extremals for which
the random light-like projection in M4 belongs to M2 would represent this of situation. One
can ask whether the degeneration of branches actually takes place along any string like object
X2⇥Y 2, where X2 defines a minimal surface in M4. For these the weak self-duality condition
would imply ~ = 1 at the ends of the string. It is very plausible that string like objects feed
their magnetic fluxes to larger space-times sheets through wormhole contacts so that these
conditions are not encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals suggests
itself. Criticality for the preferred extremals must be a property of space-like 3-surfaces and
light-like 3-surfaces with degenerate 4-metric and the degeneration of the nanb branches of the
space-time surface at the its ends and at wormhole throats is exactly what happens at criticality.
For instance, in catastrophe theory roots of the polynomial equation giving extrema of a potential
as function of control parameters co-incide at criticality. If this picture is correct the hierarchy
of Planck constants would be an outcome of criticality and of preferred extremal property and
preferred extremals would be just those multi-branched space-time surfaces for which branches
co-incide at the the boundaries of CD ⇥ CP2 and at the throats.

2.6 Does the exponent of Chern-Simons action reduce to
the exponent of the area of minimal surfaces?

As I scanned of hep-th I found an interesting article by Giordano, Peschanski, and Seki [B22] based
on AdS/CFT correspondence. What is studied is the high energy behavior of the gluon-gluon and
quark-quark scattering amplitudes of N = 4 SUSY.

1. The proposal made earlier by Aldaya and Maldacena [B5] is that gluon-gluon scattering
amplitudes are proportional to the imaginary exponent of the area of a minimal surface in
AdS5 whose boundary is identified as momentum space. The boundary of the minimal surface
would be polygon with light-like edges: this polygon and its dual are familiar from twistor
approach.

2. Giordano, Peschanski, and Seki claim that quark-quark scattering amplitude for heavy quarks
corresponds to the exponent of the area for a minimal surface in the Euclidian version of
AdS5 which is hyperbolic space (space with a constant negative curvature): it is interpreted
as a counterpart of WCW rather than momentum space and amplitudes are obtained by
analytic continuation. For instance, a universal Regge behavior is obtained. For general
amplitudes the exponent of the area alone is not enough since it does not depend on gluon
quantum numbers and vertex operators at the edges of the boundary polygon are needed.

In the following my intention is to consider the formulation of this conjecture in quantum TGD
framework. I hasten to inform that I am not a specialist in AdS/CFT and can make only general
comments inspired by analogies with TGD.

2.6.1 Why Chern-Simons action should reduce to area for minimal sur-
faces?

The minimal surface conjectures are highly interesting from TGD point of view. The weak form
of electric magnetic duality implies the reduction of Kähler action to 3-D Chern-Simons terms.
E↵ective 2-dimensionality implied by the strong form of General Coordinate Invariance suggests
a further reduction of Chern-Simons terms to 2-D terms and the areas of string world sheet and
of partonic 2-surface are the only non-topological options that one can imagine. Skeptic could
of course argue that the exponent of the minimal surface area results as a characterizer of the

http://arxiv.org/pdf/1110.3680
http://arxiv.org/pdf/0710.1060
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quantum state rather than vacuum functional. In the following I defend the minimal interpretation
as Chern-Simons terms.

Let us look this conjecture in more detail.

1. In zero energy ontology twistor approach is very natural since all physical states are bound
states of massless particles. Also virtual particles are composites of massless states. The
possibility to have both signs of energy makes possible space-like momenta for wormhole
contacts. Mass shell conditions at internal lines imply extremely strong constraints on the
virtual momenta and both UV and IR finiteness are expected to hold true.

2. The weak form of electric magnetic duality [K18] implies that the exponent of Kähler action
reduces to the exponent of Chern-Simons term for 3-D space-like surfaces at the ends of
space-time surface inside CD and for light-like 3-surfaces. The coe�cient of this term is
complex since the contribution of Minkowskian regions of the space-time surface is imaginary
(
p
g4 is imaginary) and that of Euclidian regions (generalized Feynman diagrams) real. The

Chern-Simons term from Minkowskian regions is like Morse function and that from Euclidian
regions defines Kähler function and stationary phase approximation makes sense. The two
contributions are di↵erent since the space-like 3-surfaces contributing to Kähler function and
Morse function are di↵erent.

3. Electric magnetic duality [K18] leads also to the conclusion that wormhole throats carrying
elementary particle quantum numbers are Kähler magnetic monopoles. This forces to identify
elementary particles as string like objects with ends having opposite monopole charges. Also
more complex configurations are possible.

It is not quite clear what the scale of the stringyness is. The natural first guess inspired
by quantum classical correspondence is that it corresponds to the p-adic length scale of
the particle characterizing its Compton length. Second possibility is that it corresponds to
electroweak scale. For leptons stringyness in Compton length scale might not have any fatal
implications since the second end of string contains only neutrinos neutralizing the weak
isospin of the state. This kind of monopole pairs could appear even in condensed matter
scales: in particular if the proposed hierarchy of Planck constants [K17] is realized.

4. Strong form of General Coordinate Invariance requires e↵ective 2-dimensionality. In given UV
and IR resolutions either partonic 2-surfaces or string world sheets form a finite hierarchy of
CDs inside CDs with given CD characterized by a discrete scale coming as an integer multiple
of a fundamental scale (essentially CP2 size). The string world sheets have boundaries
consisting of either light-like curves in induced metric at light-like wormhole throats and
space-like curves at the ends of CD whoseM4 projections are light-like. These braids intersect
partonic 2-surfaces at discrete points carrying fermionic quantum numbers.

This implies a rather concrete analogy with AdS5⇥S5 duality, which describes gluons as open
strings. In zero energy ontology (ZEO) string world sheets are indeed a fundamental notion
and the natural conjecture is that these surfaces are minimal surfaces whose area by quantum
classical correspondence depends on the quantum numbers of the external particles. String
tension in turn should depend on gauge couplings -perhaps only Kähler coupling strength-
and geometric parameters like the size scale of CD and the p-adic length scale of the particle.

5. Are the minimal surfaces in question minimal surfaces of the imbedding space M4⇥CP2 or of
the space-time surface X4? All possible 2-surfaces at the boundary of CD must be allowed so
that they cannot correspond to minimal surfaces in M4 ⇥CP2 unless one assumes that they
emerge in stationary phase approximation only. The boundary conditions at the ends of CD
could however be such that any partonic 2-surface correspond to a minimal surfaces in X4.
Same applies to string world sheets. One might even hope that these conditions combined
with the weak form of electric magnetic duality fixes completely the boundary conditions at
wormhole throats and space-like ends of space-time surface.

The trace of the second fundamental form orthogonal to the string world sheet/partonic
2-surface as sub-manifold of space-time surface would vanish: this is nothing but a general-
ization of the geodesic motion obtained by replacing word line with a 2-D surface. It does not
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imply the vanishing of the trace of the second fundamental form in M4 ⇥ CP2 having inter-
pretation as a generalization of particle acceleration [K56]. E↵ective 2-dimensionality would
be realized if Chern-Simons terms reduce to a sum of the areas of these minimal surfaces.

These arguments suggest that scattering amplitudes are proportional to the product of expo-
nents of 2-dimensional actions which can be either imaginary or real. Imaginary exponent would be
proportional to the total area of string world sheets and the imaginary unit would come naturally
from

p
g2. Teal exponent proportional to the total area of partonic 2-surfaces. The coe�cient of

these areas would not in general be same.
The equality of the Minkowskian and Euclidian Chern-Simons terms is suggestive but not

necessarily true since there could be also other Chern-Simons contributions than those assignable
to wormhole throats and the ends of space-time. The equality would imply that the total area
of string world sheets equals to the total area of partonic 2-surfaces suggesting strongly a duality
meaning that either Euclidian or Minkowskian regions carry the needed information.

2.6.2 IR cuto↵ and connection with p-adic physics

In twistor approach the IR cuto↵ is necessary to get rid of IR divergences. Also in the AdS5

approach the condition that the minimal surface area is finite requires an IR cuto↵. The problem
is that there is no natural IR cuto↵. In TGD framework zero energy ontology brings in a natural
IR cuto↵ via the finite and quantized size scale of CD guaranteeing that the minimal surfaces
involved have a finite area. This implies that also particles usually regarded as massless have a
small mass characterized by the size of CD. The size scale of CD would correspond to the scale
parameter R assigned with the metric of AdS5.

1. String tension relates in AdS5 approach to the gauge coupling gYM and to the number Nc

of colors by the formula

� = g2YMNc =
R2

↵0 . (2.6.1)

1/Nc-expansion is in terms of 1/
p
�. The formula has an alternative form as an expression

for the string tension

↵0 =
R2p

g2YMNc

. (2.6.2)

The analog this formula in TGD framework suggests an connection with p-adic length scale
hypothesis.

1. As already noticed, the natural counterpart for the scale R could be the discrete value of
the size scale of CD. Since the symplectic group assignable to �M4

± ⇥ CP2 (or the upper or
lower boundary of CD) is the natural generalization of the gauge group, it would seem that
Nc = 1 holds true in the absence of cuto↵. At the limit Nc = 1 only planar diagrams
would contribute to YM scattering amplitudes. Finite measurement resolution must make
the e↵ective value of Nc finite so that also � would be finite. String tension would depend
on both the size of CD and the e↵ective number of symplectic colors.

2. If ↵0 is characterized by the square of the Compton length of the particle, � would be
essentially the square of the ratio of CD size scale given by secondary p-adic lengths and
of the primary p-adic length scale associated with the particle: � = g2YM

p
p, where p is

the p-adic prime characterizing the particle. Favored values of the p-adic prime correspond
to primes near powers of two. The e↵ective number of symplectic colors would be Nc =p
p/g2YM and the expansion would come in powers of g2YM/

p
p. For electron one would have

p = M127 = 2127�1 so that the expansion would converge extremely fast. Together with
the amazing success of the p-adic mass calculations based on p-adic thermodynamics for the
scaling generator L0 [K31] this suggests a deep connection with p-adic physics and number
theoretic universality.
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2.6.3 Could Kähler action reduce to Kähler magnetic flux over string
world sheets and partonic 2-surfaces?

Can one consider alternative identifications of Kähler action for preferred extremals? The only
alternative identification of Kähler function that I can imagine is that Kähler action proportional to
the Kähler magnetic flux

R
Y 2 J or Kähler electric flux

R
Y 2 ⇤J for string world sheets and possibly

also partonic 2-surfaces. These fluxes are dimensionless numbers. If the weak form of electric-
magnetic duality holds true also at string world sheets, the two options are equivalent apart from
a proportionality constant.

1. For Kähler magnetic flux there would be no explicit dependence on the induced metric. This
is in accordance with the almost topological QFT property.

2. Unless the weak form of electric-magnetic duality holds true, the Kähler electric flux has
an explicit dependence on the induced metric but in a scaling invariant manner. The most
obvious objection relates to the sign factor of the dual flux which depends on the orientation
of the string world sheet and thus changes sign when the orientation of space-time sheet is
changed by changing that of the string world sheet. This is in conflict with the independence
of Kähler action on orientation. One can however argue that the orientation makes itself
actually physically visible via the weak form of electric-magnetic duality and that the change
of the orientation as a symmetry is dynamically broken. This breaking would be analogous
to parity breaking at the level of imbedding space.

3. In [K23] it is proposed that braids defined by the boundaries of string world sheets could
correspond to Legendrian sub-manifolds, whereas partonic 2-surfaces could the duals of Leg-
endrian manifolds, so that braiding would take place dynamically. The identification of the
Kähler action as Kähler magnetic flux associated with string world sheets and possibly also
partonic 2-surfaces is consistent with the assumption that the extremal of Kähler action in
question. Indeed, the Legendrian property says that the projection of the Kähler gauge po-
tential on braid strand vanishes and this expresses the extremality of the Kähler magnetic
flux.

The assumption that Kähler action is proportional to Kähler magnetic flux seems to be con-
sistent with the minimal surface property. The weak form of electric-magnetic duality gives a
constraint on the normal derivatives of imbedding space coordinates at the string world sheet and
minimal surface property strengthens these constraints. One could perhaps say that space-time
surface chooses its shape in such a manner that the string world sheet has a minimal area.

The open questions are following.

1. Does Kähler action for the preferred extremals reduce to the area of the string world sheet or
to Kähler flux, or are the representations equivalent so that the induced Kähler form would
e↵ectively define area form? If the Kähler form form associated with the induced metric on
string world sheet is proportional to the induced Kähler form the Kähler magnetic flux is
proportional to the area and Kähler action reduces to genuine area. This condition looks like
a natural additional constraint on string world sheets besides minimal surface property.

2. The proportionality of the induced Kähler form and Kähler form of the induced 2-metric
implies as such only the extremal property against the symplectic variations so that one can-
not have minimal surface property at imbedding space level. Minimality at space-time level
is however possible since space-time surface itself can arrange the situation so that general
variations deforming the string world sheet along space-time surface reduce to symplectic
variations at the level of the imbedding space.

3. Does the situation depend on whether the string world sheet is in Minkowskian or Euclidian
space-time region? The problem is that in Euclidian regions the value of Kähler action is
positive definite and it is not obvious why the Kähler magnetic flux for Euclidian string world
sheets should have a fixed sign. Could weak form of electric-magnetic duality fix the sign?

Irrespective whether the Kähler action is proportional to the total area or the Kähler electric
flux over string world sheets, the theory would be exactly solvable at string world sheet level (finite
measurement resolution).
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2.6.4 What is the interpretation of Yangian duality in TGD framework?

Minimal surfaces in both WCW and momentum space are used in the above mentioned two articles
[B5, B22]. The possibility of these two descriptions must reflect the Yangian symmetry unifying
the conformal symmetries of Minkowski space and momentum space in twistorial approach.

The minimal surfaces in X4 ⇢ M4 ⇥ CP2 are natural in TGD framework. Could also the
minimal surfaces in momentum space have some interpretation in TGD framework? Ore more
generally, what could be the interpretation of the dual descriptions provided by twistor diagrams
with light-like edges and dual twistor diagrams with light-like vertices? One can imagine many
interpretations but zero energy ontology suggests an especially attractive and natural interpretation
of this duality as the exchange of the roles of wormhole throats carrying always on mass shell
massless momenta and wormhole contacts carrying in general o↵-mass shell momenta and massive
momenta in incoming lines.

1. For WCW twistor diagrams vertices correspond to incoming and outgoing light-like momenta.
The light-like momenta associated with the wormhole throats of the incoming and outgoing
lines of generalized Feynman diagram could correspond to the light-like momenta associated
with the vertices of the polygon. The internal lines defined by wormhole contacts carrying
virtual o↵ mass shell momenta would naturally correspond to to edges of the twistor diagram.

2. What about dual twistor diagrams in which light-like momenta correspond to lines? Zero
energy ontology implies that virtual wormhole throats carry on mass shell massless momenta
whereas incoming wormhole contacts in general carry massive particles: this guarantees the
absence of IR divergences. Could one identify the momenta of internal wormhole throats
as light-like momenta associated with the lines dual twistor diagrams and the incoming net
momenta assignable to wormhole contacts as incoming and outgoing momenta.

Also the transition from Minkowskian to Euclidian signature by Wick rotation could have
interpretation in TGD framework. Space-time surfaces decompose into Minkowskian and Euclidian
regions. The latter ones represent generalized Feynman diagrams. This suggests a generalization
of Wick rotation. The string world sheets in Euclidian regions would define the analogs of the
minimal surfaces in Euclidian AdS5 and the string world sheets in Minkowskian regions the analogs
of Minkowskian AdS5. The magnitudes of the areas would be identical so that they might be seen
as analytical continuations of each other in some sense. Note that partonic 2-surfaces would belong
to the intersection of Euclidian and Minkowskian space-time regions. This argument tells nothing
about possible momentum space analog of M4 ⇥ CP2.



Chapter 3

Construction of Configuration
Space Kähler Geometry from
Symmetry Principles

3.1 Introduction

The most general expectation is that configuration space (”world of classical worlds” (WCW))
can be regarded as a union of coset spaces which are infinite-dimensional symmetric spaces with
Kähler structure: C(H) = [iG/H(i). Index i labels 3-topology and zero modes. The group G,
which can depend on 3-surface, can be identified as a subgroup of di↵eomorphisms of �M4

+ ⇥CP2

and H must contain as its subgroup a group, whose action reduces to Diff(X3) so that these
transformations leave 3-surface invariant.

In zero energy ontology (ZEO) 3-surface corresponds to a pair of space-like 3-surfaces at the
opposide boundaries of causal diamond (CD) and thus to a more or less unique extremal of Kähler
action. The interpretation would be in terms of holography. One can also consider the inclusion
of the light-like 3-surfaces at which the signature of the induced metric changes to the 3-surface so
that it would become connected.

The task is to identify plausible candidate for G and H and to show that the tangent space
of the WCW allows Kähler structure, in other words that the Lie-algebras of G and H(i) allow
complexification. One must also identify the zero modes and construct integration measure for the
functional integral in these degrees of freedom. Besides this one must deduce information about the
explicit form of WCW metric from symmetry considerations combined with the hypothesis that
Kähler function is Kähler action for a preferred extremal of Kähler action. One must of course
understand what ”preferred” means.

3.1.1 General Coordinate Invariance and generalized quantum gravita-
tional holography

The basic motivation for the construction of WCW geometry is the vision that physics reduces
to the geometry of classical spinor fields in the infinite-dimensional WCW of 3-surfaces of M4

+ ⇥
CP2 or of M4 ⇥ CP2. Hermitian conjugation is the basic operation in quantum theory and its
geometrization requires that WCW possesses Kähler geometry. Kähler geometry is coded into
Kähler function.

The original belief was that the four-dimensional general coordinate invariance of Kähler func-
tion reduces the construction of the geometry to that for the boundary of configuration space
consisting of 3-surfaces on �M4

+ ⇥ CP2, the moment of big bang. The proposal was that Kähler
function K(Y 3) could be defined as a preferred extremal of so called Kähler action for the unique
space-time surface X4(Y 3) going through given 3-surface Y 3 at �M4

+ ⇥CP2. For Di↵4 transforms
of Y 3 at X4(Y 3) Kähler function would have the same value so that Di↵4 invariance and degener-
acy would be the outcome. The proposal was that the preferred extremals are absolute minima of
Kähler action.
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This picture turned out to be too simple.

1. I have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kähler action and will not repeat
what has been said. Note that the inclusion of space-like ends at boundaries of CD gives
analog of Wilson loop.

2. It has also become obvious that the gigantic symmetries associated with �M4
± ⇥ CP2 ⇢

CD ⇥ CP2 manifest themselves as the properties of propagators and vertices. Cosmological
considerations, Poincare invariance, and the new view about energy favor the decomposition
of the WCW to a union of configuration spaces assignable to causal diamonds CDs defined
as intersections of future and past directed light-cones. The minimum assumption is that
CDs label the sectors of CH: the nice feature of this option is that the considerations of
this chapter restricted to �M4

+ ⇥ CP2 generalize almost trivially. This option is beautiful
because the center of mass degrees of freedom associated with the di↵erent sectors of CH
would correspond to M4 itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 !
X4(X3) must be replaced by a bijective correspondence in the sense that X3

l as light-like 3-surface
is unique among all its Di↵4 translates. This also allows physically preferred ”gauge fixing” allowing
to get rid of the mathematical complications due to Di↵4 degeneracy. The internal geometry of
the space-time sheet must define the preferred 3-surface X3

l .
The realization of this vision means a considerable mathematical challenge. The e↵ective metric

2-dimensionality of 3-dimensional light-like surfaces X3
l of M4 implies generalized conformal and

symplectic symmetries allowing to generalize quantum gravitational holography from light like
boundary so that the complexities due to the non-determinism can be taken into account properly.

3.1.2 Light like 3-D causal determinants and e↵ective 2-dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic ex-

amples are boundaries and elementary particle horizons (parton orbits) at which Minkowskian
signature of the induced metric transforms to Euclidian one. This brings in a second conformal
symmetry related to the metric 2-dimensionality of the 3-D light-like 3-surface. This symmetry
is analogous to TGD counterpart of the Kac Moody symmetry of string models and seems to
be associated with quantum criticality implying non-uniqueness of the space-time surface with
given space-like ends at boundaries of CD. Critical deformations would be Kac-Moody type trans-
formation preserving the light-likeness of the parton orbits. The challenge is to understand the
relationship of this symmetry to WCW geometry and the interaction between the two conformal
symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior
of space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman
diagrams in 4-D sense could be identified as regions of space-time surface having Euclidian
signature.

2. One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the inter-

sections of X4(X3
l )\CD⇥CP2 where the causal diamond CD is defined as the intersections

of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the di↵erences of super-symplectic and Super
Kac-Moody type Super Virasoro generators annihilated physical states. This construction in
turn led to the realization that WCW for fixed values of zero modes - in particular the values
of the induced Kähler form of �M4

± ⇥ CP2 - allows identification as a coset space obtained
by dividing the symplectic group of �M4

± ⇥ CP2 with Kac-Moody group, whose generators
vanish at X2 = X3

l ⇥ �M4
±⇥CP2. One can say that quantum fluctuating degrees of freedom

in a very concrete sense correspond to the local variant of S2 ⇥ CP2.
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The analog of conformal invariance in the light-like direction of X3
l and in the light-like radial

direction of �M4
± suggests that the data at either X3 or X3

l should be enough to determine WCW
geometry. This implies that the relevant data is contained to their intersection X2 at least for
finite regions of X3. This is the case if the deformations of X3

l not a↵ecting X2 and preserving
light likeness corresponding to zero modes or gauge degrees of freedom and induce deformations
of X3 also acting as zero modes. The outcome is e↵ective 2-dimensionality. One must be however
cautious in order to not make over-statements. The reduction to 2-D theory in global sense would
trivialize the theory and the reduction to 2-D theory must takes places for finite region of X3 only
so one has in well defined sense three-dimensionality in discrete sense. A more precise formulation
of this vision is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-
CD:s brings in improved measurement resolution and means also that e↵ective 2-dimensionality is
realized in the scale of sub-CD only.

Experience has however taught to be extremely cautious: it could also be that in ZEO the
unions of the space-like 3-surfaces at the ends of CD and of the light-like partonic orbits at which
the signature of the induced metric changes are the basic objects analogous to Wilson loops. In
this case the notion of e↵ective 2-dimensionality is not so clear. Also in this case the Kac-Moody
type symmetry preserving the light-likeness of partonic orbits could reduce the additional degrees
of freedom to a finite number of conformal equivalence classes of partonic orbits for given pair of
3-surfaces.

One cannot over-emphasize the importance of the e↵ective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for WCW metric involving 3-dimensional integrals over X3 ⇢
M4

+ ⇥ CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by preferred
extremal property of X4(X3

l ) once X3
l is fixed and one can hope that this mapping is one-to-one.

3.1.3 Magic properties of light cone boundary and isometries of WCW

The special conformal, metric and symplectic properties of the light cone of four-dimensional
Minkowski space: �M4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!)
sphere allowing infinite-dimensional group of conformal transformations and isometries(!) as well
as Kähler structure. Kähler structure is not unique: possible Kähler structures of light cone
boundary are parameterized by Lobatchevski space SO(3, 1)/SO(3). The requirement that the
isotropy group SO(3) of S2 corresponds to the isotropy group of the unique classical 3-momentum
assigned to X4(Y 3) defined as a preferred extremum of Kähler action, fixes the choice of the
complex structure uniquely. Therefore group theoretical approach and the approach based on
Kähler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light
cone boundary. Even more, in case of �M4

+⇥CP2 the isometry group of �M4
+ becomes local-

ized with respect to CP2! Furthermore, the Kähler structure of �M4
+ defines also symplectic

structure.

Hence any function of �M4
+ ⇥ CP2 would serve as a Hamiltonian transformation acting in

both CP2 and �M4
+ degrees of freedom. These transformations obviously di↵er from ordinary

local gauge transformations. This group leaves the symplectic form of �M4
+ ⇥ CP2, defined

as the sum of light cone and CP2 symplectic forms, invariant. The group of symplectic
transformations of �M4

+ ⇥ CP2 is a good candidate for the isometry group of the WCW.

2. The approximate symplectic invariance of Kähler action is broken only by gravitational e↵ects
and is exact for vacuum extremals. If Kähler function were exactly invariant under the
symplectic transformations of CP2, CP2 symplectic transformations wiykd correspond to
zero modes having zero norm in the Kähler metric of WCW. This does not make sense since
symplectic transformations of �M4 ⇥ CP2 actually parameterize the quantum fluctuation
degrees of freedom.

3. The groups G and H, and thus WCW itself, should inherit the complex structure of the
light cone boundary. The di↵eomorphims of M4 act as dynamical symmetries of vacuum
extremals. The radial Virasoro localized with respect to S2 ⇥ CP2 could in turn act in zero
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modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

3.1.4 Symplectic transformations of �M4

+

⇥ CP
2

as isometries of WCW

The symplectic transformations of �M4
+ ⇥ CP2 are excellent candidates for inducing symplectic

transformations of the WCW acting as isometries. There are however deep di↵erences with respect
to the Kac Moody algebras.

1. The conformal algebra of the WCW is gigantic when compared with the Virasoro + Kac
Moody algebras of string models as is clear from the fact that the Lie-algebra generator of a
symplectic transformation of �M4

+⇥CP2 corresponding to a Hamiltonian which is product of
functions defined in �M4

+ and CP2 is sum of generator of �M4
+-local symplectic transformation

of CP2 and CP2-local symplectic transformations of �M4
+. This means also that the notion

of local gauge transformation generalizes.

2. The physical interpretation is also quite di↵erent: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy
and momentum at quantum level are predicted. The appearance of a new kind of angular
momentum not assignable to elementary particles might shed some light to the longstanding
problem of baryonic spin (quarks are not responsible for the entire spin of proton). The
possibility of a new kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with �M4
+⇥CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic di↵erence. For instance, in the case of CP2 symplectic
transformations localized with respect to �M4

+ the central extension would vanish for Cartan
algebra, which means a profound physical di↵erence. For �M4

+ ⇥ CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that �M4
+-local CP2 symplectic transformations are accompanied by CP2 local

�M4
+ symplectic transformations. Therefore the Poisson bracket of two �M4

+ local CP2

Hamiltonians involves a term analogous to a central extension term symmetric with respect
to CP2 Hamiltonians, and resulting from the �M4

+ bracket of functions multiplying the
Hamiltonians. This additional term could give the entire bracket of the WCW Hamiltonians
at the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish
and have a form essentially identical with Kac Moody central extension because it is indeed
symmetric with respect to indices of the symplectic group.

The most natural option is that symplectic and Kac-Moody algebras together generate the
isometry algebra and that the corresponding transformations leaving invariant the partonic 2-
surfaces and their 4-D tangent space data act as gauge transformations and a↵ect only zero modes.

3.1.5 Does the symmetric space property reduce to coset construction
for Super Virasoro algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h , [t, t] ⇢ h , [h, t] ⇢ t . (3.1.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

WCW geometry allows two super-conformal symmetries assignable the coset space decomposi-
tion G/H for a sector of WCW with fixed values of zero moes. One can assign to the tangent space
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algebras g resp. h of G resp. H analogous to Kac-Moody algebras super Virasoro algebras and
construct super-conformal representation as a coset representation meaning that the di↵erences
of super Virasoro generators annihilate the physical states. This obviously generalizes Goddard-
Olive-Kent construction [A58].

The identification of the two algeras is not a mechanical task and has involved a lot of trial
and erroring. The algebra g should be be spanned by the generators of super-symplectic algebra
of light-cone boundary and by the Kac-Moody algebra acting on light-like orbits of partonic 2-
surfaces. The sub-algebra h should be spanned by generators which vanish for a preferred point of
WCW analogous to origin of CP2 = SU(3)/U(2). Now this point would correspond to maximum
or minimum of Kähler function (no saddle points are allowed if the WCW metric has definite
signature). In hindsight it is obvious that the generators of both symplectic and Kac-Moody
algebras are needed to generate g and h: already the e↵ective 2-dimensionality meaning that 4-D
tangent space data of partonic surface matters requires this.

The maxima of Kähler function could correspond to this kind of points (pairs formed by 3-
surfaces at di↵erent ends of CD in ZEO) and could play also an essential role in the integration
over WCW by generalizing the Gaussian integration of free quantum field theories. It took quite
a long time to realize that Kähler function must be identified as Kähler action for the Euclidian
region of preferred extremal. Kähler action for Minkowskian regions gives imaginary contribution
to the action exponential and has interpretation in terms of Morse function. This part of Kähler
action can have and is expected to have saddle points and to define Hessian with signature which
is not positive definite.

3.1.6 What e↵ective 2-dimensionality and holography really mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points,
which directly relate to what one means with holography.

1. Holography suggests that light-like 3-surfaces with fixed ends give rise to same WCW metric
and the deformations of these surfaces by Kac-Moody algebra correspond to zero modes
just like the interior degrees of freedom for space-like 3-surface do. The same would be
true for space-like 3-surfaces at the ends of space-time surface with respect to symplectic
transformations.

2. The non-trivial action of Kac-Moody algebra in the interior of X3
l together with e↵ective

2-dimensionality and holography would encourage the interpretation of Kac-Moody symme-
tries acting trivially at X2 as gauge symmetries. Light-like 3-surfaces having fixed partonic
2-surfaces at their ends would be equivalent physically and e↵ective 2-dimensionality and
holography would be realized modulo gauge transformations. As a matter fact, the action
on WCW metric would be a change of zero modes so that one could identify it as analog
of conformal scaling. The action of symplectic transformations vanishing in the interior of
space-like 3-surface at the end of space-time surface a↵ects only zero modes.

3.1.7 Attempts to identify WCW Hamiltonians

I have made several attempts to identify WCW Hamiltonians. The first two candidates referred
to as magnetic and electric Hamiltonians, emerged in a relatively early stage. The third candidate
is based on the formulation of quantum TGD using 3-D light-like surfaces identified as orbits of
partons. The proposal is out-of-date but the most recent proposal is obtained by a very straight-
forward generalization from the proposal for magnetic Hamiltonians discussed below.

Magnetic Hamiltonians

Assuming that the elements of the radial Virasoro algebra of �M4
+ have zero norm, one ends

up with an explicit identification of the symplectic structures of WCW. There is almost unique
identification for the symplectic structure. WCW counterparts of �M4 ⇥ CP2 Hamiltonians are
defined by the generalized signed and and unsigned Kähler magnetic fluxes
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Qm(HA, X2) = Z
R
X2 HAJ

p
g2d2x ,

Q+
m(HA, rM ) = Z

R
X2 HA|J |

p
g2d2x ,

J ⌘ ✏↵�J↵� .

HA is CP2 Hamiltonian multiplied by a function of coordinates of light cone boundary belonging
to a unitary representation of the Lorentz group. Z is a conformal factor depending on symplectic
invariants. The symplectic structure is induced by the symplectic structure of CP2.

The most general flux is superposition of signed and unsigned fluxes Qm and Q+
m.

Q↵,�
m (HA, X

2) = ↵Qm(HA, X
2) + �Q+

m(HA, X
2) .

Thus it seems that symmetry arguments fix the form of the WCW metric apart from the presence
of a conformal factor Z multiplying the magnetic flux and the degeneracy related to the signed
and unsigned fluxes.

Generalization

The generalization for definition WCW super-Hamiltonians defining WCW gamma matrices is
discussed in detail in [K80] feeds in the wisdom gained about preferred extremals of Kähler action
and solutions of the modified Dirac action: in particular, about their localization at string worlds
sheets (right handed neutrino could be an exception).

The basic formulas generalize as such: the only modification is that the super-Hamiltonian of
�M4

±⇥CP2 at given point of partonic 2-surface is replaced with the Noether super charge associated
with the Hamiltonian obtained by integrating the 1-D super current over string emanating from
partonic 2-surface. Right handed neutrino spinor is replaced with any mode of the modified Dirac
operator localized at string world sheet in the case of Kac-Moody sub-algebra of super-symplectic
algebra corresponding to symplectic isometries at light-cone boundary and CP2. In the case of
right- handed neutrino one obtains entire super-symplectic algebra and the direct sum of these
algebras is used to construct physical states. This step is analogous to the replacement of point
like particle with string.

The resulting super Hamiltonians define WCW gamma matrices. They are labelled by two
conformal weights. The first one is the conformal weight associated with the light-like coordinate
of �M4

± ⇥ CP2. Second conformal weight is associated with the spinor mode and the coordinate
along stringy curve. One cannot exclude the possibility that the two conformal weights have
same value. E↵ective 2-dimensionality and the fact that string coordinate cannot be always radial
light-like coordinate would suggest that they are independent.

The presence of two conformal weights is in accordance with the idea that a generalization of
conformal invariance to 4-D situation is in question. If Yangian extension of conformal symmetries
is possible and would bring an additional integer n telling the degree of multilocality of Yangian
generators defined as the number of partonic 2-surfaces at which the generator acts. For conformal
algebra degree of multilocality equals to n = 1.

3.1.8 For the reader

Few words about the representation of ideas are in order. For a long time the books about TGD
served as kind of lab note books - a bottom-up representation providing kind of a ladder making
clear the evolution of ideas. This led gradually to a rather chaotic situation in which it was di�cult
for me to control the internal consistency and for the possible reader to distinguish between the big
ideas and ad hoc guesses, most of them related to the detailed realization of big visions. Therefore
I have made now and the the decision to clean up a lot of the ad hoc stu↵. In this process I have
also changed the representation so that it is more top-down and tries to achieve over-all views.

There are several visions about what TGD is and I have worked hardly to achieve a fusion of
these visions. Hence simple linear representation in which reader climbs to a tree of wisdom is
impossible. I must summarize overall view from the beginning and refer to the results deduced in
chapters towards the end of the book and also to ideas discussed in other books. For instance, the
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construction of WCW (”world of classical worlds” (WCW)) spinor structure discussed in chapters
[K9, K18, K69] provides the understanding necessary to make the construction of configuration
space geometry more detailed. Also number theoretical vision discussed in another book [K49] is
necessary. Somehow it seems that a graphic representation emphasizing visually the big picture
should be needed to make the representation more comprehensible.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found at http://www.tgdtheory.fi/
cmaphtml.html [L13]. Pdf representation of same files serving as a kind of glossary can be found
at http://www.tgdtheory.fi/tgdglossary.pdf [L14]. The topics relevant to this chapter are
given by the following list.

• Geometry of WCW [L20]

• Zero Energy Ontology (ZEO) [L44]

• Symmetries of WCW [L34]

• TGD as ATQFT [L36]

• Vacuum functional in TGD [L40]

3.2 How to generalize the construction of WCW geometry
to take into account the classical non-determinism?

If the imbedding space were H+ = M4
+ ⇥ CP2 and if Kähler action were deterministic, the con-

struction of WCW geometry reduces to �M4
+ ⇥ CP2. Thus in this limit quantum holography

principle [B12, B23] would be satisfied also in TGD framework and actually reduce to the general
coordinate invariance. The classical non-determinism of Kähler action however means that this
construction is not quite enough and the challenge is to generalize the construction.

3.2.1 Quantum holography in the sense of quantum gravity theories

In string theory context quantum holography is more or less synonymous with Maldacena con-
jecture Maldacena which (very roughly) states that string theory in Anti-de-Sitter space AdS is
equivalent with a conformal field theory at the boundary of AdS. In purely quantum gravitational
context [B12] , quantum holography principle states that quantum gravitational interactions at
high energy limit in AdS can be described using a topological field theory reducing to a conformal
(and non-gravitational) field theory defined at the time like boundary of the AdS. Thus the time
like boundary plays the role of a dynamical hologram containing all information about correlation
functions of d+ 1 dimensional theory. This reduction also conforms with the fact that black hole
entropy is proportional to the horizon area rather than the volume inside horizon.

Holography principle reduces to general coordinate invariance in TGD. If the action principle
assigning space-time surface to a given 3-surface X3 at light cone boundary were completely de-
terministic, four-dimensional general coordinate invariance would reduce the construction of the
configuration geometry for the space of 3-surfaces in M4

+⇥CP2 to the construction of the geometry
at the boundary of WCW consisting of 3-surfaces in �M4

+ ⇥ CP2 (moment of big bang). Also the
quantum theory would reduce to the boundary of the future light cone.

The classical non-determinism of Kähler action however implies that quantum holography in
this strong form fails. This is very desirable from the point of view of both physics and consciousness
theory. Classical determinism would also mean that time would be lost in TGD as it is lost in GRT.
Classical non-determinism is also absolutely essential for quantum consciousness and makes possible
conscious experiences with contents localized into finite time interval despite the fact that quantum
jumps occur between WCW spinor fields defining what I have used to call quantum histories.
Classical non-determinism makes it also possible to generalize quantum-classical correspondence
in the sense that classical non-determinism at the space-time level provides correlate for quantum
non-determinism. The failure of classical determinism is a di�cult challenge for the construction
of WCW geometry. One might however hope that the notion of quantum holography generalizes.

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
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3.2.2 How the classical determinism fails in TGD?

One might hope that determinism in a generalized sense might be achieved by generalizing the
notion of 3-surface by allowing unions of space-like 3-surfaces with time like separations with
very strong but not complete correlations between the space-like 3-surfaces. In this case the non-
determinism would mean that the 3-surfaces Y 3 at light cone boundary correspond to at most
enumerable number of preferred extremals X4(Y 3) of Kähler action so that one would get finite
or at most enumerably infinite number of replicas of a given WCW region and the construction
would still reduce to the light cone boundary.

1. This is probably quite too simplistic view. Any 4-surface which has CP2 projection which
belongs to so called Lagrange manifold of CP2 having by definition vanishing induced Kähler
form is vacuum extremal. Thus there is an infinite variety of 6-dimensional sub-manifolds of
H for which all extremals of Kähler action are vacua.

2. CP2 type vacuum extremals are di↵erent since they possess non-vanishing Kähler form and
Kähler action. They are identifiable as classical counterparts of elementary particles haveM4

+

projection which is a random light like curve (this in fact gives rise to conformal invariance
identifiable as counterpart of quaternion conformal invariance). Thus there are good reasons
to suspect that classical non-determinism might destroy the dream about complete reduction
to the light cone boundary.

3. The wormhole contacts connecting di↵erent space-time sheets together can be seen as pieces
of CP2 type extremals and one expects that the non-determinism is still there and that the
metrically 2-dimensional elementary particle horizons (light like 3-surfaces of H surrounding
wormhole contacts and having time-like M4

+ projection) might be a crucial element in the
understanding of quantum TGD. The non-determinism of CP2 type extremals is absolutely
crucial for the ordinary elementary particle physics. It seems that the conformal symmetries
responsible for the ordinary elementary particle quantum numbers acting in these degrees of
freedom do not contribute to the WCW metric line element.

4. The possibility of space-time sheets with a negative time orientation with ensuing negative
sign of classical energy is a further blow against �M4

+ reductionism. Space-time sheets can
be created as pairs of positive and negative energy space-time sheet from vacuum and this
forces to modify radically the ontology of physics. Crossing symmetry allows to interpret
particle reactions as a creation of zero energy states from vacuum, and the identification of
the gravitational energy as the di↵erence between positive and negative energies of matter
supports the view that the net inertial (conserved Poincare-) energy of the universe van-
ishes both in quantal and classical sense. This option resolves unpleasant questions about
net conserved quantum numbers of Universe, and provides an elegant interpretation of the
vacuum extremals as correlates for systems with vanishing Poincare energy. This option
is the only possible alternative from the point of view of TGD inspired cosmology where
Robertson-Walker metrics are vacuum extremals with respect to inertial energy. In particu-
lar, super-symplectic invariance transforms to a fundamental symmetry of elementary particle
physics besides the conformal symmetry associated with 3-D light like causal determinants
which means a dramatic departure from string models unless it is somehow equivalent with
the super-symplectic symmetry.

The treatment of the non-determinism in a framework in which the prediction of time evolution
is seen as initial value problem, seems to be di�cult. Also the notion of WCW becomes a messy
concept. Zero energy ontology changes the situation completely. Light-like 3-surfaces become
representations of generalized Feynman diagrams and brings in the notion of finite time resolution.
One obtains a direct connection with the concepts of quantum field theory with path integral with
cuto↵ replaced with a sum over various preferred extremals with cuto↵ in time resolution.

3.2.3 The notions of imbedding space, 3-surface, and configuration space

The notions of imbedding space, 3-surface (and 4-surface), and configuration space (”world of
classical worlds”, WCW) are central to quantum TGD. The original idea was that 3-surfaces are
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space-like 3-surfaces of H = M4 ⇥ CP2 or H = M4
+ ⇥ CP2, and WCW consists of all possible

3-surfaces in H. The basic idea was that the definition of Kähler metric of WCW assigns to
each X3 a unique space-time surface X4(X3) allowing in this manner to realize general coordinate
invariance. During years these notions have however evolved considerably. Therefore it seems
better to begin directly from the recent picture.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision
[K51, K52, K50] .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of zero energy ontology [K9, K13] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+\M4
� of future and past directed light-cones

of M4⇥CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip
of CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [K33]
follows as a consequence. The upper resp. lower light-like boundary �M4

+ ⇥ CP2 resp.
�M4

�⇥CP2 of CD can be regarded as the carrier of positive resp. negative energy part of the
state. All net quantum numbers of states vanish so that everything is creatable from vacuum.
Space-time surfaces assignable to zero energy states would would reside inside CD ⇥ CP2s
and have their 3-D ends at the light-like boundaries of CD⇥CP2. Fractal structure is present
in the sense that CDs can contains CDs within CDs, and measurement resolution dictates
the length scale below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K17] led to a further generalization of
the notion of imbedding space. Generalized imbedding space is obtained by gluing together
Cartesian products of singular coverings and factor spaces of CD and CP2 to form a book
like structure. The particles at di↵erent pages of this book behave like dark matter relative
to each other. This generalization also brings in the geometric correlate for the selection of
quantization axes in the sense that the geometry of the sectors of the generalized imbedding
space with non-standard value of Planck constant involves symmetry breaking reducing the
isometries to Cartan subalgebra. Roughly speaking, each CD and CP2 is replaced with a
union of CDs and CP2s corresponding to di↵erent choices of quantization axes so that no
breaking of Poincare and color symmetries occurs at the level of entire WCW.

4. The construction of quantum theory at partonic level brings in very important delicacies
related to the Kähler gauge potential of CP2. Kähler gauge potential must have what one
might call pure gauge parts inM4 in order that the theory does not reduce to mere topological
quantum field theory. Hence the strict Cartesian product structure M4 ⇥ CP2 breaks down
in a delicate manner. These additional gauge components -present also in CP2- play key role
in the model of anyons, charge fractionization, and quantum Hall e↵ect [K37] .

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to
Equivalence implied by General Coordinate Invariance. There was a problem related to the
realization of General Coordinate Invariance since it was not at all obvious why the preferred
extremal X4(Y 3) for Y 3 at X4(X3) and Di↵4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as
basic dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D
sense (obviously the identification resolves the above mentioned problem) and understanding
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the conformal symmetries of the theory. On basis of these symmetries light-like 3-surfaces
can be regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional.
It is however important to emphasize that this indeed holds true only locally. At the level of
WCWmetric this means that the components of the Kähler form and metric can be expressed
in terms of data assignable to 2-D partonic surfaces. It is however essential that information
about normal space of the 2-surface is needed.

3. At some stage came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role
of vertices to form what I call generalized Feynman diagrams. The ends of lines are located
at boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams.
As the resolution is improved, new sub-Feynman diagrams emerge so that e↵ective 2-D
character holds true in discretized sense and in given resolution scale only.

4. A further complication relates to the hierarchy of Planck constants forcing to generalize the
notion of imbedding space and also to the fact that for non-standard values of Planck constant
there is symmetry breaking due to preferred planeM2 preferred homologically trivial geodesic
sphere of CP2 having interpretation as geometric correlate for the selection of quantization
axis. For given sector of CH this means union over choices of this kind.

The basic vision forced by the generalization of General Coordinate Invariance has been that
space-time surfaces correspond to preferred extremals X4(X3) of Kähler action and are thus analo-
gous to Bohr orbits. Kähler function K(X3) defining the Kähler geometry of the world of classical
worlds would correspond to the Kähler action for the preferred extremal. The precise identification
of the preferred extremals actually has however remained open.

The obvious but rather ad hoc guess motivated by physical intuition was that preferred ex-
tremals correspond to the absolute minima of Kähler action for space-time surfaces containing X3.
This choice has some nice implications. For instance, one can develop an argument for the existence
of an infinite number of conserved charges. If X3 is light-like surface- either light-like boundary
of X4 or light-like 3-surface assignable to a wormhole throat at which the induced metric of X4

changes its signature- this identification circumvents the obvious objections. This option however
failed to have a direct analog in the p-adic sectors of the world of classical worlds (WCW). The
reason is that minimization does not make sense for the p-adic valued counterpart of Kähler action
since it is not even well-defined although the field equations make sense p-adically. Therefore, if
absolute minimization makes sense it must have expression as purely algebraic conditions.

For this reason it is better to talk just about preferred extremals of Kähler action and accept
as the fact that there are several proposals for what this notion could mean. For instance, one can
consider the identification of space-time surface as quaternionic sub-manifold meaning that tangent
space of space-time surface can be regarded as quaternionic sub-manifold of complexified octonions
defining tangent space of imbedding space. One manner to define ”quaternionic sub-manifold” is
by introducing octonionic representation of imbedding space gamma matrices identified as tangent
space vectors. It must be also assumed that the tangent space contains a preferred complex
(commutative) sub-space at each point and defining an integrable distribution having identification
as string world sheet (also slicing of space-time sheet by string world sheets can be considered).
Associativity and commutativity would define the basic dynamical principle. A closely related
approach is based on so called Hamilton-Jacobi structure [K5] defining also this kind of slicing and
the approaches could be equivalent. A further approach is based on the identification of preferred
extremal property as quantum criticality [K5].

The notion of number theoretical compactification led to important progress in the understand-
ing of the preferred extremals and the conjectures were consistent with what is known about the
known extremals.

1. The conclusion was that one can assign to the 4-D tangent space T (X4(X3
l )) ⇢ M8 a subspace

M2(x) ⇢ M4 having interpretation as the plane of non-physical polarizations. This in the
case that the induced metric has Minkowskian signature. If not, and if co-hyper-quaternionic
surface is in question, similar assigned should be possible in normal space. This means a close
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connection with super string models. Geometrically this would mean that the deformations
of 3-surface in the plane of non-physical polarizations would not contribute to the line element
of WCW. This is as it must be since complexification does not make sense in M2 degrees of
freedom.

2. In number theoretical framework M2(x) has interpretation as a preferred hyper-complex sub-
space of hyper-octonions defined as 8-D subspace of complexified octonions with the property
that the metric defined by the octonionic inner product has signature of M8. The condition
M2(x) ⇢ T (X4(X3

l ))) in principle fixes the tangent space at X3
l , and one has good hopes

that the boundary value problem is well-defined and could fix X4(X3) at least partially as
a preferred extremal of Kähler action. This picture is rather convincing since the choice
M2(x) ⇢ M4 plays also other important roles.

3. At the level of H the counterpart for the choice of M2(x) seems to be following. Suppose
that X4(X3

l ) has Minkowskian signature. One can assign to each point of the M4 projection
PM4(X4(X3

l )) a sub-space M2(x) ⇢ M4 and its complement E2(x), and the distributions
of these planes are integrable and define what I have called Hamilton-Jacobi coordinates
which can be assigned to the known extremals of Kähler with Minkowskian signature. This
decomposition allows to slice space-time surfaces by string world sheets and their 2-D partonic
duals. Also a slicing to 1-D light-like surfaces and their 3-D light-like duals Y 3

l parallel to
X3

l follows under certain conditions on the induced metric of X4(X3
l ). This decomposition

exists for known extremals and has played key role in the recent developments. Physically it
means that 4-surface (3-surface) reduces e↵ectively to 3-D (2-D) surface and thus holography
at space-time level.

4. The weakest form of number theoretic compactification [K52] states that light-like 3-surfaces
X3 ⇢ X4(X3) ⇢ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfacesX3 ⇢ X4(X3) ⇢ M4⇥CP2, whereX4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⇢ M8 is a preferred extremal
of Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 ⇥ E4,
where M4 corresponds to hyper-quaternions. The conjecture would be that the value of the
Kähler action in M8 is same as in M4 ⇥ CP2: in fact that 2-surface would have identical
induced metric and Kähler form so that this conjecture would follow trivial. M8�H duality
would in this sense be Kähler isometry.

The study of the modified Dirac equation meant further steps of progress and lead to a rather
detailed view about what preferred extremals are.

1. The detailed construction of the generalized eigen modes of the modified Dirac operator DK

associated with Kähler action [K9] relies on the vision that the generalized eigenvalues of this
operator code for information about preferred extremal of Kähler action. The view about
TGD as almost topological QFT is realized if the eigenmodes correspond to the solutions
of DK , which are e↵ectively 3-dimensional. Otherwise almost topological QFT property
would require Chern-Simons action alone and this choice is definitely un-physical. The first
guess was that the eigenmodes are restricted to X3

l and therefore analogous to spinorial
shock waves. As I realized that number theoretical compactification requires the slicing of
X4(X3

l ) by light-like 3-surfaces Y 3
l parallel to X3

l , it became clear that super-conformal
gauge invariance with respect to the coordinate labeling the slices is a more natural manner
to realized e↵ective 3-dimensionality and guarantees that Y 3

l is gauge equivalent with X3
l

(General Coordinate Invariance).

2. The eigen modes of the modified Dirac operator DK have the defining property that they
are localized in regions of X3

l , where the induced Kähler gauge field is non-vanishing. This
guarantees that the number of generalized eigen modes is finite so that Dirac determinant is
also finite and algebraic number if eigenvalues are algebraic numbers, and therefore makes
sense also in p-adic context although Kähler action itself does not make sense p-adically.

3. The construction of WCW geometry in terms of modified Dirac action strengthens also the
boundary conditions to the condition that there exists space-time coordinates in which the
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induced CP2 Kähler form and induced metric satisfy the conditions Jni = 0, gni = 0 hold at
X3

l . One could say that at X3
l situation is static both metrically and for the Maxwell field

defined by the induced Kähler form.

4. The final step in the rapid evolution of ideas that too place during three months - at least I
hope so since I do not want to continue this updating endlessly - was the realization that the
introduction of imaginary CP breaking instanton part to the Kähler action is possible and also
necessary if one wants a stringy variant of Feynman rules. Imaginary part does not contribute
to the WCW metric. This enriches the spectrum of the modified Dirac operator with an
infinite number of conformal excitations breaking the e↵ective 2-dimensionality of 3-surfaces
and exact holography. Conformal excitations make possible stringy Feynman diagrammatics
[K12] . A breaking of e↵ective 3-dimensionality of space-time surface comes through the
non-determinism of Kähler action which indeed is the mechanism breaking the e↵ective 2-
dimensionality. Dirac determinant can be defined in terms of zeta function regularization
using Riemann Zeta. Finite measurement resolution realized in terms of braids defined on
basis of purely physical criteria however forces a cuto↵ in conformal weight and finiteness so
that number theoretical universality is not lost.

5. This picture relying crucially on the the slicing of X4(X3) did not yet fix the definition of
preferred extremals analytically at the level of field equations. The next step of progress was
the realization that the requirement that the conservation of the Noether currents associated
with the modified Dirac equation requires that the second variation of the Kähler action
vanishes. In strongest form this condition would be satisfied for all variations and in weak
sense only for those defining dynamical symmetries. The interpretation is as space-time
correlate for quantum criticality and the vacuum degeneracy of Kähler action makes the
criticality plausible. A generalization of the ideas of the catastrophe theory to infinite-
dimensional context results [K22] . These conditions make sense also in p-adic context and
have a number theoretical universal form.

Although the details of this vision might change it can be defended by its ability to fuse together
all great visions about quantum TGD. In the sequel the considerations are restricted to 3-surfaces
in M4

+ ⇥ CP2. The basic outcome is that Kähler metric is expressible using the data at partonic
2-surfaces X2 ⇢ �M4

+ ⇥ CP2. The generalization to the actual physical situation requires the
replacement of X2 ⇢ �M4

±⇥CP2 with unions of partonic 2-surfaces located at light-like boundaries
of CDs and sub-CDs.

The notion of WCW

From the beginning there was a problem related to the precise definition of WCW (”world of
classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ⇥ CP2 or
M4

+ ⇥ CP2 or perhaps something more delicate.

1. For a long time I believed that the question ”M4
+ or M4?” had been settled in favor of M4

+

by the fact that M4
+ has interpretation as empty Roberson-Walker cosmology. The huge

conformal symmetries assignable to �M4
+⇥CP2 were interpreted as cosmological rather than

laboratory symmetries. The work with the conceptual problems related to the notions of
energy and time, and with the symmetries of quantum TGD, however led gradually to the
realization that there are strong reasons for considering M4 instead of M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of WCW or ”world of
classical worlds” (WCW). The spaces CD⇥CP2 regarded as subsets of H defined the sectors
of WCW.

3. This framework allows to realize the huge symmetries of �M4
± ⇥CP2 as isometries of WCW.

The gigantic symmetries associated with the �M4
± ⇥ CP2 are also laboratory symmetries.

Poincare invariance fits very elegantly with the two types of super-conformal symmetries of
TGD. The first conformal symmetry corresponds to the light-like surfaces �M4

± ⇥ CP2 of
the imbedding space representing the upper and lower boundaries of CD. Second conformal
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symmetry corresponds to light-like 3-surfaceX3
l , which can be boundaries ofX4 and light-like

surfaces separating space-time regions with di↵erent signatures of the induced metric. This
symmetry is identifiable as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that WCW (WCW) is a union of WCWs associated with
the spaces CD ⇥ CP2. CDs can contain CDs within CDs so that a fractal like hierarchy having
interpretation in terms of measurement resolution results. Since the complications due to p-adic
sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces to
a high degree to a study of a simple special case �M4

+ ⇥ CP2.
A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holog-
raphy is accepted- can be seen as a fundamental symplectic invariant so that the values of
✏↵�J↵� at X2 define local symplectic invariants not subject to quantum fluctuations in the
sense that they would contribute to the WCW metric. Hence only induced metric corre-
sponds to quantum fluctuating degrees of freedom at WCW level and TGD is a genuine
theory of gravitation at this level.

2. WCW can be divided into slices for which the induced Kähler forms of CP2 and �M4
± at the

partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic group
of �M4

± ⇥ CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall
the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-WCW associated with
given CD in terms of the generalized coset construction for super-symplectic and super Kac-
Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces). WCW in
quantum fluctuating degrees of freedom for given values of zero modes can be regarded as
being obtained by dividing symplectic group with Kac-Moody group. Equivalently, the local
coset space S2⇥CP2 is in question: this was one of the first ideas about WCW which I gave
up as too naive!

4. Generalized coset construction and coset space structure have very deep physical meaning
since they realize Equivalence Principle at quantum level. Contrary to the original belief,
this construction does not provide a realization of Equivalence Principle at quantum level.
The proper realization of EP at quantum level seems to be based on the identification of clas-
sical Noether charges in Cartan algebra with the eigenvalues of their quantum counterparts
assignable to Kähler-Dirac action. At classical level EP follows at GRT limit obtained by
lumping many-sheeted space-time to M4 with e↵ective metric satisfying Einstein’s equations
as a reflection of the underlying Poincare invariance.

3.2.4 The treatment of non-determinism of Kähler action in zero energy
ontology

The non-determinism of Kähler action means that the reduction of the construction of WCW
geometry to the light cone boundary fails. Besides degeneracy of the preferred extrema of Kähler
action, the non-determinism should manifest itself as a presence of causal determinants also other
than light cone boundary.

One can imagine two kinds of causal determinants.

1. Elementary particle horizons and light-like boundaries X3
l ⇢ X4 of 4-surfaces representing

wormhole throats act as causal determinants for the space-time dynamics defined by Kähler
action. The boundary values of this dynamics have been already considered.

2. At imbedding space level causal determinants correspond to light like CD forming a fractal
hierarchy of CDs within CDs. These causal determinants determine the dynamics of zero
energy states having interpretation as pairs of initial and final states in standard quantum
theory.

The manner to treat the classical non-determinism would be roughly following.
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1. The replacement of space-like 3-surfaceX3 withX3
l transforms initial value problem forX3 to

a boundary value problem for X3
l . In principle one can also use the surfaces X3 ⇢ �CD⇥CP2

if X3
l fixes X4(X3

l ) and thus X3 uniquely. For years an important question was whether both
X3 and X3

l contribute separately to WCW geometry or whether they provide descriptions,
which are in some sense dual. This lead to the notion of 7-3 duality and I even considered
the possibility that �M4

+ ⇥ CP2 could be replaced with a more general surface X3
l ⇥ CP2

allowing also generalized symplectic and conformal symmetries. 7-3 duality is not a good
term since the actual duality actually relates descriptions based on space-like 3-surfaces X3

and light-like 3-surfaces X3
l . Hence it seems that the proper place for 7-3 duality is in paper

basked.

2. Only Super-Kac-Moody type conformal algebra makes sense in the interior of X3
l . In the

2-D intersections of X3
l with the boundary of causal diamond (CD) defined as intersection

of future and past directed light-cones super-symplectic algebra makes sense. This implies
e↵ective two-dimensionality which is broken by the non-determinism represented using the
hierarchy of CDs meaning that the data from these 2-D surfaces and their normal spaces at
boundaries of CDs in various scales determine the WCW metric.

3. An important question has been whether Kac-Moody and super-symplectic algebras provide
descriptions which are dual in some sense. At the level of Super-Virasoro algebras duality
seems to be satisfied in the sense of generalized coset construction meaning that the dif-
ferences of Super Virasoro generators of super-symplectic and super Kac-Moody algebras
annihilate physical states. Among other things this means that four-momenta assignable to
the two Super Virasoro representations are identical. T he interpretation is in terms of a
generalization of Equivalence Principle [K9, K13] . This gives also a justification for p-adic
thermodynamics applying only to Super Kac-Moody algebra.

4. Light-like 3-surfaces can be regarded also as generalized Feynman diagrams. The finite
length resolution mean means also a cuto↵ in the number of generalized Feynman diagrams
and this number remains always finite if the light-like 3-surfaces identifiable as maxima of
Kähler function correspond to the diagrams. The finiteness of this number is also essential for
number theoretic universality since it guarantees that the elements of M -matrix are algebraic
numbers if momenta and other quantum numbers have this property. The introduction of
new sub-CDs means also introduction of zero energy states in corresponding time scale.

5. The notion of finite measurement resolution expressed in terms of hierarchy of CDs within
CDs is important for the treatment of classical non-determinism. In a given resolution
the non-determinism of Kähler action remains invisible below the time scale assigned to the
smallest CDs. One could also say that complete non-determinism characterized in terms path
integral with cuto↵ is replaced in TGD framework with the partial failure of classical non-
determinism leading to generalized Feynman diagrams. This gives rise to to discrete coupling
constant evolution and avoids the mathematical ill-definedness and infinities plaguing path
integral formalism since the functional integral over 3-surfaces is well defined.

6. Dirac determinant defining vacuum functional is assumed to correspond to exponent of Kähler
action for its preferred extremal. Dirac determinant is defined as a product of finite number
of eigenvalues of the transverse part DK(X2) of the modified Dirac operator DK assumed
to have decomposition DK = DK(X2) +DK(Y 2) reflecting the dual slicings of X4 to string
world sheets Y 2 and partonic 2-surfaces X2. The existence of the slicing is supported by the
properties of known extremals of Kähler action and strongly suggested by number theoretical
compactification, and it implies among other things dimensional reduction to Minkowskian
string model like theory and its Euclidian equivalent allowing to understand how Equivalence
Principle is realized at space-time level. Finite number for the eigenvalues raises even hope
that in a given resolution the functional integral reduces to Gaussian integral over a finite-
dimensional space of logarithms of eigenvalues.

7. One can ask why Kähler action and playing with all these delicacies related to the failure
of complete determinism. After all, one could formally replace Kähler action with 4-volume
as in brane models. Space-time surfaces would be minimal surfaces and Dirac operator
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would be standard Dirac operator for the induced metric. Dirac determinant would however
become infinite since the modes would not be anymore analogs of cyclotron states necessarily
localized to a finite region of X3

l . Recall that for Kähler action X3
l indeed decomposes into

patches inside with induced Kähler form is non-vanishing and Dirac determinant defining the
exponent of Kähler function is well-defined and finite without any regularization procedure.
Hence Kähler action is completely unique.

3.2.5 Category theory and WCW geometry

Due the e↵ects caused by the classical non-determinism even classical TGD universes are very
far from simple Cartesian clockworks, and the understanding of the general structure of WCW is
a formidable challenge. Category theory is a branch of mathematics which is basically a theory
about universal aspects of mathematical structures. Thus category theoretical thinking might help
in disentangling the complexities of WCW geometry and the basic ideas of category theory are
discussed in this spirit and as an innocent layman. It indeed turns out that the approach makes
highly non-trivial predictions.

In zero energy ontology the e↵ects of non-determinism are taken into account in terms of
causal diamonds forming a hierarchical fractal structure. One must allow also the unions of CDs,
CDs within CDs, and probably also overlapping of CDs, and there are good reasons to expert
that CDs and corresponding algebraic structures could define categories. If one does not allow
overlapping CDs then set theoretic inclusion map defines a natural arrow. If one allows both
unions and intersections then CDs would form a structure analogous to the set of open sets used
in set theoretic topology. One could indeed see CDs (or rather their Cartesian products with CP2)
as analogs of open sets in Minkowskian signature.

So called ribbon categories seem to be tailor made for the formulation of quantum TGD and
allow to build bridge to topological and conformal field theories. This discussion based on standard
ontology. In [K8] rather detailed category theoretical constructions are discussed. Important role
is played by the notion of operad operad,operads : this structure can be assigned with both gener-
alized Feynman diagrams and with the hierarchy of symplectic fusion algebras realizing symplectic
analogs of the fusion rules of conformal field theories.

3.3 Identification of the symmetries and coset space struc-
ture of WCW

In this section the identification of the isometry group of the configuration (”world of classical
worlds” or briefly WCW) will be discussed at general level.

3.3.1 Reduction to the light cone boundary

The reduction to the light cone boundary would occur exactly if Kähler action were strictly de-
terministic. This is not the case but it is possible to generalize the construction at light cone
boundary to the general case if causal diamonds define the basic structural units of the WCW.

Old argument

The identification of WCW follows as a consequence of 4-dimensional Di↵ invariance. The right
question to ask is the following one. How could one coordinatize the physical(!) vibrational degrees
of freedom for 3-surfaces in Di↵4 invariant manner: coordinates should have same values for all
Di↵4 related 3-surfaces belonging to the orbit of X3? The answer is following:

1. Fix some 3-surface (call it Y 3) on the orbit of X3 in Di↵4 invariant manner.

2. Use as WCW coordinates of X3 and all its di↵eomorphs the coordinates parameterizing small
deformations of Y 3. This kind of replacement is physically acceptable since metrically the
WCW is equivalent with Map/Diff4.

3. Require that the fixing procedure is Lorentz invariant, where Lorentz transformations in
question leave light M4

+ invariant and thus act as isometries.
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The simplest choice of Y 3 is the intersection of the orbit of 3-surface (X4) with the set �M4
+⇥CP2

, where �M4
+ denotes the boundary of the light cone (moment of big bang):

Y 3 = X4 \ �M4
+ ⇥ CP2 (3.3.1)

Lorentz invariance allows also the choice X ⇥ CP2, where X corresponds to the hyperboloid a =p
(m0)2 � r2M = constant but only the proposed choice (a = 0) leads to a natural complexification

in M4 degrees of freedom. This choice is also cosmologically very natural and completely analogous
to the quantum gravitational holography of string theories.

WCW has a fiber space structure. Base space consists of 3-surfaces Y 3 ⇢ �M4
+ ⇥ CP2 and

fiber consists of 3-surfaces on the orbit of Y 3 , which are Di↵4 equivalent with Y 3. The distance
between the surfaces in the fiber is vanishing in WCW metric. An elegant manner to avoid
di�culties caused by Di↵4 degeneracy in WCW integration is to define integration measure as
integral over the reduced WCW consisting of 3-surfaces Y 3 at the light cone boundary.

Situation is however quite not so simple. The vacuum degeneracy of Kähler action suggests
strongly classical non-determinism so that there are several, possibly, infinite number of preferred
extremals X4(Y 3) associated with given Y 3 on light cone boundary. This implies additional de-
generacy.

One might hope that the reduced WCW could be replaced by its covering space so that given
Y 3 corresponds to several points of the covering space and WCW has many-sheeted structure.
Obviously the copies of Y 3 have identical geometric properties. WCW integral would decompose
into a sum of integrals over di↵erent sheets of the reduced WCW. Note that WCW spinor fields
are in general di↵erent on di↵erent sheets of the reduced WCW.

Even this is probably not enough: it is quite possible that all light like surfaces of M4 possessing
Hamilton Jacobi structure (and thus interpretable as light fronts) are involved with the construction
of the WCW geometry. Because of their metric two-dimensionality the proposed construction
should generalize. This would mean that WCW geometry has also local laboratory scale aspects
and that the general ideas might allow testing.

New version of the argument

The above summary was the basic argument for two decades ago. A more elegant formulation
would in terms of light-like 3-surfaces connecting the boundaries of causal diamond taken as basic
geometric objects and identified as generalized Feynman diagrams so that they are singular as
manifolds at the vertices.

If both formulations are required to be correct, the only conclusion is that e↵ective 2-dimensionality
must hold true in the scale of given CD. In other words, the intersection X2 = X3

l \ X3 at the
boundary of CD is e↵ectively the basic dynamical unit. The failure of strict non-determinism how-
ever forces to introduce entire hierarchy of CDs responsible also for coupling constant evolution
defined in terms of the measurement resolution identified as the size of the smallest CD present.

3.3.2 WCW as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant underG. The hope is that same
holds true in infinite-dimensional context. The most one can hope of obtaining is the decomposition
C(H) = [iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G
and H depend on the orbit: C(H) = [iGi/Hi but it seems that G can be chosen to be same for all
orbits. What is essential is that these groups are infinite-dimensional. The basic properties of the
coset space decomposition give very strong constraints on the group H, which certainly contains
the subgroup of G, whose action reduces to di↵eomorphisms of X3.

Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability
of the theory are enormous since it su�ces to find metric and curvature tensor for single repre-
sentative 3-surface on a given orbit (contravariant form of metric gives propagator in perturbative
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calculation of matrix elements as functional integrals over the WCW). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero
mode structure of the WCW. Almost twenty (seven according to long held belief!) years after the
discovery of the candidate for the Kähler function defining the metric, it became finally clear that
these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transforma-
tions of �M4

± ⇥ CP2 leaving the induced Kähler form invariant. If G acts as isometries the values
of Kähler form at partonic 2-surfaces (remember e↵ective 2-dimensionality realized in simplistic
manner) are zero modes and WCW allows slicing to symplectic orbits of the partonic 2-surface
with fixed induced Kähler form. Quantum fluctuating degrees of freedom would correspond to
symplectic group and to the fluctuations of the induced metric. The group H dividing G would
act as di↵eomorphisms at the preferred 3-surface X3 and leaving X3 itself invariant. Therefore
the identification of g and h would be in terms of tangent space algebra of WCW sector realized
as coset space G/H.

Coset space structure of WCW and Equivalence Principle

The realization of WCW sectors with fixed values of zero modes as symmetric spaces G/H (anal-
ogous to CP2 = SU(3)/U(2)) suggests that one can assign super-Virasoro algebras with G. What
the two algebras g and h are is however di�cult question. The following vision is only one of the
many (the latest one).

1. Symplectic algebra g generates isometries and h is identified as algebra, whose generators
generate di↵eormorphisms at preferred X3.

2. The original long-held belief was that the Super Kac-Moody symmetry corresponds to local
imbedding space isometries for light-like 3-surfaces X3

l , which might be boundaries of X4

(probably not: it seems that boundary conditions cannot be satisfied so that space-time
surfaces must consists of regions defining at least double coverings of M4) and light-like
surfaces separating space-time regions with di↵erent signatures of the induced metric. This
symmetry would be identifiable as the counterpart of the Kac Moody symmetry of string
models.

It has turned out that one can assume Kac-Moody algebra to be sub-algebra of symplectic
algebra consisting of the symplectic isometries of imbedding space. This Super Kac-Moody
algebra is generated by super-currents assignable to the modes of induced spinor fields other
than right-handed neutrino and localized at string world sheets. The entire symplectic algebra
would correspond to the modes of right-handed neutrino and the entire algebra one would
be direct sum of these two algebras so that the number of tensor factors would be indeed 5.
The beauty of this option is that localization would be for both algebras inherent and with
respect to the light-like coordinate of light-cone boundary rather than forced by hand.

3. p-Adic mass calculations require that symplectic and Kac-Moody algebras together generate
the entire algebra. In this situation strong form of holography implies that transformations
located to the interior of space-like 3-surface and light-like partonic orbit define zero modes
and act like gauge symmetries. The physically non-trivial transformations correspond to
transformations acting non-trivially at partonic 2-surfaces. g corresponds to the algebra
generated by these transformations and for preferred 3-surface - identified as (say) maximum
of Kähler function - h corresponds to the elements of this algebra generating di↵eomorphisms
of X3. Super-conformal representation has five tensor factors corresponding to color algebra,
two factors from electroweak U(2), one factor from transversalM4 translations and one factor
from symplectic algebra (note that also Hamiltonians which are products of �M4

+ and CP2

Hamiltonians are possible.

Equivalence Principle (EP) has been a longstanding problem for TGD although the recent
stringy view about graviton mediated scattering makes it can be argued to reduce to a tautology.
I have considered several explanations for EP and coset representation has been one of them.
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1. Coset representation associated with the super Virasoro algebra is defined by the condition
that the di↵erences of super Virasoro generators for g and h annihilate the physical. The
original proposal for the realization of EP was that this condition implies that the four-
momenta associated with g and h are identical and identifiable as inertial and gravitational
four-momenta. Translations however lead out from CD boundary and cannot leave 3-surface
invariant. Hence the Virasoro generators for h should not carry four-momentum. Therefore
EP cannot be understood in terms of coset representations.

2. The equivalence of classical Noether momentum associated with Kähler action with eigen-
values of the corresponding quantal momentum for modified Dirac action certainly realizes
quantum classical correspondence (QCC) EP could correspond to QCC.

3. A further option is that EP reduces to the identification of the four momenta for Super Vi-
rasoro representations assignable to space-like and light-like 3-surfaces and therefore become
part of strong form of holography in turn implied by strong form of GCI! It seems that this
option is the most plausible one found hitherto.

WCW isometries as a subgroup of Diff(�M4
+ ⇥ CP2)

The reduction to light cone boundary leads to the identification of the isometry group as some
subgroup of for the group G for the di↵eomorphisms of �M4

+⇥CP2. These di↵eomorphisms indeed
act in a natural manner in �CH, the the space of 3-surfaces in �M4

+ ⇥ CP2. WCW is expected
to decompose to a union of the coset spaces G/Hi, where Hi corresponds to some subgroup of G
containing the transformations of G acting as di↵eomorphisms for given X3. Geometrically the
vector fields acting as di↵eomorphisms of X3 are tangential to the 3-surface. Hi could depend
on the topology of X3 and since G does not change the topology of 3-surface each 3-topology
defines separate orbit of G. Therefore, the union involves sum over all topologies of X3 plus
possibly other ’zero modes’. Di↵erent topologies are naturally glued together since singular 3-
surfaces intermediate between two 3-topologies correspond to points common to the two sectors
with di↵erent topologies.

3.3.3 Isometries of WCW geometry as symplectic transformations of
�M4

+

⇥ CP
2

During last decade I have considered several candidates for the group G of isometries of WCW as
the sub-algebra of the subalgebra of Diff(�M4

+ ⇥ CP2). To begin with let us write the general
decomposition of diff(�M4

+ ⇥ CP2):

diff(�M4
+ ⇥ CP2) = S(CP2)⇥ diff(�M4

+)� S(�M4
+)⇥ diff(CP2) . (3.3.2)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light
cone di↵eomorphisms made local with respect to CP2 and CP2 di↵eomorphisms made local with
respect to light cone boundary.

The idea that entire di↵eomorphism group would act as isometries looks unrealistic since the
theory should be more or less equivalent with topological field theory in this case. Consider now
the various candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ di↵eomorphisms are dynamical

symmetries of the vacuum extremals suggests the possibility that the di↵eomorphisms of the
light cone boundary and symplectic transformations of CP2 could leave Kähler function in-
variant and thus correspond to zero modes. The symplectic transformations of CP2 localized
with respect to light cone boundary acting as symplectic transformations of CP2 have inter-
pretation as local color transformations and are a good candidate for the isometries. The
fact that local color transformations are not even approximate symmetries of Kähler action
is not a problem: if they were exact symmetries, Kähler function would be invariant and zero
modes would be in question.
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2. CP2 local conformal transformations of the light cone boundary act as isometries of �M4
+.

Besides this there is a huge group of the symplectic symmetries of �M4
+ ⇥ CP2 if light

cone boundary is provided with the symplectic structure. Both groups must be considered as
candidates for groups of isometries. �M4

+⇥CP2 option exploits fully the special properties of
�M4

+⇥CP2, and one can develop simple argument demonstrating that �M4
+⇥CP2 symplectic

invariance is the correct option. Also the construction of WCW gamma matrices as super-
symplectic charges supports �M4

+ ⇥ CP2 option.

WCW as a union of symmetric spaces

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition
g = t+ h satisfying the defining conditions

g = t+ h , [t, t] ⇢ h , [h, t] ⇢ t . (3.3.3)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough. [t, t] ⇢ h condition is highly nontrivial and equivalent with the
existence of involution. Inversion in the light-like radial coordinate of �M4 is a natural guess for
this involution and induces complex conjugation in super-conformal algebras mapping positive and
negative conformal weights to each other.

WCW geometry allows two super-conformal symmetries. The first one corresponds to super-
symplectic transformations acting at the level of imbedding space. The second one corresponds
to super Kac-Moody symmetry. The original identification of Kac-Moody was in terms of defor-
mations of light-like 3-surfaces respecting their light-likeness. This not wrong as such: also entire
symplectic algebra can be assigned with light-like surfaces and the theory can be constructed using
also these conformal algebras. This identification however makes it very di�cult to see how Kac-
Moody could act as isometry: in particular, the localization with respect to internal coordinates
of 3-surface produces technical problems since symplectic algebra is localized with respect to the
light-like radial coordinate of light-cone boundary.

The more plausible identification is as the sub-algebra of symplectic algebra realized as isome-
tries of �CD so that localization is inherent and in terms of the radial light-like coordinate of
light-like boundary [K80]. This identification is made possible by the wisdom gained from the so-
lutions of the modified Dirac equations predicting the localization of its modes (except right-handed
neutrino) to string world sheets.

1. g would thus correspond to a direct sum of super-symplectic algebra and super Kac-Moody
algebra defined by its isometry sub-algebra but represented in di↵erent manner (this is ab-
solutely essential!). More concretely, neutrino modes defined super Hamiltonians associated
with the super symplectic algebra and other modes of induced spinor field the super Hamil-
tonians associated with the super Kac-Moody algebra. The maxima of Kähler function could
be chosen as natural candidates for the preferred points and could play also an essential role
in WCW integration by generalizing the Gaussian integration of free quantum field theories.

2. These super-conformal algebra representations form a direct sum. p-Adic mass calculations
require five super-conformal tensor factors and the number of tensor factors would be indeed
this.

3. This algebra has as sub-algebra the algebra for which generators leave 3-surface invariant -
in other words, induce its di↵eomorphism. Quantum states correspond to the coset repre-
sentations for entire algebra and this algebra so that di↵erences of the corresponding super-
Virasoro generators annihilate physical states. This obviously generalizes Goddard-Olive-
Kent construction [A58]. It seems now clear that coset representation does not imply EP:
the four-momentum simply does not appear in the representation of the isotropy sub-algebra
since translations lead out of CD boundary.

To minimize confusions it must be emphasized that only the contribution of the symplectic
algebra realized in terms of single right-handed neutrino mode is discussed in this chapter and
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the WCW Hamiltonians have 2-dimensional representation. Also the direct connection with the
dynamics of Kähler action is lacking. A more realistic construction [K80] uses 3-dimensional
representations of Hamiltonians and requires all modes of right-handed neutrino for symplectic
algebra and the modes of induced spinor field carrying electroweak quantum numbers in the case
of Kac-Moody algebra.

3.4 Complexification

A necessary prerequisite for the Kähler geometry is the complexification of the tangent space in
vibrational degrees of freedom. What this means in recent context is non-trivial.

3.4.1 Why complexification is needed?

The Minkowskian signature of M4 metric seems however to represent an insurmountable obstacle
for the complexification of M4 type vibrational degrees of freedom. On the other hand, complexi-
fication seems to have deep roots in the actual physical reality.

1. In the perturbative quantization of gauge fields one associates to each gauge field excitation
polarization vector e and massless four-momentum vector p (p2 = 0, p ·e = 0). These vectors
define the decomposition of the tangent space of M4: M4 = M2 ⇥ E2, where M2 type
polarizations correspond to zero norm states and E2 type polarizations correspond to physical
states with non-vanishing norm. Same type of decomposition occurs also in the linearized
theory of gravitation. The crucial feature is that E2 allows complexification! The general
conclusion is that the modes of massless, linear, boson fields define always complexification
of M4 (or its tangent space) by e↵ectively reducing it to E2. Also in string models similar
situation is encountered. For a string in D-dimensional space only D-2 transversal Euclidian
degrees of freedom are physical.

2. Since symplectically extended isometry generators are expected to create physical states in
TGD approach same kind of physical complexification should take place for them, too: this
indeed takes place in string models in critical dimension. Somehow one should be able to
associate polarization vector and massless four momentum vector to the deformations of a
given 3-surface so that these vectors define the decomposition M4 = M2⇥E2 for each mode.
Configuration space metric should be degenerate: the norm ofM2 deformations should vanish
as opposed to the norm of E2 deformations.

Consider now the implications of this requirement.

1. In order to associate four-momentum and polarization (or at least the decomposition M4 =
M2 ⇥E2) to the deformations of the 3-surface one should have field equations, which deter-
mine the time development of the 3-surface uniquely. Furthermore, the time development
for small deformations should be such that it makes sense to associate four momentum and
polarization or at least the decomposition M4 = M2 ⇥ E2 to the deformations in suitable
basis.

The solution to this problem is a↵orded by the proposed definition of the Kähler function.
The definition of the Kähler function indeed associates to a given 3-surface a unique four-
surface as the preferred extremal of the Kähler action. Therefore one can associate a unique
time development to the deformations of the surface X3 and if TGD describes the observed
world this time development should describe the evolution of photon, gluon, graviton, etc.
states and so we can hope that tangent space complexification could be defined.

2. We have found that M2 part of the deformation should have zero norm. In particular, the
time like vibrational modes have zero norm in WCW metric. This is true if Kähler function is
not only Diff3 invariant but also Di↵4 invariant in the sense that Kähler function has same
value for all 3-surfaces belonging to the orbit of X3 and related to X3 by di↵eomorphism of
X4. This is indeed the case.
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3. Even this is not enough. One expects the presence of massive modes having also longitudinal
polarization and for these states the number of physical vibrational degrees of freedom is 3
so that complexification seems to be impossible by odd dimension.

The reduction to the light cone boundary implied by Diff4 invariance makes possible to
identify the complexification. Crucial role is played by the special properties of the boundary of
4-dimensional light cone, which is metrically two-sphere and thus allows generalized complex and
Kähler structure.

3.4.2 The metric, conformal and symplectic structures of the light cone
boundary

The special metric properties of the light cone boundary play a crucial role in the complexification.
The point is that the boundary of the light cone has degenerate metric: although light cone bound-
ary is topologically 3-dimensional it is metrically 2-dimensional: e↵ectively sphere. In standard
spherical Minkowski coordinates light cone boundary is defined by the equation rM = m0 and
induced metric reads

ds2 = �r2Md⌦2 = �r2Mdzdz̄/(1 + zz̄)2 , (3.4.1)

and has Euclidian signature. Since S2 allows complexification and thus also Kähler structure (and
as a by-product also symplectic structure) there are good hopes of obtaining just the required type
of complexification in non-degenerate M4 degrees of freedom: WCW would e↵ectively inherit its
Kähler structure from S2 ⇥ CP2.

Figure 3.1: Conformal symmetry preserves angles in complex plane

By its e↵ective two-dimensionality the boundary of the four-dimensional light cone has infinite-
dimensional group of (local) conformal transformations. Using complex coordinate z for S2 the
general local conformal transformation reads

r ! f(rM , z, z̄) ,

z ! g(z) , (3.4.2)

where f is an arbitrary real function and g is an arbitrary analytic function with a finite number of
poles. The infinitesimal generators of this group span an algebra, call it C, analogous to Virasoro
algebra. This algebra is semidirect sum of two algebras L and R given by

C = L�R ,

[L,R] ⇢ R , (3.4.3)

where L denotes standard Virasoro algebra of the two- sphere generated by the generators

Ln = zn+1d/dz (3.4.4)
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and R denotes the algebra generated by the vector fields

Rn = fn(z, z̄, rM )@r
M

, (3.4.5)

where f(z, z̄, rM ) forms complete real scalar function basis for light cone boundary. The vector
fields of R have the special property that they have vanishing norm in M4 metric.

This modification of conformal group implies that the Virasoro generator L0 becomes L0 =
zd/dz � rMd/drM so that the scaling momentum becomes the di↵erence n �m or S2 and radial
scaling momenta. One could achieve conformal invariance by requiring that S2 and radial scaling
quantum numbers compensate each other.

Of crucial importance is that light cone boundary allows infinite dimensional group of isome-
tries! An arbitrary conformal transformation z ! f(z) induces to the metric a conformal factor
given by |df/dz|2. The compensating radial scaling rM ! rM/|df/dz| compensates this factor so
that the line element remains invariant.

The Kähler structure of light cone boundary defines automatically symplectic structure. The
symplectic form is degenerate and just the area form of S2 given by

J = r2Msin(✓)d✓ ^ d�,

in standard spherical coordinates, there is infinite-dimensional group of symplectic transformations
leaving the symplectic form of the light cone boundary (that is S2) invariant. These transformations
are local with respect to the radial coordinate rM . The symplectic and Kähler structures of light
cone boundary are not unique: di↵erent structures are labeled by the coset space SO(3, 1)/SO(3).
One can however associate with a given 3-surface Y 3 a unique structure by requiring that the
the corresponding subgroup SO(3) of Lorentz group acts as the isotropy group of the conserved
classical four-momentum assigned to Y 3 by the preferred extremal property.

In the case of �M4
+ ⇥ CP2 both the conformal transformations, isometries and symplectic

transformations of the light cone boundary can be made local also with respect to CP2. The idea
that the infinite-dimensional algebra of symplectic transformations of �M4

+⇥CP2 act as isometries
of WCW and that radial vector fields having zero norm in the metric of light cone boundary possess
zero norm also in WCW metric, looks extremely attractive.

In the case of �M4
+ ⇥ CP2 one could combine the symplectic and Kähler structures of �M4

+

and CP2 to single symplectic/Kähler structure. The symplectic transformations leaving this sym-
plectic structure invariant would be generated by the function algebra of �M4

+ ⇥ CP2 such that a
arbitrary function serves as a Hamiltonian of a symplectic transformation. This group serves as a
candidate for the isometry group of WCW. An alternative identification for the isometry algebra is
as symplectic symmetries of CP2 localized with respect to the light cone boundary. Hamiltonians
would be also now elements of the function algebra of �M4

+⇥CP2 but their Poisson brackets would
be defined using only CP2 symplectic form.

The problem is to decide which option is correct. There is a simple argument fixing the
latter option. The symplecticly imbedded CP2 would be left invariant under �M4

+ local symplec-
tic transformations of CP2. This seems strange. Under symplectic algebra of �M4

+ ⇥ CP2 also
symplecticly imbedded CP2 is deformed and this sounds more realistic. The isometry algebra
is therefore assumed to be the group can(�M4

+ ⇥ CP2) generated by the scalar function basis
S(�M4

+ ⇥ CP2) = S(�M4
+)⇥ S(CP2) of the light cone boundary using the Poisson brackets to be

discussed in more detail later.
There are some no-go theorems associated with higher-dimensional Abelian extensions [A49] ,

and although the contexts are quite di↵erent, it is interesting to consider the recent situation in
light of these theorems.

1. Conformal invariance is an essentially 2-dimensional notion. Light cone boundary is however
metrically and conformally 2-sphere, and therefore the conformal algebra is e↵ectively that
associated with the 2-sphere. In the same manner, the quaternion conformal algebra asso-
ciated with the metrically 2-dimensional elementary particle horizons surrounding wormhole
contacts allows the usual Kac Moody algebra and actually also contributes to the WCW
metric.
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2. In dimensions D > 2 Abelian extensions of the gauge algebra are extensions by an infinite-
dimensional Abelian group rather than central extensions by the group U(1). This result
has an analog at the level of WCW geometry. The extension associated with the symplectic
algebra of CP2 localized with respect to the light cone boundary is analogous a symplectic
extension defined by Poisson bracket {p, q} = 1. The central extension is the function space
associated with �M4

+ and indeed infinite-dimensional if only only CP2 symplectic structure
induces the Poisson bracket but one-dimensional if �M4

+ ⇥ CP2 Poisson bracket induces
the extension. In the latter case the symmetries fix the metric completely at the point
corresponding to the origin of symmetric space (presumably the maximum of Kähler function
for given values of zero modes).

3. D > 2 extensions possess no unitary faithful representations (satisfying certain well motivated
physical constraints) [A49] . It might be that the degeneracy of the WCWmetric is the analog
for the loss of faithful representations.

3.4.3 Complexification and the special properties of the light cone bound-
ary

In case of Kähler metric G and H Lie-algebras must allow complexification so that the isometries
can act as holomorphic transformations. Since G and H can be regarded as subalgebras of the
vector fields of �M4

+ ⇥ CP2, they inherit in a natural manner the complex structure of the light
cone boundary.

There are two candidates for WCW complexification. The simplest, and also the correct,
alternative is that complexification is induced by natural complexification of vector field basis on
�M4

+ ⇥ CP2. In CP2 degrees of freedom there is natural complexification

⇠ ! ⇠̄ .

In �M4
+ degrees of freedom this could involve the transformation

z ! z̄

and certainly involves complex conjugation for complex scalar function basis in the radial direction:

f(rM ) ! f(rM ) ,

which turns out to play same role as the function basis of circle in the Kähler geometry of loop
groups [A37] .

The requirement that the functions are eigen functions of radial scalings favors functions
(rM/r0)k, where k is in general a complex number. The function can be expressed as a prod-
uct of real power of rM and logarithmic plane wave. It turns out that the radial complexification
alternative is the correct manner to obtain Kähler structure. The reason is that symplectic trans-
formations leave the value of rM invariant. Radial Virasoro invariance plays crucial role in making
the complexification possible.

One could consider also a second alternative assumed in the earlier formulation of the WCW
geometry. The close analogy with string models and conformal field theories suggests that for
Virasoro generators the complexification must reduce to the hermitian conjugation of the conformal
field theories: Ln ! L�n = L†

n. Clearly this complexification is induced from the transformation
z ! 1

z and di↵ers from the complexification induced by complex conjugation z ! z̄. The basis
would be polynomial in z and z̄. Since radial algebra could be also seen as Virasoro algebra
localized with respect to S2 ⇥ CP2 one could consider the possibility that also in radial direction
the inversion rM ! 1

r
M

is involved.
In fact, the complexification changing the signs of radial conformal weights is induced from

inversion rM/r0 ! r0/rM . This transformation is also an excellent candidate for the involution
necessary for obtaining the structure of symmetric space implying among other things the covariant
constancy of the curvature tensor, which is of special importance in infinite-D context.

The essential prerequisite for the Kähler structure is that both G and H allow same complex-
ification so that the isometries in question can be regarded as holomorphic transformations. In
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finite-dimensional case this essentially what is needed since metric can be constructed by parallel
translation along the orbit of G from H-invariant Kähler metric at a representative point. The
requirement of H-invariance forces the radial complexification based on complex powers rkM : radial
complexification works since symplectic transformations leave rM invariant.

Some comments on the properties of the proposed complexification are in order.

1. The proposed complexification, which is analogous to the choice of gauge in gauge theories
is not Lorentz invariant unless one can fix the coordinates of the light cone boundary apart
from SO(3) rotation not a↵ecting the value of the radial coordinate rM (if the imaginary
part of k in rkM is always non-vanishing). This is possible as will be explained later.

2. It turns out that the function basis of light-cone boundary multiplying CP2 Hamiltonians
corresponds to unitary representations of the Lorentz group at light cone boundary so that
the Lorentz invariance is rather manifest.

3. There is a nice connection with the proposed physical interpretation of the complexification.
At the moment of the big bang all particles move with the velocity of light and therefore
behave as massless particles. To a given point of the light cone boundary one can associate
a unique direction of massless four-momentum by semiclassical considerations: at the point
mk = (m0,mi) momentum is proportional to the vector (m0,�mi). Since the particles
are massless only two polarization vectors are possible and these correspond to the tangent
vectors to the sphere m0 = rM . Of course, one must always fix polarizations at some point
of tangent space but since massless polarization vectors are not physical this doesn’t imply
di�culties: di↵erent choices correspond to di↵erent gauges.

4. Complexification in the proposed manner is not possible except in the case of four-dimensional
Minkowski space. Non-zero norm deformations correspond to vector fields of the light cone
boundary acting on the sphere SD�2 and the decomposition to (1, 0) and (0, 1) parts is
possible only when the sphere in question is two-dimensional since other spheres do allow
neither complexification nor Kähler structure.

3.4.4 How to fix the complex and symplectic structures in a Lorentz
invariant manner?

One can assign to light-cone boundary a symplectic structure since it reduces e↵ectively to S2.
The possible symplectic structures of �M4

+ are parameterized by the coset space SO(3, 1)/SO(3)),
where H is the isotropy group SO(3) of a time like vector. Complexification also fixes the choice of
the spherical coordinates apart from rotations around the quantization axis of angular momentum.

The selection of some preferred symplectic structure in an ad hoc manner breaks manifest
Lorentz invariance but is possible if physical theory remains Lorentz invariant. The more natural
possibility is that 3-surface Y 3 itself fixes in some natural manner the choice of the symplectic
structure so that there is unique subgroup SO(3) of SO(3, 1) associated with Y 3. If WCW Kähler
function corresponds to a preferred extremal of Kähler action, this is indeed the case. One can
associate unique conserved four-momentum P k(Y 3) to the preferred extremalX4(Y 3) of the Kähler
action and the requirement that the rotation group SO(3) leaving the symplectic structure invariant
leaves also P k(Y 3) invariant, fixes the symplectic structure associated with Y 3 uniquely.

Therefore WCW decomposes into a union of symplectic spaces labeled by SO(3, 1)/SO(3)
isomorphic to a = constant hyperboloid of light cone. The direction of the classical angular
momentum vector wk = ✏klmnPlJmn determined by the classical angular momentum tensor of
associated with Y 3 fixes one coordinate axis and one can require that SO(2) subgroup of SO(3)
acting as rotation around this coordinate axis acts as phase transformation of the complex coordi-
nate z of S2. Other rotations act as nonlinear holomorphic transformations respecting the complex
structure.

Clearly, the coordinates are uniquely fixed modulo SO(2) rotation acting as phase multiplication
in this case. If P k(Y 3) is light like, one can only require that the rotation group SO(2) serving as the
isotropy group of 3-momentum belongs to the group SO(3) characterizing the symplectic structure
and it seems that symplectic structure cannot be uniquely fixed without additional constraints in
this case. Probably this has no practical consequences since the 3-surfaces considered have actually
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infinite size and 4-momentum is most probably time like for them. Note however that the direction
of 3-momentum defines unique axis such that SO(2) rotations around this axis are represented as
phase multiplication.

Similar almost unique frame exists also in CP2 degrees of freedom and corresponds to the
complex coordinates transforming linearly under U(2) acting as isotropy group of the Lie-algebra
element defined by classical color charges Qa of Y 3. One can fix unique Cartan subgroup of U(2)
by noticing that SU(3) allows completely symmetric structure constants dabc such that Ra =
d bc
a QbQc defines Lie-algebra element commuting with Qa. This means that Ra and Qa span in

generic case U(1) ⇥ U(1) Cartan subalgebra and there are unique complex coordinates for which
this subgroup acts as phase multiplications. The space of nonequivalent frames is isomorphic
with CP (2) so that one can say that cm degrees of freedom correspond to Cartesian product
of SO(3, 1)/SO(3) hyperboloid and CP2 whereas coordinate choices correspond to the Cartesian
product of SO(3, 1)/SO(2) and SU(3)/U(1)⇥ U(1).

Symplectic transformations leave the value of �M4
+ radial coordinate rM invariant and this

implies large number of additional zero modes characterizing the size and shape of the 3-surface.
Besides this Kähler magnetic fluxes through the rM = constant sections of X3 as a function of rM
provide additional invariants, which are functions rather than numbers. The Fourier components
for the magnetic fluxes provide infinite number of symplectic invariants. The presence of these
zero modes imply that 3-surfaces behave much like classical objects in the sense that neither their
shape nor form nor classical Kähler magnetic fields, are subject to Gaussian fluctuations. Of
course, quantum superpositions of 3-surfaces with di↵erent values of these invariants are possible.

There are reasons to expect that at least certain infinitesimal symplectic transformations corre-
spond to zero modes of the Kähler metric (symplectic transformations act as dynamical symmetries
of the vacuum extremals of the Kähler action). If this is indeed the case, one can ask whether it
is possible to identify an integration measure for them.

If one can associate symplectic structure with zero modes, the symplectic structure defines
integration measure in a standard manner (for 2n-dimensional symplectic manifold the integration
measure is just the n-fold wedge power J ^ J... ^ J of the symplectic form J). Unfortunately, in
infinite-dimensional context this is not enough since divergence free functional integral analogous to
a Gaussian integral is needed and it seems that it is not possible to integrate in zero modes and that
this relates in a deep manner to state function reduction. If all symplectic transformations of �M4

+⇥
CP2 are represented as symplectic transformations of the configuration space, then the existence of
symplectic structure decomposing into Kähler (and symplectic) structure in complexified degrees
of freedom and symplectic (but not Kähler) structure in zero modes, is an automatic consequence.

3.4.5 The general structure of the isometry algebra

There are three options for the isometry algebra of WCW.

1. Isometry algebra as the algebra of CP2 symplectic transformations leaving invariant the
symplectic form of CP2 localized with respect to �M4

+.

2. Certainly the WCW metric in �M4
+ must be non-trivial and actually given by the magnetic

flux Hamiltonians defining symplectic invariants. Furthermore, the super-symplectic genera-
tors constructed from quarks automatically give as anti-commutators this part of the WCW
metric. One could interpret these symplectic invariants as WCW Hamiltonians for �M4

+

symplectic transformations obtained when CP2 Hamiltonian is constant.

3. Isometry algebra consists of �M4
+⇥CP2 symplectic transformations. In this case a local color

transformation involves necessarily a local S2 transformation. Unfortunately, it is di�cult
to decide at this stage which of these options is correct.

The eigen states of the rotation generator and Lorentz boost in the same direction defining a
unitary representation of the Lorentz group at light cone boundary define the most natural function
basis for the light cone boundary. The elements of this bases have also well defined scaling quantum
numbers and define also a unitary representation of the conformal algebra. The product of the
basic functions is very simple in this basis since various quantum numbers are additive.

Spherical harmonics of S2 provide an alternative function basis for the light cone boundary:
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Hm
jk ⌘ Yjm(✓,�)rkM .

(3.4.6)

One can criticize this basis for not having nice properties under Lorentz group.
The product of basis functions is given by Glebch-Gordan coe�cients for symmetrized tensor

product of two representation of the rotation group. Poisson bracket in turn reduces to the Glebch-
Gordans of anti-symmetrized tensor product. The quantum numbers m and k are additive. The
basis is eigen-function basis for the imaginary part of the Virasoro generator L0 generating rotations
around quantization axis of angular momentum. In fact, only the imaginary part of the Virasoro
generator L0 = zd/dz = ⇢@⇢� 2

2@� has global single valued Hamiltonian, whereas the corresponding
representation for the transformation induced by the real part of L0, with a compensating radial
scaling added, cannot be realized as a global symplectic transformation.

The Poisson bracket of two functions Hm
j1k1

and Hm
j2k2

can be calculated and is of the general
form

{Hm1
j1k

, Hm2
j2k2

} ⌘ C(j1m1j2m2|j,m1 +m2)AH
m1+m2
j,k1+k2

. (3.4.7)

The coe�cients are Glebch-Gordan coe�cients for the anti-symmetrized tensor product for the
representations of the rotation group.

The isometries of the light cone boundary correspond to conformal transformations accom-
panied by a local radial scaling compensating the conformal factor coming from the conformal
transformations having parametric dependence of radial variable and CP2 coordinates. It seems
however that isometries cannot in general be realized as symplectic transformations. The first
di�culty is that symplectic transformations cannot a↵ect the value of the radial coordinate. For
rotation algebra the representation as symplectic transformations is however possible.

In CP2 degrees of freedom scalar function basis having definite color transformation properties
is desirable. Scalar function basis can be obtained as the algebra generated by the Hamiltonians
of color transformations by multiplication. The elements of basis can be typically expressed as
monomials of color Hamiltonians HA

c

HA
D =

X
{B

j

}

CA
DB1B2....BN

Y
B

i

HB
i

c , (3.4.8)

where summation over all index combinations {Bi} is understood. The coe�cients CA
DB1B2....BN

are
Glebch-Gordan coe�cients for completely symmetricN :th power 8⌦8...⌦8 of octet representations.
The representation is not unique since

P
A HA

c HA
c = 1 holds true. One can however find for each

representation D some minimum value of N .
The product of Hamiltonians HD1

A and HB
D2

can be decomposed by Glebch-Gordan coe�cients
of the symmetrized representation (D1 ⌦D2)S as

HA
D1

HB
D2

= CABD
D1D2DC(S)H

C
D , (3.4.9)

where 0S0 indicates that the symmetrized representation is in question. In the similar manner one
can decompose the Poisson bracket of two Hamiltonians

{HA
D1

, HB
D2

} = CABD
D1D2DC(A)HC

D . (3.4.10)

Here 0A0 indicates that Glebch-Gordan coe�cients for the anti-symmetrized tensor product of the
representations D1 and D2 are in question.

One can express the infinitesimal generators of CP2 symplectic transformations in terms of the
color isometry generators JB

c using the expansion of the Hamiltonian in terms of the monomials
of color Hamiltonians:
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jADN = FA
DBJ

B
c ,

FA
DB = N

X
{B

j

}

CA
DB1B2...BN�1B

Y
j

HB
j

c , (3.4.11)

where summation over all possible {Bj}:s appears. Therefore, the interpretation as a color group
localized with respect to CP2 coordinates is valid in the same sense as the interpretation of space-
time di↵eomorphism group as local Poincare group. Thus one can say that TGD color is localized
with respect to the entire �M4

+ ⇥ CP2.
A convenient basis for the Hamiltonians of �M4

+ ⇥ CP2 is given by the functions

HmA
jkD = Hm

jkH
A
D .

The symplectic transformation generated by HmA
jkD acts both in M4 and CP2 degrees of freedom

and the corresponding vector field is given by

Jr = HA
DJrl(�M4

+)@lH
m
jk +Hm

jkJ
rl(CP2)@lH

A
D . (3.4.12)

The general form for their Poisson bracket is:

{Hm1A1
j1k1D1

, Hm2A2
j2k2D2

} = HA1
D1

HA2
D2

{Hm1
j1k1

, Hm2
j2k2

}+Hm1
j1k1

Hm2
j2k2

{HA1
D1

, HA2
D2

}

=
h
CA1A2A

D1D2D
(S)C(j1m1j2m2|jm)A + CA1A2A

D1D2D
(A)C(j1m1j2m2|jm)S

i
HmA

j,k1+k2,D .

(3.4.13)

What is essential that radial ’momenta’ and angular momentum are additive in �M4
+ degrees of

freedom and color quantum numbers are additive in CP2 degrees of freedom.

3.4.6 Representation of Lorentz group and conformal symmetries at
light cone boundary

A guess deserving testing is that the representations of the Lorentz group at light cone boundary
might provide natural building blocks for the construction of the WCW Hamiltonians. In the
following the explicit representation of the Lorentz algebra at light cone boundary is deduced,
and a function basis giving rise to the representations of Lorentz group and having very simple
properties under modified Poisson bracket of �M4

+ is constructed.

Explicit representation of Lorentz algebra

It is useful to write the explicit expressions of Lorentz generators using complex coordinates for
S2. The expression for the SU(2) generators of the Lorentz group are

Jx = (z2 � 1)d/dz + c.c. = L1 � L�1 + c.c. ,

Jy = (iz2 + 1)d/dz + c.c. = iL1 + iL�1 + c.c. ,

Jz = iz
d

dz
+ c.c. = iLz + c.c. . (3.4.14)

The expressions for the generators of Lorentz boosts can be derived easily. The boost in m3

direction corresponds to an infinitesimal transformation

�m3 = �"rM ,

�rM = �"m3 = �"
q
r2M � (m1)2 � (m2)2 . (3.4.15)



98
Chapter 3. Construction of Configuration Space Kähler Geometry from Symmetry

Principles

The relationship between complex coordinates of S2 and M4 coordinates mk is given by stereo-
graphic projection

z =
(m1 + im2)

(rM �
p
r2M � (m1)2 � (m2)2)

=
sin(✓)(cos�+ isin�)

(1� cos✓)
,

cot(✓/2) = ⇢ =
p
zz̄ ,

tan(�) =
m2

m1
. (3.4.16)

This implies that the change in z coordinate doesn’t depend at all on rM and is of the following
form

�z = �"

2
(1 +

z(z + z̄)

2
)(1 + zz̄) . (3.4.17)

The infinitesimal generator for the boosts in z-direction is therefore of the following form

Lz = [
2zz̄

(1 + zz̄)
� 1]rM

@

@r
M

� iJz . (3.4.18)

Generators of Lx and Ly are most conveniently obtained as commutators of [Lz, Jy] and [Lz, Jx].
For Ly one obtains the following expression:

Ly = 2
(zz̄(z + z̄) + i(z � z̄))

(1 + zz̄)2
rM

@

@r
M

� iJy , (3.4.19)

For Lx one obtains analogous expressions. All Lorentz boosts are of the form Li = �iJi +
local radial scaling and of zeroth degree in radial variable so that their action on the general gen-
erator Xklm / zkz̄lrmM doesn’t change the value of the label m being a mere local scaling transfor-
mation in radial direction. If radial scalings correspond to zero norm isometries this representation
is metrically equivalent with the representations of Lorentz boosts as Möbius transformations.

Representations of the Lorentz group reduced with respect to SO(3)

The ordinary harmonics of S2 define in a natural manner infinite series of representation functions
transformed to each other in Lorentz transformations. The inner product defined by the integration
measure r2Md⌦drM/rM remains invariant under Lorentz boosts since the scaling of rM induced by
the Lorentz boost compensates for the conformal scaling of d⌦ induced by a Lorentz transformation
represented as a Möbius transformation. Thus unitary representations of Lorentz group are in
question.

The unitary main series representations of the Lorentz group are characterized by half-integer
m and imaginary number k2 = i⇢, where ⇢ is any real number [A45] . A natural guess is that
m = 0 holds true for all representations realizable at the light cone boundary and that radial waves
are of form rkM , k = k1+ ik2 = �1+ i⇢ and thus eigen states of the radial scaling so that the action
of Lorentz boosts is simple in the angular momentum basis. The inner product in radial degrees
of freedom reduces to that for ordinary plane waves when log(rM ) is taken as a new integration
variable. The complexification is well-defined for non-vanishing values of ⇢.

It is also possible to have non-unitary representations of the Lorentz group and the realization
of the symmetric space structure suggests that one must have k = k1 + ik2, k1 half-integer. For
these representations unitarity fails because the inner product in the radial degrees of freedom is
non-unitary. A possible physical interpretation consistent with the general ideas about conformal
invariance is that the representations k = �1+ i⇢ correspond to the unitary ground state represen-
tations and k = �1 + n/2 + i⇢, n = ±1,±2, ..., to non-unitary representations. The general view
about conformal invariance suggests that physical states constructed as tensor products satisfy the
condition

P
i ni = 0 completely analogous to Virasoro conditions.
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Representations of the Lorentz group with E2 ⇥ SO(2) as isotropy group

One can construct representations of Lorentz group and conformal symmetries at the light cone
boundary. Since SL(2, C) is the group generated by the generators L0 and L± of the conformal
algebra, it is clear that infinite-dimensional representations of Lorentz group can be also regarded
as representations of the conformal algebra. One can require that the basis corresponds to eigen
functions of the rotation generator Jz and corresponding boost generator Lz. For functions which
do not depend on rM these generators are completely analogous to the generators L0 generating
scalings and iL0 generating rotations. Also the generator of radial scalings appears in the formulas
and one must consider the possibility that it corresponds to the generator L0.

In order to construct scalar function eigen basis of Lz and Jz, one can start from the expressions

L3 ⌘ i(Lz + Lz̄) = 2i[
2zz̄

(1 + zz̄)
� 1]rM

@

@r
M

+ i⇢@⇢ ,

J3 ⌘ iLz � iLz̄ = i@� . (3.4.20)

If the eigen functions do not depend on rM , one obtains the usual basis zn of Virasoro algebra, which
however is not normalizable basis. The eigenfunctions of the generators L3, J3 and L0 = irMd/drM
satisfying

J3fm,n,k = mfm,n,k ,

L3fm,n,k = nfm,n,k ,

L0fm,n,k = kfm,n,k . (3.4.21)

are given by

fm,n,k = eim� ⇢n�k

(1 + ⇢2)k
⇥ (

rM
r0

)k . (3.4.22)

n = n1 + in2 and k = k1 + ik2 are in general complex numbers. The condition

n1 � k1 � 0

is required by regularity at the origin of S2 The requirement that the integral over S2 defining
norm exists (the expression for the di↵erential solid angle is d⌦ = ⇢

(1+⇢2)2 d⇢d�) implies

n1 < 3k1 + 2 .

From the relationship (cos(✓), sin(✓)) = (⇢2 � 1)/(⇢2 + 1), 2⇢/(⇢2 + 1)) one can conclude that
for n2 = k2 = 0 the representation functions are proportional to f sin(✓)n�k(cos(✓) � 1)n�k.
Therefore they have in their decomposition to spherical harmonics only spherical harmonics with
angular momentum l < 2(n� k). This suggests that the condition

|m|  2(n� k) (3.4.23)

is satisfied quite generally.
The emergence of the three quantum numbers (m,n, k) can be understood. Light cone boundary

can be regarded as a coset space SO(3, 1)/E2 ⇥SO(2), where E2 ⇥SO(2) is the group leaving the
light like vector defined by a particular point of the light cone invariant. The natural choice of the
Cartan group is therefore E2 ⇥ SO(2). The three quantum numbers (m,n, k) have interpretation
as quantum numbers associated with this Cartan algebra.

The representations of the Lorentz group are characterized by one half-integer valued and one
complex parameter. Thus k2 and n2, which are Lorentz invariants, might not be independent
parameters, and the simplest option is k2 = n2.

The nice feature of the function basis is that various quantum numbers are additive under
multiplication:
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f(ma, na, ka)⇥ f(mb, nb, kb) = f(ma +mb, na + nb, ka + kb) .

These properties allow to cast the Poisson brackets of the symplectic algebra of WCW into an
elegant form.

The Poisson brackets for the �M4
+ Hamiltonians defined by fmnk can be written using the

expression J⇢� = (1 + ⇢2)/⇢ as

{fm
a

,n
a

,k
a

, fm
b

,n
b

,k
b

} = i [(na � ka)mb � (nb � kb)ma]⇥ fm
a

+m
b

,n
a

+n
b

�2,k
a

+k
b

+ 2i [(2� ka)mb � (2� kb)ma]⇥ fm
a

+m
b

,n
a

+n
b

�1,k
a

+k
b

�1 .

(3.4.24)

Can one find unitary light-like representations of Lorentz group?

It is interesting to compare the representations in question to the unitary representations Gelfand
.

1. The unitary representations discussed in [A45] are characterized by are constructed by deduc-
ing the explicit representations for matrix elements of the rotation generators Jx, Jy, Jz and
boost generators Lx, Ly, Lz by decomposing the representation into series of representations
of SU(2) defining the isotropy subgroup of a time like momentum. Therefore the states are
labeled by eigenvalues of Jz. In the recent case the isotropy group is E2 ⇥ SO(2) leaving
light like point invariant. States are therefore labeled by three di↵erent quantum numbers.

2. The representations of [A45] are realized the space of complex valued functions of complex
coordinates ⇠ and ⇠ labeling points of complex plane. These functions have complex degrees
n+ = m/2 � 1 + l1 with respect to ⇠ and n� = �m/2 � 1 + l1 with respect to ⇠. l0
is complex number in the general case but for unitary representations of main series it is
given by l1 = i⇢ and for the representations of supplementary series l1 is real and satisfies
0 < |l1| < 1. The main series representation is derived from a representation space consisting
of homogenous functions of variables z0, z1 of degree n+ and of z0 and z1 of degrees n±.

One can separate express these functions as product of (z1)n
+

(z1)n� and a polynomial of
⇠ = z1/z2 and ⇠ with degrees n+ and n�. Unitarity reduces to the requirement that the
integration measure of complex plane is invariant under the Lorentz transformations acting
as Moebius transformations of the complex plane. Unitarity implies l1 = �1 + i⇢.

3. For the representations at �M4
+ formal unitarity reduces to the requirement that the inte-

gration measure of r2Md⌦drM/rM of �M4
+ remains invariant under Lorentz transformations.

The action of Lorentz transformation on the complex coordinates of S2 induces a confor-
mal scaling which can be compensated by an S2 local radial scaling. At least formally the
function space of �M4

+ thus defines a unitary representation. For the function basis fmnk

k = �1 + i⇢ defines a candidate for a unitary representation since the logarithmic waves in
the radial coordinate are completely analogous to plane waves for k1 = �1. This condition
would be completely analogous to the vanishing of conformal weight for the physical states
of super conformal representations. The problem is that for k1 = �1 guaranteeing square
integrability in S2 implies �2 < n1 < �2 so that unitarity is possible only for the function
basis consisting of spherical harmonics.

There is no deep reason against non-unitary representations and symmetric space structure
indeed requires that k1 is half-integer valued. First of all, WCW spinor fields are analogous to
ordinary spinor fields in M4, which also define non-unitary representations of Lorentz group.
Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals defined by
fmnk over 3-surfaces Y 3 are always well-defined. Thirdly, the continuous spectrum of k2
could be transformed to a discrete spectrum when k1 becomes half-integer valued.

Hermitian form for light cone Hamiltonians involves also the integration over S2 degrees of
freedom and the non-unitarity of the inner product reflects itself as non-orthogonality of the the
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eigen function basis. Introducing the variable u = ⇢2 + 1 as a new integration variable, one can
express the inner product in the form

hma, na, ka|mb, nb, kbi = ⇡�(k2a � k2b)⇥ �m1,m2 ⇥ I ,

I =

Z 1

1
f(u)du ,

f(u) =
(u� 1)

(N�K)+i�
2

uK+2
. (3.4.25)

The integrand has cut from u = 1 to infinity along real axis. The first thing to observe is that
for N = K the exponent of the integral reduces to very simple form and integral exists only for
K = k1a + k1b > �1. For k1i = �1/2 the integral diverges.

The discontinuity of the integrand due to the cut at the real axis is proportional to the integrand
and given by

f(u)� f(ei2⇡u) =
⇥
1� e�⇡�

⇤
f(u) ,

� = n1a � k1a � n1b + k1b . (3.4.26)

This means that one can transform the integral to an integral around the cut. This integral can
in turn completed to an integral over closed loop by adding the circle at infinity to the integration
path. The integrand has K + 1-fold pole at u = 0.

Under these conditions one obtains

I =
2⇡i

1� e�⇡�
⇥R⇥ (R� 1)....⇥ (R�K � 1)⇥ (�1)

N�K

2 �K�1 ,

R ⌘ N �K

2
+ i� . (3.4.27)

This expression is non-vanishing for � 6= 0. Thus it is not possible to satisfy orthogonality
conditions without the un-physical n = k, k1 = 1/2 constraint. The result is finite for K > �1 so
that k1 > �1/2 must be satisfied and if one allows only half-integers in the spectrum, one must
have k1 � 0, which is very natural if real conformal weights which are half integers are allowed.

3.4.7 How the complex eigenvalues of the radial scaling operator relate
to symplectic conformal weights?

3.4.8 How the complex eigenvalues of the radial scaling operator relate
to symplectic conformal weights?

Complexified Hamiltonians can be chosen to be eigenmodes of the radial scaling operator rMd/drM ,
and the first guess was that the correct interpretation is as conformal weights. The problem is
however that the eigenvalues are complex. Second problem is that general arguments are not
enough to fix the spectrum of eigenvalues. There should be a direct connection to the dynamics
defined by Kähler action with instanton term included and the modified Dirac action defined by
it.

The construction of WCW spinor structure in terms of second quantized induced spinor fields
[K9] leads to the conclusion that the modes of induced spinor fields must be restricted at surfaces
with 2-D CP2 projection to guarantee vanishing W fields and well-defined em charge for them. In
the generic case these surfaces are 2-D string world sheets (or possibly also partonic 2-surfaces) and
in the non-generic case can be chosen to be such. The modes are labeled by generalized conformal
weights assignable to complex or hypercomplex string coordinate. Conformal weights are expected
to be integers from the experience with string models.

It is an open question whether these conformal weights are independent of the symplectic formal
weights or not but on can consider also the possibility that they are dependent. Note hovewer that
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string coordinate is not reducible to the light-like radial coordinate in the generic case and one
can imagine situations in which rM is constant although string coordinate varies. Dependency
would be achieved if the Hamiltonians are generalized eigen modes of D = �xd/dx, x = log(r/r0),
satisfying DH = ��xH and thus of form exp(�x) = (r/r0)� with the same spectrum of eigenvalues
� as associated with the modified Dirac operator. That log(r/r0) naturally corresponds to the
coordinate u assignable to the generalized eigen modes of modified Dirac operator supports this
interpretation.

3.5 Magnetic and electric representations of the configura-
tion space Hamiltonians

Symmetry considerations lead to the hypothesis that WCW Hamiltonians are apart from a factor
depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand,
the hypothesis that Kähler function corresponds to a preferred extremal of Kähler action leads
to the hypothesis that WCW Hamiltonians corresponds to classical charges associated with the
Hamiltonians of the light cone boundary. These charges are very much like electric charges. The
requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric
Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of
CP2 corresponding duality corresponds to the self-duality of Kähler form stating that the magnetic
and electric parts of Kähler form are identical.

3.5.1 Radial symplectic invariants

All �M4
+ ⇥ CP2 symplectic transformations leave invariant the value of the radial coordinate rM .

Therefore the radial coordinate rM of X3 regarded as a function of S2 ⇥ CP2 coordinates serves
as height function. The number, type, ordering and values for the extrema for this height function
in the interior and boundary components are isometry invariants. These invariants characterize
not only the topology but also the size and shape of the 3-surface. The result implies that WCW
metric indeed di↵erentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) rM = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of
the situation. A good example about non-topological extrema is provided by a sphere with two
horns.

There are additional symplectic invariants. The ’magnetic fluxes’ associated with the �M4
+

symplectic form
JS2 = r2Msin(✓)d✓ ^ d�

over any X2 ⇢ X3 are symplectic invariants. In particular, the integrals over rM = constant
sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the
solid angle ⌦(rM ) spanned by rM = constant section and thus r2M⌦(rM ) characterizes transversal
geometric size of the 3-surface. A convenient manner to discretize these invariants is to consider
the Fourier components of these invariants in radial logarithmic plane wave basis discussed earlier:

⌦(k) =

Z r
max

r
min

(rM/rmax)
k⌦(rM )

drM
rM

, k = k1 + ik2 , perk1 � 0 . (3.5.1)

One must take into account that for each section in which the topology of rM = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rM , rM constant section contains several components (to visualize
the situation consider torus as an example).

Also the quantities

⌦+(X2) =

Z
X2

|J | ⌘
Z

|✏↵�J↵� |
p
g2d

2x

are symplectic invariants and provide additional geometric information about 3-surface. These
fluxes are non-vanishing also for closed surfaces and give information about the geometry of the
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boundary components of 3-surface (signed fluxes vanish for boundary components unless they
enclose the dip of the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the
Kähler metric vanishes. It is not at all obvious whether WCW integration measure in these degrees
of freedom exists at all. A localization in zero modes occurring in each quantum jump seems a
more plausible and under suitable additional assumption it would have interpretation as a state
function reduction. In string model similar situation is encountered; besides the functional integral
determined by string action, one has integral over the moduli space.

If the e↵ective 2-dimensionality implied by the strong form of general coordinate invariance
discussed in the introduction is accepted, there is no need to integrate over the variable rM and
just the fluxes over the 2-surfaces X2

i identified as intersections of light like 3-D causal determinants
with X3 contain the data relevant for the construction of the WCW geometry. Also the symplectic
invariants associated with these surfaces are enough.

3.5.2 Kähler magnetic invariants

The Kähler magnetic fluxes defined both the normal component of the Kähler magnetic field and
by its absolute value

Qm(X2) =

Z
X2

JCP2 = J↵�✏
↵�pg2d

2x ,

Q+
m(X2) =

Z
X2

|JCP2 | ⌘
Z
X2

|J↵�✏↵� |
p
g2d

2x , (3.5.2)

over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic
transformations of CP2 and can be calculated once X3 is given.

For a closed surface Qm(X2) vanishes unless the homology equivalence class of the surface is
nontrivial in CP2 degrees of freedom. In this case the flux is quantized. Q+

M (X2) is non-vanishing
for closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary
of X2 only: R

X2 J =
R
�X2 A .

J = dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of
X2 in which the sign of J remains fixed.

Qm(X2) =

Z
X2

JCP2 = J↵�✏
↵�pg2d

2x ,

Q+
m(X2) =

Z
X2

|JCP2 | ⌘
Z
X2

|J↵�✏↵� |
p
g2d

2x , (3.5.3)

There are also symplectic invariants, which are Lorentz covariants and defined as

Qm(K,X2) =

Z
X2

fKJCP2 ,

Q+
m(K,X2) =

Z
X2

fK |JCP2 | ,

fK⌘(s,n,k) = eis� ⇥ ⇢n�k

(1 + ⇢2)k
⇥ (

rM
r0

)k (3.5.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X3, and
the magnetic fluxes over the representatives these surfaces give thus good candidates for zero
modes.
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1. If e↵ective 2-dimensionality is accepted, the surfaces X2
i defined by the intersections of light

like 3-D causal determinants X3
l and X3 provide a natural identification for these 2-surfaces.

2. Without e↵ective 2-dimensionality the situation is more complex. Since symplectic trans-
formations leave rM invariant, a natural set of 2-surfaces X2 appearing in the definition of
fluxes are separate pieces for rM = constant sections of 3-surface. For a generic 3-surface,
these surfaces are 2-dimensional and there is continuum of them so that discrete Fourier
transforms of these invariants are needed. One must however notice that rM = constant
surfaces could be be 3-dimensional in which case the notion of flux is not well-defined.

3.5.3 Isometry invariants and spin glass analogy

The presence of isometry invariants implies coset space decomposition [iG/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kähler function (Gaussian in lowest approximation) but also by a wave function in
vacuum modes. Therefore the functional integral over the WCW decomposes into an integral
over zero modes for approximately Gaussian functionals determined by exp(K). The weights for
the various vacuum mode contributions are given by the probability density associated with the
zero modes. The integration over the zero modes is a highly problematic notion and it could be
eliminated if a localization in the zero modes occurs in quantum jumps. The localization would
correspond to a state function reduction and zero modes would be e↵ectively classical variables
correlated in one-one manner with the quantum numbers associated with the quantum fluctuating
degrees of freedom.

For a given orbit K depends on zero modes and thus one has mathematical similarity with spin
glass phase for which one has probability distribution for Hamiltonians appearing in the partition
function exp(�H/T ). In fact, since TGD Universe is also critical, exact similarity requires that
also the temperature is critical for various contributions to the average partition function of spin
glass phase. The characterization of isometry invariants and zero modes of the Kähler metric
provides a precise characterization for how TGD Universe is quantum analog of spin glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field
theory limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase
motivates the hypothesis that e↵ective quantum average space-time possesses ultra-metric topology.
This approach leads to excellent predictions for elementary particle masses and predicts even new
branches of physics [K29, K55] . As a matter fact, an entire fractal hierarchy of copies of standard
physics is predicted.

3.5.4 Magnetic flux representation of the symplectic algebra

Accepting the strong form of general coordinate invariance implying e↵ective two-dimensionality
WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X2

i defined by
the intersections of light-like light-like 3-surfaces X3

l,i with X3 at the boundaries of CD considered.
Bearing in mind that zero energy ontology is the correct approach, one can restrict the consideration
on fluxes at �M4

+ ⇥ CP2 One must also remember that if the proposed symmetries hold true, it
is in principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian space-
time sheet to partonic 2-surfaces parametrized by the points of stringy world sheets.vA physically
attractive realization of the slicings of space-time surface by 3-surfaces and string world sheets is
discussed in [K23] by starting from the observation that TGD could define a natural realization of
braids, braid cobordisms, and 2-knots.

Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for
WCW. Symplectic transformations of CP2 act as U(1) gauge transformations on the Kähler po-
tential of CP2 (similar conclusion holds at the level of �M4

+ ⇥ CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fm,n,k (see Eq. 3.4.22) defining the Lorentz covariant function basis HA, A ⌘ (a,m, n, k)
at the light cone boundary: HA = Ha ⇥ f(m,n, k), where a labels the Hamiltonians of CP2.



3.5. Magnetic and electric representations of the configuration space Hamiltonians105

One can associate to any Hamiltonian HA of this kind both signed and unsigned magnetic flux
via the following formulas:

Qm(HA|X2) =

Z
X2

HAJ ,

Q+
m(HA|X2) =

Z
X2

HA|J | .

(3.5.5)

Here X2 corresponds to any surface X2
i resulting as intersection of X3 with X3

l,i. Both signed and
unsigned magnetic fluxes and their superpositions

Q↵,�
m (HA|X2) = ↵Qm(HA|X2) + �Q+

m(HA|X2) , A ⌘ (a, s, n, k) (3.5.6)

provide representations of Hamiltonians. Note that symplectic invariants Q↵,�
m correspond toHA =

1 and HA = fs,n,k. HA = 1 can be regarded as a natural central term for the Poisson bracket
algebra. Therefore, the isometry invariance of Kähler magnetic and electric gauge fluxes follows
as a natural consequence.

The obvious question concerns about the correct values of the parameters ↵ and �. One
possibility is that the flux is an unsigned flux so that one has ↵ = 0. This option is favored by
the construction of the WCW spinor structure involving the construction of the fermionic super
charges anti-commuting to WCW Hamiltonians: super charges contain the square root of flux,
which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so
that � vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the
defining formulas with its dual ⇤J

⇤J↵� = ✏ ��
↵� J��.

For HA = 1 these fluxes reduce to ordinary Kähler electric fluxes. These fluxes are however not
symplectic covariants since the definition of the dual involves the induced metric, which is not
symplectic invariant. The electric gauge fluxes for Hamiltonians in various representations of the
color group ought to be important in the description of hadrons, not only as string like objects,
but quite generally. These degrees of freedom would be identifiable as non-perturbative degrees of
freedom involving genuinely classical Kähler field whereas quarks and gluons would correspond to
the perturbative degrees of freedom, that is the interactions between CP2 type extremals.

Poisson brackets

From the symplectic invariance of the radial component of Kähler magnetic field it follows that
the Lie-derivative of the flux Q↵,�

m (HA) with respect to the vector field X(HB) is given by

X(HB) ·Q↵,�
m (HA) = Q↵,�

m ({HB , HA}) . (3.5.7)

The transformation properties of Q↵,�
m (HA) are very nice if the basis for HB transforms according

to appropriate irreducible representation of color group and rotation group. This in turn implies
that the fluxes Q↵,�

m (HA) as functionals of 3-surface on given orbit provide a representation for the
Hamiltonian as a functional of 3-surface. For a given surface X3, the Poisson bracket for the two
fluxes Q↵,�

m (HA) and Q↵,�
m (HB) can be defined as

{Q↵,�
m (HA), Q

↵,�
m (HB)} ⌘ X(HB) ·Q↵,�

m (HA)

= Q↵,�
m ({HA, HB}) = Q↵,�

m ({HA, HB}) . (3.5.8)

The study of WCW gamma matrices identifiable as symplectic super charges demonstrates that the
supercharges associated with the radial deformations vanish identically so that radial deformations
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correspond to zero norm degrees of freedom as one might indeed expect on physical grounds. The
reason is that super generators involve the invariants jak�k which vanish by �r

M

= 0.
The natural central extension associated with the symplectic group of CP2 ({p, q} = 1!) induces

a central extension of this algebra. The central extension term resulting from {HA, HB} when CP2

Hamiltonians have {p, q} = 1 equals to the symplectic invariant Q↵,�
m (f(ma+mb, na+nb, ka+kb))

on the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom
rather than in loop space degrees of freedom and therefore does not lead to the standard Kac
Moody type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the the deforma-
tions of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at �CD
intact and are highly relevant to the elementary particle physics. This algebra allows a repre-
sentation in terms of X3

l local Hamiltonians generating isometries of �M4
± ⇥ CP2. Hamiltonian

representation is essential for super-symmetrization since fermionic super charges anti-commute
to Hamiltonians rather than vector fields: this is one of the deep di↵erences between TGD and
string models. Kac-Moody algebra does not contribute to WCW metric since by definition the
generators vanish at partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the CP2 symplectic algebra localized with respect to the light
cone boundary and relevant to the configuration space geometry. This extends to S2 ⇥ CP2 -or
rather �M4

± ⇥ CP2 symplectic algebra and this gives the strongest predictions concerning WCW
metric. The local radial Virasoro localized with respect to S2 ⇥ CP2 acts in zero modes and has
automatically vanishing norm with respect to WCW metric defined by super charges.

3.5.5 Symplectic transformations of �M4

±⇥CP
2

as isometries and electric-
magnetic duality

According to the construction of Kähler metric, symplectic transformations of �M4
± ⇥ CP2 act

as isometries whereas radial Virasoro algebra localized with respect to CP2 has zero norm in the
WCW metric.

Hamiltonians can be organized into light like unitary representations of so(3, 1) ⇥ su(3) and
the symmetry condition Zg(X,Y ) = 0 requires that the component of the metric is so(3, 1) ⇥
su(3) invariant and this condition is satisfied if the component of metric between two di↵erent
representationsD1 andD2 of so(3, 1)⇥su(3) is proportional to Glebch-Gordan coe�cient CD1D2,DS

betweenD1⌦D2 and singlet representationDS . In particular, metric has components only between
states having identical so(3, 1)⇥ su(3) quantum numbers.

Magnetic representation of WCW Hamiltonians means the action of the symplectic transfor-
mations of the light cone boundary as WCW isometries is an intrinsic property of the light cone
boundary. If electric-magnetic duality holds true, the preferred extremal property only determines
the conformal factor of the metric depending on zero modes. This is precisely as it should be
if the group theoretical construction works. Hence it should be possible by a direct calculation
check whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in
complex coordinates is invariant under isometries. Symplectic invariance of the metric means that
matrix elements of the metric are left translates of the metric along geodesic lines starting from the
origin of coordinates, which now naturally corresponds to the preferred extremal of Kähler action.
Since metric derives from symplectic form this means that the matrix elements of symplectic form
given by Poisson brackets of Hamiltonians must be left translates of their values at origin along
geodesic line. The matrix elements in question are given by flux Hamiltonians and since symplectic
transforms of flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian,
it seems that the conditions are satisfied.

3.6 General expressions for the symplectic and Kähler forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of
WCW. The fact that these expressions involve only first variation of the Kähler action implies
huge simplification of the basic formulas. Duality hypothesis leads to further simplifications of the
formulas.
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3.6.1 Closedness requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of �M4
+⇥CP2 suggest a gen-

eral representation for the components of the symplectic form of the WCW. The basic requirement
is that Kähler form satisfies the defining condition

X · J(Y, Z) + J([X,Y ], Z) + J(X, [Y, Z]) = 0 , (3.6.1)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordi-
nates.

3.6.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and
X(HB)) defined by the Hamiltonians HA and HB of �M4

+ ⇥ CP2 isometries is expressible as
Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (3.6.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset
of Hamiltonians. The magnetic flux Hamiltonians Q↵,�

m (HA,k) of Eq. 4.4.1 provide an explicit
representation for the Hamiltonians at the level of WCW so that the components of the symplectic
form of the WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(HA), X(HB)) = Q↵,�
m ({HA, HB}) .

(3.6.3)

Recall that the superscript ↵,� refers the coe�cients of J and |J | in the superposition of these
Kähler magnetic fluxes. Note that Q↵,�

m contains unspecified conformal factor depending on sym-
plectic invariants characterizing Y 3 and is unspecified superposition of signed and unsigned mag-
netic fluxes.

This representation does not carry information about the tangent space of space-time surface
at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and
proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators
of flux Hamiltonians come out correctly. This would give

Q↵,�
m (HA)em = Q↵,�

e (HA) +Q↵,�
m (HA) = (1 +K)Q↵,�

m (HA) . (3.6.4)

Since Kähler form relates to the standard field tensor by a factor e/~, flux Hamiltonians are
dimensionless so that commutators do not involve ~. The commutators would come as

Q↵,�
em ({HA, HB}) ! (1 +K)Q↵,�

m ({HA, HB}) . (3.6.5)

The factor 1 +K plays the same role as Planck constant in the commutators.
WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives

of the Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as
coordinates in the perturbative functional integral around extrema (with maxima giving dominat-
ing contribution). It is clear that WCW coordinates around a given extremum include only those
Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space
of G/H) In Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JI�
I,J .

JI = 1 . (3.6.6)
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It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably
the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix
depending on symplectic invariants so that one has JI 6= 1. The integration measure is given by the
symplectic volume element given by the determinant of the matrix defined by the Poisson brackets
of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given
by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
Y
I

JI

in generalized Darboux coordinates.
Kähler potential (that is gauge potential associated with Kähler form) can be written in Dar-

boux coordinates as

A =
X
I

JIPIdQ
I . (3.6.7)

3.6.3 General expressions for Kähler form, Kähler metric and Kähler
function

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by trans-
forming the contravariant form of the symplectic form from symplectic coordinates provided by
Hamiltonians to complex coordinates:

JZiZ̄j

= iGZiZ̄j

= @HAZi@HB Z̄jJAB , (3.6.8)

where JAB is given by the classical Kahler charge for the light cone Hamiltonian {HA, HB}. Com-
plex coordinates correspond to linear coordinates of the complexified Lie-algebra providing expo-
nentiation of the isometry algebra via exponential mapping. What one must know is the precise
relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship
is in principle calculable. In Darboux coordinates the expressions become even simpler:

JZiZ̄j

= iGZiZ̄j

=
X
I

J(I)(@P iZi@QI Z̄j � @QIZi@P I Z̄j) . (3.6.9)

Kähler function can be formally integrated from the relationship

AZi = i@ZiK ,

AZ̄i

= �i@ZiK . (3.6.10)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

Z Z

0
(AZidZi �AZ̄i

dZ̄i) . (3.6.11)

3.6.4 Diff(X3) invariance and degeneracy and conformal invariances of
the symplectic form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degener-
ate. This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA

or HB is such that it generates di↵eomorphism of the 3-surface X3. If e↵ective 2-dimensionality
holds true, J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional di↵eomorphism
d(HA) at the surface X2

i .
One can always write
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J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates di↵eomorphism, the action of X(HA) reduces to the action of the vector field XA

of some X2
i -di↵eomorphism. Since Q(HB |rM ) is manifestly invariant under the di↵emorphisms of

X2, the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.
The radial di↵eomorphisms possibly generated by the radial Virasoro algebra do not produce

trouble. The change of the flux integrandX under the infinitesimal transformation rM ! rM+✏rnM
is given by rnMdX/drM . Replacing rM with r�n+1

M /(�n+ 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X2

i . Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric ofX2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.

3.6.5 Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
to ’positive’ frequencies and which to ’negative frequencies’ and which to zero frequencies that is
to decompose the generators of the symplectic algebra to three sets Can+, Can� and Can0. One
must distinguish between Can0 and zero modes, which are not considered here at all. For instance,
CP2 Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector
Can0 could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2

, k2 > 0} ,

Can� = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (3.6.12)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can� = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (3.6.13)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.
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The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket
defined by Eq. 3.9.15

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}�+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}�+)) . (3.6.14)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.

3.6.6 Comparison of CP
2

Kähler geometry with configuration space ge-
ometry

The explicit discussion of the role of g = t + h decomposition of the tangent space of WCW
provides deep insights to the metric of the symmetric space. There are indeed many questions to
be answered. To what point of WCW (that is 3-surface) the proposed g = t + h decomposition
corresponds to? Can one derive the components of the metric and Kähler form from the Poisson
brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the
properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic
central extension of the symplectic algebra or can one consider also other options?

Cartan decomposition for CP2

A good manner to gain understanding is to consider the CP2 metric and Kähler form at the origin
of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case
of CP2 u(2) sub-algebra transforms as g � u(2) � g�1 when the point s is replaced by gsg�1.
This is expected to hold true also in case of WCW (unless it is flat) so that the task is to
identify the point of WCW at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of CP2 in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It
is possible to add suitable constants to the Hamiltonians in order to guarantee that they
vanish at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to
holomorphic components Ja

+ = jak@k and ja� = jak̄@k̄. One can introduce what might be
called half Poisson bracket and half inner product defined as

{Ha, Hb}�+ ⌘ @k̄H
aJ k̄l@lH

b

= jakJkl̄j
bl̄ = �i(ja+, j

b
�) . (3.6.15)

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{Ha, Hb} = 2Im
�
i{Ha, Hb}�+

�
,

(ja, jb) = 2Re
�
i(ja+, j

b
�)

�
= 2Re

�
i{Ha, Hb}�+

�
. (3.6.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kähler form. Obviously this is of utmost importance in the case of the WCW metric
whose symplectic structure and central extension are derived from those of CP2.
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Consider now the properties of the metric and Kähler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h, h}�+ = 0 ,

Re (i{h, t}�+) = 0 , Im (i{h, t}�+) = 0 ,

Re (i{t, t}�+) 6= 0 , Im (i{t, t}�+) 6= 0 .

(3.6.17)

2. The first two conditions state that h vector fields have vanishing inner products at the
origin. The first condition states also that the Hamiltonians for the commutator algebra
[h, h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding
to the color hyper charge need not vanish although it can be made vanishing. The third
condition implies that the Hamiltonians of t vanish at origin.

3. The last two conditions state that the Kähler metric and form are non-vanishing between
the elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the
only possibility is that {t, t} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian
at the origin or that the bracket at the origin is due to the symplectic central extension. The
requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to
interpret {t, t} brackets at origin as being due to a symplectic central extension. For instance,
for S2 the requirement that Hamiltonians vanish at origin would mean the replacement of the
Hamiltonian H = cos(✓) representing a rotation around z-axis with H3 = cos(✓)� 1 so that
the Poisson bracket of the generators H1 and H2 can be interpreted as a central extension
term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with
respect to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kähler function of CP2 has extremum at the origin. This suggests that in the case of
the WCW the counterpart of the origin corresponds to the maximum of the Kähler function.

Cartan algebra decomposition at the level of WCW

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of WCW. The use of the half bracket for WCW
Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and Kähler form
explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was
assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but without
any strong physical justification. The realization that super-symplectic and super Kac-Moody
symmetries define coset construction at the level of basic quantum TGD. The wrong conclusions
were that this construction provides a realization of Equivalence Principle (EP) at microscopic
level that the coset space decomposition of WCW realizes EP geometrically. At quantum level the
EP reduces to Quantum Classical Correspondence (QCC). At classical level EP reduces to the fact
that GRT space-time follows naturally as an e↵ective description of many-sheeted space-time [K56]
(see fig. http://www.tgdtheory.fi/appfigures/manysheeted.jpg or fig. 9 in the appendix of
this book).

It must be however emphasized that holography implying e↵ective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to e↵ec-
tively reduce Kac-Moody generators associated with X3

l to X2 = X3
l \ �M4

± ⇥CP2. In the similar
manner super-symplectic generators can be dimensionally reduced to X2. Number theoretical
compactification forces the dimensional reduction and the known extremals are consistent with
it [K5] . The construction of WCW spinor structure and metric in terms of the second quantized
spinor fields [K9] relies to this picture as also the recent view about M -matrix [K12] .

In this framework the coset space decomposition becomes trivial.

http://www.tgdtheory.fi/appfigures/manysheeted.jpg
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1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with
respect to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2.
Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decom-
position is satisfied.

3.6.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting of
maps from circle to Lie Freed , which served as the inspirer of the WCW geometry approach but
later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra T (k,A) =
exp(ik�)TA, where TA generates the finite-dimensional Lie-algebra g and � denotes the angle
variable of circle; k is integer. The complexification of the tangent space corresponds to the
decomposition

T = {X(k > 0, A)}� {X(k < 0, A)}� {X(k = 0, A)} = T+ � T� � T0

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kähler form is given by

J(X(k1 < 0, A), X(k2 > 0, B)) = k2�(k1 + k2)�(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of �M4

+⇥CP2 centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length �rM with periodic
boundary conditions; e↵ectively one has circle also now.

The basic di↵erence is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, q} = 1)
defined by Poisson bracket. This extension is anti-symmetric with respect to the generators
of the symplectic group: in the case of the Kac Moody central extension it is symmetric
with respect to the group G. The symplectic transformations of CP2 might correspond to
non-zero modes also because they are not exact symmetries of Kähler action. The situation is
however rather delicate since k = 0 light cone harmonic has a diverging norm due to the radial
integration unless one poses both lower and upper radial cuto↵s although the matrix elements
would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations
correspond to the zero modes. Light cone function algebra can be regarded as a local U(1)
algebra defining central extension in the case that only CP2 symplectic transformations
local with respect to �M4

+ act as isometries: for Kac Moody algebra the central extension
corresponds to an ordinary U(1) algebra. In the case that entire light cone symplectic algebra
defines the isometries the central extension reduces to a U(1) central extension.

3.7 Magnetic and electric representations of the configura-
tion space Hamiltonians

Symmetry considerations lead to the hypothesis that WCW Hamiltonians are apart from a factor
depending on symplectic invariants equal to magnetic flux Hamiltonians. On the other hand,
the hypothesis that Kähler function corresponds to a preferred extremal of Kähler action leads
to the hypothesis that WCW Hamiltonians corresponds to classical charges associated with the
Hamiltonians of the light cone boundary. These charges are very much like electric charges. The
requirement that two approaches are equivalent leads to the hypothesis that magnetic and electric
Hamiltonians are identical apart from a factor depending on isometry invariants. At the level of
CP2 corresponding duality corresponds to the self-duality of Kähler form stating that the magnetic
and electric parts of Kähler form are identical.
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3.7.1 Radial symplectic invariants

All �M4
+ ⇥ CP2 symplectic transformations leave invariant the value of the radial coordinate rM .

Therefore the radial coordinate rM of X3 regarded as a function of S2 ⇥ CP2 coordinates serves
as height function. The number, type, ordering and values for the extrema for this height function
in the interior and boundary components are isometry invariants. These invariants characterize
not only the topology but also the size and shape of the 3-surface. The result implies that WCW
metric indeed di↵erentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) rM = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of
the situation. A good example about non-topological extrema is provided by a sphere with two
horns.

There are additional symplectic invariants. The ’magnetic fluxes’ associated with the �M4
+

symplectic form
JS2 = r2Msin(✓)d✓ ^ d�

over any X2 ⇢ X3 are symplectic invariants. In particular, the integrals over rM = constant
sections (assuming them to be 2-dimensional) are symplectic invariants. They give simply the
solid angle ⌦(rM ) spanned by rM = constant section and thus r2M⌦(rM ) characterizes transversal
geometric size of the 3-surface. A convenient manner to discretize these invariants is to consider
the Fourier components of these invariants in radial logarithmic plane wave basis discussed earlier:

⌦(k) =

Z r
max

r
min

(rM/rmax)
k⌦(rM )

drM
rM

, k = k1 + ik2 , perk1 � 0 . (3.7.1)

One must take into account that for each section in which the topology of rM = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rM , rM constant section contains several components (to visualize
the situation consider torus as an example).

Also the quantities

⌦+(X2) =

Z
X2

|J | ⌘
Z

|✏↵�J↵� |
p
g2d

2x

are symplectic invariants and provide additional geometric information about 3-surface. These
fluxes are non-vanishing also for closed surfaces and give information about the geometry of the
boundary components of 3-surface (signed fluxes vanish for boundary components unless they
enclose the dip of the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the
Kähler metric vanishes. It is not at all obvious whether WCW integration measure in these degrees
of freedom exists at all. A localization in zero modes occurring in each quantum jump seems a
more plausible and under suitable additional assumption it would have interpretation as a state
function reduction. In string model similar situation is encountered; besides the functional integral
determined by string action, one has integral over the moduli space.

If the e↵ective 2-dimensionality implied by the strong form of general coordinate invariance
discussed in the introduction is accepted, there is no need to integrate over the variable rM and
just the fluxes over the 2-surfaces X2

i identified as intersections of light like 3-D causal determinants
with X3 contain the data relevant for the construction of the WCW geometry. Also the symplectic
invariants associated with these surfaces are enough.

3.7.2 Kähler magnetic invariants

The Kähler magnetic fluxes defined both the normal component of the Kähler magnetic field and
by its absolute value

Qm(X2) =

Z
X2

JCP2 = J↵�✏
↵�pg2d

2x ,

Q+
m(X2) =

Z
X2

|JCP2 | ⌘
Z
X2

|J↵�✏↵� |
p
g2d

2x , (3.7.2)
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over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic
transformations of CP2 and can be calculated once X3 is given.

For a closed surface Qm(X2) vanishes unless the homology equivalence class of the surface is
nontrivial in CP2 degrees of freedom. In this case the flux is quantized. Q+

M (X2) is non-vanishing
for closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary
of X2 only: R

X2 J =
R
�X2 A .

J = dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of
X2 in which the sign of J remains fixed.

Qm(X2) =

Z
X2

JCP2 = J↵�✏
↵�pg2d

2x ,

Q+
m(X2) =

Z
X2

|JCP2 | ⌘
Z
X2

|J↵�✏↵� |
p
g2d

2x , (3.7.3)

There are also symplectic invariants, which are Lorentz covariants and defined as

Qm(K,X2) =

Z
X2

fKJCP2 ,

Q+
m(K,X2) =

Z
X2

fK |JCP2 | ,

fK⌘(s,n,k) = eis� ⇥ ⇢n�k

(1 + ⇢2)k
⇥ (

rM
r0

)k (3.7.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X3, and
the magnetic fluxes over the representatives these surfaces give thus good candidates for zero
modes.

1. If e↵ective 2-dimensionality is accepted, the surfaces X2
i defined by the intersections of light

like 3-D causal determinants X3
l and X3 provide a natural identification for these 2-surfaces.

2. Without e↵ective 2-dimensionality the situation is more complex. Since symplectic trans-
formations leave rM invariant, a natural set of 2-surfaces X2 appearing in the definition of
fluxes are separate pieces for rM = constant sections of 3-surface. For a generic 3-surface,
these surfaces are 2-dimensional and there is continuum of them so that discrete Fourier
transforms of these invariants are needed. One must however notice that rM = constant
surfaces could be be 3-dimensional in which case the notion of flux is not well-defined.

3.7.3 Isometry invariants and spin glass analogy

The presence of isometry invariants implies coset space decomposition [iG/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kähler function (Gaussian in lowest approximation) but also by a wave function in
vacuum modes. Therefore the functional integral over the WCW decomposes into an integral
over zero modes for approximately Gaussian functionals determined by exp(K). The weights for
the various vacuum mode contributions are given by the probability density associated with the
zero modes. The integration over the zero modes is a highly problematic notion and it could be
eliminated if a localization in the zero modes occurs in quantum jumps. The localization would
correspond to a state function reduction and zero modes would be e↵ectively classical variables
correlated in one-one manner with the quantum numbers associated with the quantum fluctuating
degrees of freedom.
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For a given orbit K depends on zero modes and thus one has mathematical similarity with spin
glass phase for which one has probability distribution for Hamiltonians appearing in the partition
function exp(�H/T ). In fact, since TGD Universe is also critical, exact similarity requires that
also the temperature is critical for various contributions to the average partition function of spin
glass phase. The characterization of isometry invariants and zero modes of the Kähler metric
provides a precise characterization for how TGD Universe is quantum analog of spin glass.

The spin glass analogy has been the basic starting point in the construction of p-adic field
theory limit of TGD. The ultra-metric topology for the free energy minima of spin glass phase
motivates the hypothesis that e↵ective quantum average space-time possesses ultra-metric topology.
This approach leads to excellent predictions for elementary particle masses and predicts even new
branches of physics [K29, K55] . As a matter fact, an entire fractal hierarchy of copies of standard
physics is predicted.

3.7.4 Magnetic flux representation of the symplectic algebra

Accepting the strong form of general coordinate invariance implying e↵ective two-dimensionality
WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces X2

i defined by
the intersections of light-like light-like 3-surfaces X3

l,i with X3 at the boundaries of CD considered.
Bearing in mind that zero energy ontology is the correct approach, one can restrict the consideration
on fluxes at �M4

+ ⇥ CP2 One must also remember that if the proposed symmetries hold true, it
is in principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian space-
time sheet to partonic 2-surfaces parametrized by the points of stringy world sheets.vA physically
attractive realization of the slicings of space-time surface by 3-surfaces and string world sheets is
discussed in [K23] by starting from the observation that TGD could define a natural realization of
braids, braid cobordisms, and 2-knots.

Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for
WCW. Symplectic transformations of CP2 act as U(1) gauge transformations on the Kähler po-
tential of CP2 (similar conclusion holds at the level of �M4

+ ⇥ CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fm,n,k (see Eq. 3.4.22) defining the Lorentz covariant function basis HA, A ⌘ (a,m, n, k)
at the light cone boundary: HA = Ha ⇥ f(m,n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind both signed and unsigned magnetic flux
via the following formulas:

Qm(HA|X2) =

Z
X2

HAJ ,

Q+
m(HA|X2) =

Z
X2

HA|J | .

(3.7.5)

Here X2 corresponds to any surface X2
i resulting as intersection of X3 with X3

l,i. Both signed and
unsigned magnetic fluxes and their superpositions

Q↵,�
m (HA|X2) = ↵Qm(HA|X2) + �Q+

m(HA|X2) , A ⌘ (a, s, n, k) (3.7.6)

provide representations of Hamiltonians. Note that symplectic invariants Q↵,�
m correspond toHA =

1 and HA = fs,n,k. HA = 1 can be regarded as a natural central term for the Poisson bracket
algebra. Therefore, the isometry invariance of Kähler magnetic and electric gauge fluxes follows
as a natural consequence.

The obvious question concerns about the correct values of the parameters ↵ and �. One
possibility is that the flux is an unsigned flux so that one has ↵ = 0. This option is favored by
the construction of the WCW spinor structure involving the construction of the fermionic super
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charges anti-commuting to WCW Hamiltonians: super charges contain the square root of flux,
which must be therefore unsigned. Second possibility is that magnetic fluxes are signed fluxes so
that � vanishes.

One can define also the electric counterparts of the flux Hamiltonians by replacing J in the
defining formulas with its dual ⇤J

⇤J↵� = ✏ ��
↵� J��.

For HA = 1 these fluxes reduce to ordinary Kähler electric fluxes. These fluxes are however not
symplectic covariants since the definition of the dual involves the induced metric, which is not
symplectic invariant. The electric gauge fluxes for Hamiltonians in various representations of the
color group ought to be important in the description of hadrons, not only as string like objects,
but quite generally. These degrees of freedom would be identifiable as non-perturbative degrees of
freedom involving genuinely classical Kähler field whereas quarks and gluons would correspond to
the perturbative degrees of freedom, that is the interactions between CP2 type extremals.

Poisson brackets

From the symplectic invariance of the radial component of Kähler magnetic field it follows that
the Lie-derivative of the flux Q↵,�

m (HA) with respect to the vector field X(HB) is given by

X(HB) ·Q↵,�
m (HA) = Q↵,�

m ({HB , HA}) . (3.7.7)

The transformation properties of Q↵,�
m (HA) are very nice if the basis for HB transforms according

to appropriate irreducible representation of color group and rotation group. This in turn implies
that the fluxes Q↵,�

m (HA) as functionals of 3-surface on given orbit provide a representation for the
Hamiltonian as a functional of 3-surface. For a given surface X3, the Poisson bracket for the two
fluxes Q↵,�

m (HA) and Q↵,�
m (HB) can be defined as

{Q↵,�
m (HA), Q

↵,�
m (HB)} ⌘ X(HB) ·Q↵,�

m (HA)

= Q↵,�
m ({HA, HB}) = Q↵,�

m ({HA, HB}) . (3.7.8)

The study of WCW gamma matrices identifiable as symplectic super charges demonstrates that the
supercharges associated with the radial deformations vanish identically so that radial deformations
correspond to zero norm degrees of freedom as one might indeed expect on physical grounds. The
reason is that super generators involve the invariants jak�k which vanish by �r

M

= 0.
The natural central extension associated with the symplectic group of CP2 ({p, q} = 1!) induces

a central extension of this algebra. The central extension term resulting from {HA, HB} when CP2

Hamiltonians have {p, q} = 1 equals to the symplectic invariant Q↵,�
m (f(ma+mb, na+nb, ka+kb))

on the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom
rather than in loop space degrees of freedom and therefore does not lead to the standard Kac
Moody type algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the the deforma-
tions of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at �CD
intact and are highly relevant to the elementary particle physics. This algebra allows a repre-
sentation in terms of X3

l local Hamiltonians generating isometries of �M4
± ⇥ CP2. Hamiltonian

representation is essential for super-symmetrization since fermionic super charges anti-commute
to Hamiltonians rather than vector fields: this is one of the deep di↵erences between TGD and
string models. Kac-Moody algebra does not contribute to WCW metric since by definition the
generators vanish at partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the CP2 symplectic algebra localized with respect to the light
cone boundary and relevant to the configuration space geometry. This extends to S2 ⇥ CP2 -or
rather �M4

± ⇥ CP2 symplectic algebra and this gives the strongest predictions concerning WCW
metric. The local radial Virasoro localized with respect to S2 ⇥ CP2 acts in zero modes and has
automatically vanishing norm with respect to WCW metric defined by super charges.
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3.7.5 Symplectic transformations of �M4

±⇥CP
2

as isometries and electric-
magnetic duality

According to the construction of Kähler metric, symplectic transformations of �M4
± ⇥ CP2 act

as isometries whereas radial Virasoro algebra localized with respect to CP2 has zero norm in the
WCW metric.

Hamiltonians can be organized into light like unitary representations of so(3, 1) ⇥ su(3) and
the symmetry condition Zg(X,Y ) = 0 requires that the component of the metric is so(3, 1) ⇥
su(3) invariant and this condition is satisfied if the component of metric between two di↵erent
representationsD1 andD2 of so(3, 1)⇥su(3) is proportional to Glebch-Gordan coe�cient CD1D2,DS

betweenD1⌦D2 and singlet representationDS . In particular, metric has components only between
states having identical so(3, 1)⇥ su(3) quantum numbers.

Magnetic representation of WCW Hamiltonians means the action of the symplectic transfor-
mations of the light cone boundary as WCW isometries is an intrinsic property of the light cone
boundary. If electric-magnetic duality holds true, the preferred extremal property only determines
the conformal factor of the metric depending on zero modes. This is precisely as it should be
if the group theoretical construction works. Hence it should be possible by a direct calculation
check whether the metric defined by the magnetic flux Hamiltonians as half Poisson brackets in
complex coordinates is invariant under isometries. Symplectic invariance of the metric means that
matrix elements of the metric are left translates of the metric along geodesic lines starting from the
origin of coordinates, which now naturally corresponds to the preferred extremal of Kähler action.
Since metric derives from symplectic form this means that the matrix elements of symplectic form
given by Poisson brackets of Hamiltonians must be left translates of their values at origin along
geodesic line. The matrix elements in question are given by flux Hamiltonians and since symplectic
transforms of flux Hamiltonian is flux Hamiltonian for the symplectic transform of Hamiltonian,
it seems that the conditions are satisfied.

3.8 General expressions for the symplectic and Kähler forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of
WCW. The fact that these expressions involve only first variation of the Kähler action implies
huge simplification of the basic formulas. Duality hypothesis leads to further simplifications of the
formulas.

3.8.1 Closedness requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of �M4
+⇥CP2 suggest a gen-

eral representation for the components of the symplectic form of the WCW. The basic requirement
is that Kähler form satisfies the defining condition

X · J(Y, Z) + J([X,Y ], Z) + J(X, [Y, Z]) = 0 , (3.8.1)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordi-
nates.

3.8.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and
X(HB)) defined by the Hamiltonians HA and HB of �M4

+ ⇥ CP2 isometries is expressible as
Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (3.8.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset
of Hamiltonians. The magnetic flux Hamiltonians Q↵,�

m (HA,k) of Eq. 4.4.1 provide an explicit
representation for the Hamiltonians at the level of WCW so that the components of the symplectic



118
Chapter 3. Construction of Configuration Space Kähler Geometry from Symmetry

Principles

form of the WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(HA), X(HB)) = Q↵,�
m ({HA, HB}) .

(3.8.3)

Recall that the superscript ↵,� refers the coe�cients of J and |J | in the superposition of these
Kähler magnetic fluxes. Note that Q↵,�

m contains unspecified conformal factor depending on sym-
plectic invariants characterizing Y 3 and is unspecified superposition of signed and unsigned mag-
netic fluxes.

This representation does not carry information about the tangent space of space-time surface
at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and
proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators
of flux Hamiltonians come out correctly. This would give

Q↵,�
m (HA)em = Q↵,�

e (HA) +Q↵,�
m (HA) = (1 +K)Q↵,�

m (HA) . (3.8.4)

Since Kähler form relates to the standard field tensor by a factor e/~, flux Hamiltonians are
dimensionless so that commutators do not involve ~. The commutators would come as

Q↵,�
em ({HA, HB}) ! (1 +K)Q↵,�

m ({HA, HB}) . (3.8.5)

The factor 1 +K plays the same role as Planck constant in the commutators.
WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives

of the Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as
coordinates in the perturbative functional integral around extrema (with maxima giving dominat-
ing contribution). It is clear that WCW coordinates around a given extremum include only those
Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space
of G/H) In Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JI�
I,J .

JI = 1 . (3.8.6)

It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably
the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix
depending on symplectic invariants so that one has JI 6= 1. The integration measure is given by the
symplectic volume element given by the determinant of the matrix defined by the Poisson brackets
of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given
by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
Y
I

JI

in generalized Darboux coordinates.
Kähler potential (that is gauge potential associated with Kähler form) can be written in Dar-

boux coordinates as

A =
X
I

JIPIdQ
I . (3.8.7)
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3.8.3 General expressions for Kähler form, Kähler metric and Kähler
function

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by trans-
forming the contravariant form of the symplectic form from symplectic coordinates provided by
Hamiltonians to complex coordinates:

JZiZ̄j

= iGZiZ̄j

= @HAZi@HB Z̄jJAB , (3.8.8)

where JAB is given by the classical Kahler charge for the light cone Hamiltonian {HA, HB}. Com-
plex coordinates correspond to linear coordinates of the complexified Lie-algebra providing expo-
nentiation of the isometry algebra via exponential mapping. What one must know is the precise
relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship
is in principle calculable. In Darboux coordinates the expressions become even simpler:

JZiZ̄j

= iGZiZ̄j

=
X
I

J(I)(@P iZi@QI Z̄j � @QIZi@P I Z̄j) . (3.8.9)

Kähler function can be formally integrated from the relationship

AZi = i@ZiK ,

AZ̄i

= �i@ZiK . (3.8.10)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

Z Z

0
(AZidZi �AZ̄i

dZ̄i) . (3.8.11)

3.8.4 Diff(X3) invariance and degeneracy and conformal invariances of
the symplectic form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degener-
ate. This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA

or HB is such that it generates di↵eomorphism of the 3-surface X3. If e↵ective 2-dimensionality
holds true, J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional di↵eomorphism
d(HA) at the surface X2

i .
One can always write

J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates di↵eomorphism, the action of X(HA) reduces to the action of the vector field XA

of some X2
i -di↵eomorphism. Since Q(HB |rM ) is manifestly invariant under the di↵emorphisms of

X2, the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.
The radial di↵eomorphisms possibly generated by the radial Virasoro algebra do not produce

trouble. The change of the flux integrandX under the infinitesimal transformation rM ! rM+✏rnM
is given by rnMdX/drM . Replacing rM with r�n+1

M /(�n+ 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X2

i . Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric ofX2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.
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3.8.5 Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
to ’positive’ frequencies and which to ’negative frequencies’ and which to zero frequencies that is
to decompose the generators of the symplectic algebra to three sets Can+, Can� and Can0. One
must distinguish between Can0 and zero modes, which are not considered here at all. For instance,
CP2 Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector
Can0 could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2

, k2 > 0} ,

Can� = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (3.8.12)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can� = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (3.8.13)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket
defined by Eq. 3.9.15

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}�+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}�+)) . (3.8.14)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.
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3.8.6 Comparison of CP
2

Kähler geometry with configuration space ge-
ometry

The explicit discussion of the role of g = t + h decomposition of the tangent space of WCW
provides deep insights to the metric of the symmetric space. There are indeed many questions to
be answered. To what point of WCW (that is 3-surface) the proposed g = t + h decomposition
corresponds to? Can one derive the components of the metric and Kähler form from the Poisson
brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the
properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic
central extension of the symplectic algebra or can one consider also other options?

Cartan decomposition for CP2

A good manner to gain understanding is to consider the CP2 metric and Kähler form at the origin
of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case
of CP2 u(2) sub-algebra transforms as g � u(2) � g�1 when the point s is replaced by gsg�1.
This is expected to hold true also in case of WCW (unless it is flat) so that the task is to
identify the point of WCW at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of CP2 in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It
is possible to add suitable constants to the Hamiltonians in order to guarantee that they
vanish at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to
holomorphic components Ja

+ = jak@k and ja� = jak̄@k̄. One can introduce what might be
called half Poisson bracket and half inner product defined as

{Ha, Hb}�+ ⌘ @k̄H
aJ k̄l@lH

b

= jakJkl̄j
bl̄ = �i(ja+, j

b
�) . (3.8.15)

One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{Ha, Hb} = 2Im
�
i{Ha, Hb}�+

�
,

(ja, jb) = 2Re
�
i(ja+, j

b
�)

�
= 2Re

�
i{Ha, Hb}�+

�
. (3.8.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kähler form. Obviously this is of utmost importance in the case of the WCW metric
whose symplectic structure and central extension are derived from those of CP2.

Consider now the properties of the metric and Kähler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h, h}�+ = 0 ,

Re (i{h, t}�+) = 0 , Im (i{h, t}�+) = 0 ,

Re (i{t, t}�+) 6= 0 , Im (i{t, t}�+) 6= 0 .

(3.8.17)
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2. The first two conditions state that h vector fields have vanishing inner products at the
origin. The first condition states also that the Hamiltonians for the commutator algebra
[h, h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding
to the color hyper charge need not vanish although it can be made vanishing. The third
condition implies that the Hamiltonians of t vanish at origin.

3. The last two conditions state that the Kähler metric and form are non-vanishing between
the elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the
only possibility is that {t, t} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian
at the origin or that the bracket at the origin is due to the symplectic central extension. The
requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to
interpret {t, t} brackets at origin as being due to a symplectic central extension. For instance,
for S2 the requirement that Hamiltonians vanish at origin would mean the replacement of the
Hamiltonian H = cos(✓) representing a rotation around z-axis with H3 = cos(✓)� 1 so that
the Poisson bracket of the generators H1 and H2 can be interpreted as a central extension
term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with
respect to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kähler function of CP2 has extremum at the origin. This suggests that in the case of
the WCW the counterpart of the origin corresponds to the maximum of the Kähler function.

Cartan algebra decomposition at the level of WCW

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of WCW. The use of the half bracket for WCW
Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and Kähler form
explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was
assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but without
any strong physical justification. The realization that super-symplectic and super Kac-Moody
symmetries define coset construction at the level of basic quantum TGD. Contrary to the original
belief, this construction does not provide a realization of Equivalence Principle at quantum level.
The proper realization of EP at quantum level seems to be based on the identification of classical
Noether charges in Cartan algebra with the eigenvalues of their quantum counterparts assignable
to Kähler-Dirac action. At classical level EP follows at GRT limit obtained by lumping many-
sheeted space-time to M4 with e↵ective metric satisfying Einstein’s equations as a reflection of the
underlying Poincare invariance.

It must be however emphasized that holography implying e↵ective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to e↵ec-
tively reduce Kac-Moody generators associated with X3

l to X2 = X3
l \ �M4

± ⇥CP2. In the similar
manner super-symplectic generators can be dimensionally reduced to X2. Number theoretical
compactification forces the dimensional reduction and the known extremals are consistent with
it [K5] . The construction of WCW spinor structure and metric in terms of the second quantized
spinor fields [K9] relies to this picture as also the recent view about M -matrix [K12] .

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with
respect to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2.
Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decom-
position is satisfied.
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3.8.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting
of maps from circle to Lie group G [A37] , which served as the inspirer of the WCW geometry
approach but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra T (k,A) =
exp(ik�)TA, where TA generates the finite-dimensional Lie-algebra g and � denotes the angle
variable of circle; k is integer. The complexification of the tangent space corresponds to the
decomposition

T = {X(k > 0, A)}� {X(k < 0, A)}� {X(k = 0, A)} = T+ � T� � T0

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kähler form is given by

J(X(k1 < 0, A), X(k2 > 0, B)) = k2�(k1 + k2)�(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of �M4

+⇥CP2 centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length �rM with periodic
boundary conditions; e↵ectively one has circle also now.

The basic di↵erence is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, q} = 1)
defined by Poisson bracket. This extension is anti-symmetric with respect to the generators
of the symplectic group: in the case of the Kac Moody central extension it is symmetric
with respect to the group G. The symplectic transformations of CP2 might correspond to
non-zero modes also because they are not exact symmetries of Kähler action. The situation is
however rather delicate since k = 0 light cone harmonic has a diverging norm due to the radial
integration unless one poses both lower and upper radial cuto↵s although the matrix elements
would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations
correspond to the zero modes. Light cone function algebra can be regarded as a local U(1)
algebra defining central extension in the case that only CP2 symplectic transformations
local with respect to �M4

+ act as isometries: for Kac Moody algebra the central extension
corresponds to an ordinary U(1) algebra. In the case that entire light cone symplectic algebra
defines the isometries the central extension reduces to a U(1) central extension.

3.8.8 Symmetric space property implies Ricci flatness and isometric ac-
tion of symplectic transformations

The basic structure of symmetric spaces is summarized by the following structural equations

g = h+ t ,
[h, h] ⇢ h , [h, t] ⇢ t , [t, t] ⇢ h .

(3.8.18)

In present case the equations imply that all commutators of the Lie-algebra generators of Can( 6= 0)
having non-vanishing integer valued radial quantum number n2, possess zero norm. This condition
is extremely strong and guarantees isometric action of Can(�M4

+ ⇥ CP2) as well as Ricci flatness
of the WCW metric.

The requirement [t, t] ⇢ h and [h, t] ⇢ t are satisfied if the generators of the isometry algebra
possess generalized parity P such that the generators in t have parity P = �1 and the generators
belonging to h have parity P = +1. Conformal weight n must somehow define this parity. The
first possibility to come into mind is that odd values of n correspond to P = �1 and even values to
P = 1. Since n is additive in commutation, this would automatically imply h�t decomposition with
the required properties. This assumption looks however somewhat artificial. TGD however forces a
generalization of Super Algebras and N-S and Ramond type algebras can be combined to a larger
algebra containing also Virasoro and Kac Moody generators labeled by half-odd integers. This
suggests strongly that isometry generators are labeled by half integer conformal weight and that
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half-odd integer conformal weight corresponds to parity P = �1 whereas integer conformal weight
corresponds to parity P = 1. Coset space would structure would state conformal invariance of the
theory since super-symplectic generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions

X · g(Y, Z) = 0 = g([X,Y ], Z) + g(Y, [X,Z]) . (3.8.19)

If the commutators of the complexified generators in Can( 6= 0) have zero norm then the two terms
on the right hand side of Eq. (3.9.19) vanish separately. This is true if the conditions

Q↵,�
m ({HA, {HB , HC}}) = 0 , (3.8.20)

are satisfied for all triplets of Hamiltonians in Can6=0. These conditions follow automatically from
the [t, t] ⇢ h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (3.9.20) as consistency conditions on the initial values of the time derivatives
of imbedding space coordinates whereas in general case this is possible. If the consistency conditions
are satisfied for a single surface on the orbit of symplectic group then they are satisfied on the
entire orbit. Clearly, isometry and Ricci flatness requirements and the requirement of time reversal
invariance might well force Kähler electric alternative.

3.8.9 How to find Kähler function?

If one has found the expansion of WCW Kähler form in terms of electric fluxes one can solve also
the Kähler function from the defining partial di↵erential equations Jkl̄ = @k@l̄K. The solution is
not unique since the equation allows the symmetry

K ! K + f(zk) + f(zk) ,

where f is arbitrary holomorphic function of zk. This non-uniqueness is probably eliminated by the
requirement that Kähler function vanishes for vacuum extremals. This in turn makes in principle
possible to find the maxima of Kähler function and to perform functional integration perturbatively
around them.

Electric-magnetic duality implies that, apart from conformal factor depending on isometry
invariants, one can solve Kähler metric without any knowledge on the initial values of the time
derivatives of the imbedding space coordinates. Apart from conformal factor the resulting geometry
is purely intrinsic to �CH. The role of Kähler action is only to to define Diff4 invariance and
give the rule how the metric is translated to metric on arbitrary point of CH. The degeneracy of
the preferred extrema also implies that configuration space has multi-sheeted structure analogous
to that encountered in case of Riemann surfaces.

As shown in [K22] , very general assumptions inspired by the light-likeness of Kähler current
for the known extremals combined with electric-magnetic duality imply the reduction of Kähler
action for the preferred extremals to Chern-Simons terms at the ends of CD and at wormhole
throats plus boundary term depending on induced metric so that one has almost topological QFT.

If Dirac determinant equals to the exponent of Kähler action, one might try to construct it
in terms of Kähler-Dirac operator [K9]. Since Kähler action reduces to Chern-Simons term the
result should be finite. Kähler action contains Chern-Simons action at partonic orbits as analog of
boundary term and compensating the Chern-Simons term coming from Kähler action at partonic
orbits so that only the contributions from the space-like ends of space-time surface remain. Byt
superconformal symmetry Kähler Dirac action contains also Chern-Simons-Dirac term and the
generalized eigenvalues of C-S-D operator identifiable as virtual four-momenta allow to have non-
trivial fermionic propagator assignable to the boundaries of string world sheets and also define
Dirac determinant as a square root of the product of mass squared eigenvalues.

If the virtual four-momenta are identified as hyper-quaternions, one can define even their prod-
uct to get quaternionion valued determinant actually reducing to real number. Also the product of
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pk�k makes sense. If the conjecture that Dirac determinant coincides with the exponent of Kähler
action for a preferred extremal is correct, the value of the Kähler coupling strength follows as a
prediction of the theory. The size of causal diamond (CD) induces IR cuto↵ and the smallest size
for the sup-CDs induces UV cuto↵. Hence Dirac determinant involves only a finite number of
eigenvalues of the modified Dirac operator and can thus be an algebraic or even rational number
if eigenvalues have this property.

3.9 General expressions for the symplectic and Kähler forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of
WCW. The fact that these expressions involve only first variation of the Kähler action implies
huge simplification of the basic formulas. Duality hypothesis leads to further simplifications of the
formulas.

3.9.1 Closedness requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of �M4
+⇥CP2 suggest a gen-

eral representation for the components of the symplectic form of the WCW. The basic requirement
is that Kähler form satisfies the defining condition

X · J(Y, Z) + J([X,Y ], Z) + J(X, [Y, Z]) = 0 , (3.9.1)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining WCW coordi-
nates.

3.9.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and
X(HB)) defined by the Hamiltonians HA and HB of �M4

+ ⇥ CP2 isometries is expressible as
Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (3.9.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset
of Hamiltonians. The magnetic flux Hamiltonians Q↵,�

m (HA,k) of Eq. 4.4.1 provide an explicit
representation for the Hamiltonians at the level of WCW so that the components of the symplectic
form of the WCW are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(HA), X(HB)) = Q↵,�
m ({HA, HB}) .

(3.9.3)

Recall that the superscript ↵,� refers the coe�cients of J and |J | in the superposition of these
Kähler magnetic fluxes. Note that Q↵,�

m contains unspecified conformal factor depending on sym-
plectic invariants characterizing Y 3 and is unspecified superposition of signed and unsigned mag-
netic fluxes.

This representation does not carry information about the tangent space of space-time surface
at the partonic 2-surface, which motivates the proposal that also electric fluxes are present and
proportional to magnetic fluxes with a factor K, which is symplectic invariant so that commutators
of flux Hamiltonians come out correctly. This would give

Q↵,�
m (HA)em = Q↵,�

e (HA) +Q↵,�
m (HA) = (1 +K)Q↵,�

m (HA) . (3.9.4)

Since Kähler form relates to the standard field tensor by a factor e/~, flux Hamiltonians are
dimensionless so that commutators do not involve ~. The commutators would come as
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Q↵,�
em ({HA, HB}) ! (1 +K)Q↵,�

m ({HA, HB}) . (3.9.5)

The factor 1 +K plays the same role as Planck constant in the commutators.
WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives

of the Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as
coordinates in the perturbative functional integral around extrema (with maxima giving dominat-
ing contribution). It is clear that WCW coordinates around a given extremum include only those
Hamiltonians, which vanish at extremum (that is those Hamiltonians which span the tangent space
of G/H) In Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JI�
I,J .

JI = 1 . (3.9.6)

It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably
the unit matrix on right hand side of the defining equation is replaced with a diagonal matrix
depending on symplectic invariants so that one has JI 6= 1. The integration measure is given by the
symplectic volume element given by the determinant of the matrix defined by the Poisson brackets
of the Hamiltonians appearing as coordinates. The value of the symplectic volume element is given
by the matrix formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
Y
I

JI

in generalized Darboux coordinates.
Kähler potential (that is gauge potential associated with Kähler form) can be written in Dar-

boux coordinates as

A =
X
I

JIPIdQ
I . (3.9.7)

3.9.3 General expressions for Kähler form, Kähler metric and Kähler
function

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by trans-
forming the contravariant form of the symplectic form from symplectic coordinates provided by
Hamiltonians to complex coordinates:

JZiZ̄j

= iGZiZ̄j

= @HAZi@HB Z̄jJAB , (3.9.8)

where JAB is given by the classical Kahler charge for the light cone Hamiltonian {HA, HB}. Com-
plex coordinates correspond to linear coordinates of the complexified Lie-algebra providing expo-
nentiation of the isometry algebra via exponential mapping. What one must know is the precise
relationship between allowed complex coordinates and Hamiltonian coordinates: this relationship
is in principle calculable. In Darboux coordinates the expressions become even simpler:

JZiZ̄j

= iGZiZ̄j

=
X
I

J(I)(@P iZi@QI Z̄j � @QIZi@P I Z̄j) . (3.9.9)

Kähler function can be formally integrated from the relationship

AZi = i@ZiK ,

AZ̄i

= �i@ZiK . (3.9.10)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

Z Z

0
(AZidZi �AZ̄i

dZ̄i) . (3.9.11)
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3.9.4 Diff(X3) invariance and degeneracy and conformal invariances of
the symplectic form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degener-
ate. This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA

or HB is such that it generates di↵eomorphism of the 3-surface X3. If e↵ective 2-dimensionality
holds true, J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional di↵eomorphism
d(HA) at the surface X2

i .
One can always write

J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates di↵eomorphism, the action of X(HA) reduces to the action of the vector field XA

of some X2
i -di↵eomorphism. Since Q(HB |rM ) is manifestly invariant under the di↵emorphisms of

X2, the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.
The radial di↵eomorphisms possibly generated by the radial Virasoro algebra do not produce

trouble. The change of the flux integrandX under the infinitesimal transformation rM ! rM+✏rnM
is given by rnMdX/drM . Replacing rM with r�n+1

M /(�n+ 1) as variable, the integrand reduces to
a total divergence dX/du the integral of which vanishes over the closed 2-surface X2

i . Hence radial
Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric ofX2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.

3.9.5 Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The
requirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond
to ’positive’ frequencies and which to ’negative frequencies’ and which to zero frequencies that is
to decompose the generators of the symplectic algebra to three sets Can+, Can� and Can0. One
must distinguish between Can0 and zero modes, which are not considered here at all. For instance,
CP2 Hamiltonians correspond to zero modes.

The natural complexification relies on the imaginary part of the radial conformal weight whereas
the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector
Can0 could be empty. This complexification is physically very natural since it is manifestly
invariant under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of
SO(3) is unique if the classical four-momentum associated with the 3-surface is time like so
that there are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2

, k2 > 0} ,

Can� = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (3.9.12)
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3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can� = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (3.9.13)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix
the SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen
to be the direction of the classical angular momentum associated with the 3-surface in its
rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket
defined by Eq. 3.9.15

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}�+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}�+)) . (3.9.14)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal
factor depending on the isometry invariants characterizing the size and shape of the 3-surface. At
this stage one cannot say much about the functional form of this factor.

3.9.6 Comparison of CP
2

Kähler geometry with configuration space ge-
ometry

The explicit discussion of the role of g = t + h decomposition of the tangent space of WCW
provides deep insights to the metric of the symmetric space. There are indeed many questions to
be answered. To what point of WCW (that is 3-surface) the proposed g = t + h decomposition
corresponds to? Can one derive the components of the metric and Kähler form from the Poisson
brackets of complexified Hamiltonians? Can one characterize the point in question in terms of the
properties of WCW Hamiltonians? Does the central extension of WCW reduce to the symplectic
central extension of the symplectic algebra or can one consider also other options?

Cartan decomposition for CP2

A good manner to gain understanding is to consider the CP2 metric and Kähler form at the origin
of complex coordinates for which the sub-algebra h = u(2) defines the Cartan decomposition.

1. g = t + h decomposition depends on the point of the symmetric space in general. In case
of CP2 u(2) sub-algebra transforms as g � u(2) � g�1 when the point s is replaced by gsg�1.
This is expected to hold true also in case of WCW (unless it is flat) so that the task is to
identify the point of WCW at which the proposed decomposition holds true.

2. The Killing vector fields of h sub-algebra vanish at the origin of CP2 in complex coordinates.
The corresponding Hamiltonians need not vanish but their Poisson brackets must vanish. It
is possible to add suitable constants to the Hamiltonians in order to guarantee that they
vanish at origin.

3. It is convenient to introduce complex coordinates and decompose isometry generators to
holomorphic components Ja

+ = jak@k and ja� = jak̄@k̄. One can introduce what might be
called half Poisson bracket and half inner product defined as

{Ha, Hb}�+ ⌘ @k̄H
aJ k̄l@lH

b

= jakJkl̄j
bl̄ = �i(ja+, j

b
�) . (3.9.15)
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One can express Poisson bracket of Hamiltonians and the inner product of the corresponding
Killing vector fields in terms of real and imaginary parts of the half Poisson bracket:

{Ha, Hb} = 2Im
�
i{Ha, Hb}�+

�
,

(ja, jb) = 2Re
�
i(ja+, j

b
�)

�
= 2Re

�
i{Ha, Hb}�+

�
. (3.9.16)

What this means that Hamiltonians and their half brackets code all information about metric
and Kähler form. Obviously this is of utmost importance in the case of the WCW metric
whose symplectic structure and central extension are derived from those of CP2.

Consider now the properties of the metric and Kähler form at the origin.

1. The relations satisfied by the half Poisson brackets can be written symbolically as

{h, h}�+ = 0 ,

Re (i{h, t}�+) = 0 , Im (i{h, t}�+) = 0 ,

Re (i{t, t}�+) 6= 0 , Im (i{t, t}�+) 6= 0 .

(3.9.17)

2. The first two conditions state that h vector fields have vanishing inner products at the
origin. The first condition states also that the Hamiltonians for the commutator algebra
[h, h] = SU(2) vanish at origin whereas the Hamiltonian for U(1) algebra corresponding
to the color hyper charge need not vanish although it can be made vanishing. The third
condition implies that the Hamiltonians of t vanish at origin.

3. The last two conditions state that the Kähler metric and form are non-vanishing between
the elements of t. Since the Poisson brackets of t Hamiltonians are Hamiltonians of h, the
only possibility is that {t, t} Poisson brackets reduce to a non-vanishing U(1) Hamiltonian
at the origin or that the bracket at the origin is due to the symplectic central extension. The
requirement that all Hamiltonians vanish at origin is very attractive aesthetically and forces to
interpret {t, t} brackets at origin as being due to a symplectic central extension. For instance,
for S2 the requirement that Hamiltonians vanish at origin would mean the replacement of the
Hamiltonian H = cos(✓) representing a rotation around z-axis with H3 = cos(✓)� 1 so that
the Poisson bracket of the generators H1 and H2 can be interpreted as a central extension
term.

4. The conditions for the Hamiltonians of u(2) sub-algebra state that their variations with
respect to g vanish at origin. Thus u(2) Hamiltonians have extremum value at origin.

5. Also the Kähler function of CP2 has extremum at the origin. This suggests that in the case of
the WCW the counterpart of the origin corresponds to the maximum of the Kähler function.

Cartan algebra decomposition at the level of WCW

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of WCW. The use of the half bracket for WCW
Hamiltonians in turn allows to calculate the matrix elements of the WCW metric and Kähler form
explicitly in terms of the magnetic or electric flux Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was
assigned with Super Virasoro algebra, which indeed allows this kind of decompositions but without
any strong physical justification.
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It must be however emphasized that holography implying e↵ective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to e↵ec-
tively reduce Kac-Moody generators associated with X3

l to X2 = X3
l \ �M4

± ⇥CP2. In the similar
manner super-symplectic generators can be dimensionally reduced to X2. Number theoretical
compactification forces the dimensional reduction and the known extremals are consistent with
it [K5] . The construction of WCW spinor structure and metric in terms of the second quantized
spinor fields [K9] relies to this picture as also the recent view about M -matrix [K12] .

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with
respect to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2.
Since Lie-algebra action does not lead out of irreps, this means that Cartan algebra decom-
position is satisfied.

3.9.7 Comparison with loop groups

It is useful to compare the recent approach to the geometrization of the loop groups consisting
of maps from circle to Lie group G [A37] , which served as the inspirer of the WCW geometry
approach but later turned out to not apply as such in TGD framework.

In the case of loop groups the tangent space T corresponds to the local Lie-algebra T (k,A) =
exp(ik�)TA, where TA generates the finite-dimensional Lie-algebra g and � denotes the angle
variable of circle; k is integer. The complexification of the tangent space corresponds to the
decomposition

T = {X(k > 0, A)}� {X(k < 0, A)}� {X(k = 0, A)} = T+ � T� � T0

of the tangent space. Metric corresponds to the central extension of the loop algebra to Kac Moody
algebra and the Kähler form is given by

J(X(k1 < 0, A), X(k2 > 0, B)) = k2�(k1 + k2)�(A,B) .

In present case the finite dimensional Lie algebra g is replaced with the Lie-algebra of the symplectic
transformations of �M4

+⇥CP2 centrally extended using symplectic extension. The scalar function
basis on circle is replaced with the function basis on an interval of length �rM with periodic
boundary conditions; e↵ectively one has circle also now.

The basic di↵erence is that one can consider two kinds of central extensions now.

1. Central extension is most naturally induced by the natural central extension ({p, q} = 1)
defined by Poisson bracket. This extension is anti-symmetric with respect to the generators
of the symplectic group: in the case of the Kac Moody central extension it is symmetric
with respect to the group G. The symplectic transformations of CP2 might correspond to
non-zero modes also because they are not exact symmetries of Kähler action. The situation is
however rather delicate since k = 0 light cone harmonic has a diverging norm due to the radial
integration unless one poses both lower and upper radial cuto↵s although the matrix elements
would be still well defined for typical 3-surfaces. For Kac Moody group U(1) transformations
correspond to the zero modes. Light cone function algebra can be regarded as a local U(1)
algebra defining central extension in the case that only CP2 symplectic transformations
local with respect to �M4

+ act as isometries: for Kac Moody algebra the central extension
corresponds to an ordinary U(1) algebra. In the case that entire light cone symplectic algebra
defines the isometries the central extension reduces to a U(1) central extension.

3.9.8 Symmetric space property implies Ricci flatness and isometric ac-
tion of symplectic transformations

The basic structure of symmetric spaces is summarized by the following structural equations
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g = h+ t ,
[h, h] ⇢ h , [h, t] ⇢ t , [t, t] ⇢ h .

(3.9.18)

In present case the equations imply that all commutators of the Lie-algebra generators of Can( 6= 0)
having non-vanishing integer valued radial quantum number n2, possess zero norm. This condition
is extremely strong and guarantees isometric action of Can(�M4

+ ⇥ CP2) as well as Ricci flatness
of the WCW metric.

The requirement [t, t] ⇢ h and [h, t] ⇢ t are satisfied if the generators of the isometry algebra
possess generalized parity P such that the generators in t have parity P = �1 and the generators
belonging to h have parity P = +1. Conformal weight n must somehow define this parity. The
first possibility to come into mind is that odd values of n correspond to P = �1 and even values to
P = 1. Since n is additive in commutation, this would automatically imply h�t decomposition with
the required properties. This assumption looks however somewhat artificial. TGD however forces a
generalization of Super Algebras and N-S and Ramond type algebras can be combined to a larger
algebra containing also Virasoro and Kac Moody generators labeled by half-odd integers. This
suggests strongly that isometry generators are labeled by half integer conformal weight and that
half-odd integer conformal weight corresponds to parity P = �1 whereas integer conformal weight
corresponds to parity P = 1. Coset space would structure would state conformal invariance of the
theory since super-symplectic generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions

X · g(Y, Z) = 0 = g([X,Y ], Z) + g(Y, [X,Z]) . (3.9.19)

If the commutators of the complexified generators in Can( 6= 0) have zero norm then the two terms
on the right hand side of Eq. (3.9.19) vanish separately. This is true if the conditions

Q↵,�
m ({HA, {HB , HC}}) = 0 , (3.9.20)

are satisfied for all triplets of Hamiltonians in Can6=0. These conditions follow automatically from
the [t, t] ⇢ h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (3.9.20) as consistency conditions on the initial values of the time derivatives
of imbedding space coordinates whereas in general case this is possible. If the consistency conditions
are satisfied for a single surface on the orbit of symplectic group then they are satisfied on the
entire orbit. Clearly, isometry and Ricci flatness requirements and the requirement of time reversal
invariance might well force Kähler electric alternative.

3.9.9 How to find Kähler function?

If one has found the expansion of WCW Kähler form in terms of electric fluxes one can solve also
the Kähler function from the defining partial di↵erential equations Jkl̄ = @k@l̄K. The solution is
not unique since the equation allows the symmetry

K ! K + f(zk) + f(zk) ,

where f is arbitrary holomorphic function of zk. This non-uniqueness is probably eliminated by the
requirement that Kähler function vanishes for vacuum extremals. This in turn makes in principle
possible to find the maxima of Kähler function and to perform functional integration perturbatively
around them.

Electric-magnetic duality implies that, apart from conformal factor depending on isometry
invariants, one can solve Kähler metric without any knowledge on the initial values of the time
derivatives of the imbedding space coordinates. Apart from conformal factor the resulting geometry
is purely intrinsic to �CH. The role of Kähler action is only to to define Diff4 invariance and
give the rule how the metric is translated to metric on arbitrary point of CH. The degeneracy of
the preferred extrema also implies that configuration space has multi-sheeted structure analogous
to that encountered in case of Riemann surfaces.
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1. As shown in [K22] , very general assumptions inspired by the light-likeness of Kähler current
for the known extremals combined with electric-magnetic duality imply the reduction of
Kähler action for the preferred extremals to Chern-Simons terms at the ends of CD and at
wormhole throats plus boundary term depending on induced metric so that one has almost
topological QFT.

2. In order to obtain non-trivial fermion propagator one must add to Kähler-Dirac action Chern-
Simons Dirac term located at partonic orbits at which the signature of the induced metric
changes. The modes of induced spinor field can be required to be generalized eigenmodes
of C-S-D operator with generalized eigenvalue pk�k with pk identified as virtual momentum
so that massless Dirac propagator is obtained. By super-symmetry one must add to Kähler
action Chern-Simons term located at partonic orbits and this term must cancel the Chern-
Simons term coming from Kähler action by weak form of electric-magnetic duality so that
only the Chern-Simons terms associated with space-like ends of the space-time surface remain.
These terms reduce to Chern-Simons terms only if one poses weak form of electric magnetic
duality also here. This is not necessary.

3. The quantum numbers characterizing zero energy states couple directly to space-time geome-
try via the measurement interaction terms in Kähler action expressing the equality of classical
conserved charges in Cartan algebra with their quantal counterparts for space-time surfaces
in quantum superposition. This makes sense if classical charges parametrize zero modes.
The localization in zero modes in state function reduction would be the WCW counterpart
of state function collapse.

Also a promising concrete construction recipe for Kähler function is in terms of the modified
Dirac operator [K9]. The modes of Kähler-Dirac operator (modified Dirac operator) are localized
at string world sheets and are holomorphic spinors. K-D operator annihilates these modes so
that Dirac determinant must be assigned with the Chern-Simons Dirac term associated with the
light-like partonic orbits with vanishing metric determinant g4. Spinor modes at partonic orbits
are assumed to be generalized eigen modes of C-S-D operator with eigenvalues ipk�k, with pk

interpreted as virtual momentum of the fermion propagating along lined defined by the string world
sheet boundary. Therefore C-S-D term acts e↵ectively as massless Dirac action in perturbation
theory.

The spectrum of pk is determined by the boundary conditions for C-S-D operator at the ends
of CD and periodic boundary conditions is one natural possibility. As in massless QFTs Dirac
determinant could be identified as a square root of the product of mass squared eigenvalues p2. If
the spectrum is unbounded, a regularization must be used. Finite measurement resolution means
UV and IR cuto↵s and would make Dirac determinant finite. Finite IR resolution would be due to
the fact that only space-time surfaces within CD and thus having finite size scale are considered.
UV resolution would be due to the lower limit on the size of sub-CDs.

One can however define Dirac determinant directly as the product of the generalized eigenvalues
pk�k or as product of hyper-quaternions defined by pk. By symmetry arguments the outcome must
be real.

The full Dirac determinant would be product of Dirac determinants associated with various
string world sheets. Needless to say that this is an enormous calculational advantage. If Dirac
determinant identified in this manner reduces to exponent of Kähler action for preferred extremal
this definition of Dirac determinant should give exponent of Kähler function reducing by weak form
of electric-magnetic duality to exponent of Chern-Simons terms associated with the space-like ends
of the space-time surface. Euclidian and Minkowskian regions would give contributions di↵erent
by a phase factor

p
�1. The reduction of determinant to exponent of Chern-Simons terms would

guarantee its finiteness.

3.10 Consistency conditions on metric

In this section various consistency conditions on the configuration space metric are discussed. In
particular, it will be found that the conditions guaranteeing the existence of Riemann connection
in the set of all(!) vector fields (including zero norm vector fields) gives very strong constraints
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on the general form of the metric and that these constraints are indeed satisfied for the proposed
metric.

3.10.1 Consistency conditions on Riemann connection

To study the consequences of the consistency conditions, it is most convenient to consider matrix
elements of the metric in the basis formed by the isometry generators themselves. The consistency
conditions state the covariant constancy of the metric tensor

rZg(X,Y ) = g(rZX,Y ) + g(X,rZY ) = Z · g(X,Y ) . (3.10.1)

Z · g(X,Y ) vanishes, when Z generates isometries so that conditions state the covariant constancy
of the matrix elements in this case. It must be emphasized that the ill defined-ness of the inner
products of form g(rZX,Y ) is just the reason for requiring infinite-dimensional isometry group.
The point is that rZX need not to belong to the Hilbert space spanned by the tangent vector
fields since the terms of type Zg(X,Y ) do not necessarily exist mathematically [A37] . The
elegant solution to the problem is that all tangent space vector fields act as isometries so that
these quantities vanish identically.

The conditions of Eq. (3.10.1) can be written explicitly by using the general expression for the
covariant derivative

g(rZX,Y ) = [Zg(X,Y ) +Xg(Z, Y )� Y g(Z,X)

+ g(AdZX �Ad⇤ZX �Ad⇤XZ, Y )]/2 . (3.10.2)

What happens is that the terms depending on the derivatives of the matrix elements (terms of
type Zg(X,Y ) ) cancel each other (these terms vanish for the metric invariant under isometries),
and one obtains the following consistency conditions

g(AdZX �Ad⇤ZX �Ad⇤XZ, Y ) + g(X,AdZY �Ad⇤ZY �Ad⇤Y Z) = 0 . (3.10.3)

Using the explicit representations of AdZX and Ad ⇤Z X in terms of structure constants

AdZX = [Z,X] = CZ,X:UU .

Ad⇤ZX = CZ,U :V g(X,V )g�1(U,W )W = g(X, [Z,U ])g�1(U,W )W . (3.10.4)

where the summation over repeated ”indices” is performed, one finds that consistency conditions
are identically satisfied provided the generators X and Y have a non-vanishing norm. The reason
is that the contributions coming from rZX and rZY cancel each other.

When one of the generators, say X, appearing in the inner product has a vanishing norm so
that one has g(X,Y ) = 0, for any generator Y , situation changes! The contribution of rZY term
to the consistency conditions drops away and using Eqs. (3.10.3) and (3.10.4) one obtains the
following consistency conditions

CZ,X:Ug(U, Y ) + CX,Y :Ug(U,Z) = �X · g(Z, Y ) . (3.10.5)

Note that summation over U is carried out. If X is isometry generator (this need not be the case
always) the condition reduces to a simpler form:

CX,Z:Ug(U, Y ) + CX,Y :Ug(Z,U) = g([X,Z].Y ) + g(Z, [X,Y ]) = 0 . (3.10.6)

These conditions have nice geometric interpretation. If the matrix elements are regarded as ordi-
nary Hilbert space products between the isometry generators the conditions state that the metric
defining the inner product behaves as a scalar in the general case.
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3.10.2 Consistency conditions for the radial Virasoro algebra

The action of the radial Virasoro in nontrivial manner in the zero modes. Therefore isometry
interpretation is excluded and consistency conditions do not make sense in this case. One can
however consider the possibility that metric is invariant or su↵ers only an overall scaling under
the action of the radial scaling generated by L0 = rMd/drM . Since the radial integration measure
is scaling invariant and only powers of rM/r0 appear in Hamiltonians, the e↵ect of the scaling
rM ! �rM on the matrix elements of the metric is a scaling by �k

a

+k̄
b). One can interpret this by

saying that scaling changes the values of zero modes and hence leads outside the symmetric space
in question.

Invariance of reduced matrix element obtained by dividing away the powers of the scaling factor
is achieved if the metric contains the conformal factor

S =
1

�u
f(

ri
rj
) , (3.10.7)

where ri are the extrema of rM interpreted as height function of X3 and f is a priori arbitrary
positive definite function. Since the presence of f presumably gives rise to renormalization cor-
rections depending on the size and shape of 3-surface by scaling the propagator defined by the
contravariant metric, the dependence on the ratios ri/rj should be slow, logarithmic dependence.
Also the dependence on the Fourier components of the solid angles ⌦(rM ) associated with the
rM = constant sections is possible.

3.10.3 Explicit conditions for the isometry invariance

The identification of the Lie-algebra of isometry generators has been proposed but cannot provide
any proof for the existence of the infinite parameter symmetry group at this stage. What one can
do at this stage is to formulate explicitly the conditions guaranteeing isometry invariance of the
metric and try to see whether there are any hopes that these conditions are satisfied. It has been
already found that the expression of the metric reduces for light cone alternative to the sum of
two boundary terms coming from infinite future and from the boundary of the light cone. If the
contribution from infinitely distant future vanishes, as one might expect, then only the contribution
from the boundary of the light cone remains.

A tedious but straightforward evaluation of the second variation (see Appendix of the book)
for Kähler action implies the following form for the second variation of the Kähler action

�2S =
.a=1

a=0
In�kl �h

kD��h
l , (3.10.8)

where the tensor I↵�kl is defined as partial derivatives of the Kähler Lagrangian with respect to the
derivatives @↵hk

I↵�kl = @@
↵

hk@@
�

hlLM . (3.10.9)

If the upper limit a =
p

(m0)2 � r2M = 1 in the substitution vanishes then one can calculate
second variation and therefore metric from the knowledge of the time derivatives @nhk and @n�hk

on the boundary of the light cone only.
Kähler metric can be identified as the (1, 1) part of the second variation. This means that one

can express the deformation as an element of the isometry algebra plus a arbitrary deformation in
radial direction of the light cone boundary interpretable as conformal transformation of the light
cone boundary. Radial contributions to the second variation are dropped (by definition of Kähler
metric) and what remains is essentially a deformation in S2 degrees of freedom.

The left invariance of the metric under the deformations of the isometry algebra implies an
infinite number of conditions of the form

JCg(JA, JB) = 0 , (3.10.10)
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where JA, JB and JC denote the generators of the isometry group. These conditions ought to fix
completely the time derivatives of the coordinates hk for each 3-surface at light cone boundary
and therefore in principle the whole minimizing four-surface provided the initial value problem
associated with the Kähler action possesses a unique solution. What is nice that the requirement
of isometry invariance in principle would provides solution to the problem of finding preferred
extremals of the Kähler action.

These conditions, when written explicitly give infinite number of conditions for the time deriva-
tive of the generator JC (we assume for a moment that C is held fixed and let A and B run) at the
boundary of the light cone. Time derivatives are in principle determined also by the requirement
that deformed surface corresponds to an absolute minimum of the Kähler action. The basis of �H
scalar functions respecting color and rotational symmetries is the most promising one.

3.10.4 Direct consistency checks

If duality holds true, the most general form of WCW metric is defined by the fluxes Q↵,�
m , where

↵ and � are the coe�cients of signed and unsigned magnetic fluxes. Present is also a confor-
mal factor depending on those zero modes, which do not appear in the symplectic form and
which characterize the size and shape of the 3-surface. [t, t] ⇢ h property implying Ricci flat-
ness and isometry property of symplectic transformations, requires the vanishing of the fluxes
Q↵,�

m ({HA,m 6=0, {HB,n6=0, HC,p 6=0}}) associated with double commutators and poses strong consis-
tency conditions on the metric. If n labelling symplectic generators has half integer values then the
conditions simply state conformal invariance: generators labelled by integers have vanishing norm
whereas half-odd integers correspond to non-vanishing norm. Isometry invariance gives additional
conditions on fluxes Q↵,�

m . Lorentz invariance strengthens these conditions further. It could be
that these conditions fix the initial values of the imbedding space coordinates completely.





Chapter 4

Configuration Space Spinor
Structure

4.1 Introduction

Quantum TGD should be reducible to the classical spinor geometry of the configuration space
(”world of classical worlds”, WCW). In particular, physical states should correspond to the modes
of the configuration space spinor fields. The immediate consequence is that configuration space
spinor fields cannot, as one might naively expect, be carriers of a definite spin and unit fermion
number. Concerning the construction of the WCW spinor structure there are some important
clues.

4.1.1 Geometrization of fermionic statistics in terms of WCW spinor
structure

The great vision has been that the second quantization of the induced spinor fields can be under-
stood geometrically in terms of the WCW spinor structure in the sense that the anti-commutation
relations for WCW gamma matrices require anti-commutation relations for the oscillator operators
for free second quantized induced spinor fields.

1. One must identify the counterparts of second quantized fermion fields as objects closely
related to the configuration space spinor structure. [B27] has as its basic field the anti-
commuting field �k(x), whose Fourier components are analogous to the gamma matrices
of the configuration space and which behaves like a spin 3/2 fermionic field rather than a
vector field. This suggests that the are analogous to spin 3/2 fields and therefore expressible
in terms of the fermionic oscillator operators so that their naturally derives from the anti-
commutativity of the fermionic oscillator operators.

As a consequence, WCW spinor fields can have arbitrary fermion number and there would
be hopes of describing the whole physics in terms of WCW spinor field. Clearly, fermionic
oscillator operators would act in degrees of freedom analogous to the spin degrees of freedom
of the ordinary spinor and bosonic oscillator operators would act in degrees of freedom
analogous to the ’orbital’ degrees of freedom of the ordinary spinor field.

2. The classical theory for the bosonic fields is an essential part of the WCW geometry. It would
be very nice if the classical theory for the spinor fields would be contained in the definition
of the WCW spinor structure somehow. The properties of the associated with the induced
spinor structure are indeed very physical. The modified massless Dirac equation for the
induced spinors predicts a separate conservation of baryon and lepton numbers. Contrary
to the long held belief it seems that covariantly constant right handed neutrino does not
generate . The di↵erences between quarks and leptons result from the di↵erent couplings to
the CP2 Kähler potential. In fact, these properties are shared by the solutions of massless
Dirac equation of the imbedding space.

137
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3. Since TGD should have a close relationship to the ordinary quantum field theories it would
be highly desirable that the second quantized free induced spinor field would somehow appear
in the definition of the WCW geometry. This is indeed true if the complexified WCW gamma
matrices are linearly related to the oscillator operators associated with the second quantized
induced spinor field on the space-time surface and its boundaries. There is actually no
deep reason forbidding the gamma matrices of the WCW to be spin half odd-integer objects
whereas in the finite-dimensional case this is not possible in general. In fact, in the finite-
dimensional case the equivalence of the spinorial and vectorial vielbeins forces the spinor
and vector representations of the vielbein group SO(D) to have same dimension and this
is possible for D = 8-dimensional Euclidian space only. This coincidence might explain
the success of 10-dimensional super string models for which the physical degrees of freedom
e↵ectively correspond to an 8-dimensional Euclidian space.

4. It took a long time to realize that the ordinary definition of the gamma matrix algebra in
terms of the anti-commutators {�A, �B} = 2gAB must in TGD context be replaced with

{�†
A, �B} = iJAB ,

where JAB denotes the matrix elements of the Kähler form of the WCW. The presence of the
Hermitian conjugation is necessary because WCW gamma matrices carry fermion number.
This definition is numerically equivalent with the standard one in the complex coordinates.
The realization of this delicacy is necessary in order to understand how the square of the
WCW Dirac operator comes out correctly.

5. TGD as a generalized number theory vision leads to the understanding of how the second
quantization of the induced spinor fields should be carried out and space-time conformal
symmetries allow to explicitly solve the Dirac equation associated with the modified Dirac
action in the interior and at the 3-D light like causal determinants. An essentially new element
is the notion of number theoretic braid forced by the fact that the modified Dirac operator
allows only finite number of generalized eigen modes so that the number of fermionic oscillator
operators is finite. As a consequence, anti-commutation relations can be satisfied only for a
finite set of points defined by the number theoretic braid, which is uniquely identifiable. The
interpretation is in terms of finite measurement resolution. The finite Cli↵ord algebra spanned
by the fermionic oscillator operators is interpreted as the factor space M/N of infinite hyper-
finite factors of type II1 defined by WCW Cli↵ord algebra N and included Cli↵ord algebra
M ⇢ N interpreted as the characterizer of the finite measurement resolution. Note that the
finite number of eigenvalues guarantees that Dirac determinant identified as the exponent of
Kähler function is finite. Finite number of eigenvalues is also essential for number theoretic
universality.

4.1.2 Modified Dirac equation for induced classical spinor fields

It is now clear that Kähler-Dirac action with measurement interaction terms as boundary term is
the unique choice for the Dirac action.

There are several approaches for solving the modified Dirac (or Kähler-Dirac) equation.

1. The most promising approach assumes that the solutions are restricted on 2-D stringy world
sheets and/or partonic 2-surfaces. This strange looking view is a rather natural consequence
of both strong form of holography and of number theoretic vision, and also follows from
the notion of finite measurement resolution having discretization at partonic 2-surfaces as a
geometric correlate. Furthermore, the conditions stating that electric charge is well-defined
for preferred extremals forces the localization of the modes to 2-D surfaces in the generic
case. This also resolves the interpretational problems related to possibility of strong parity
breaking e↵ects since induce W fields and possibly also Z0 field above weak scale, vahish at
these surfaces.

2. One expects that stringy approach based on 4-D generalization of conformal invariance or
its 2-D variant at 2-D preferred surfaces should also allow to understand the modified Dirac
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equation. Conformal invariance indeed allows to write the solutions explicitly using formulas
similar to encountered in string models. In accordance with the earlier conjecture, all modes
of the modified Dirac operator generate badly broken super-symmetries.

3. Covariantly constant right-handed neutrino certainly defines solutions de-localized inside en-
tire space-time sheet. This need not be the case if right-handed neutrino is not covarianty
constant since the non-vanishing CP2 part for the induced gamma matrices mixes it with
left-handed neutrino. For massless extremals (at least) the CP2 part however vanishes and
right-handed neutrino allows also massless holomorphic modes de-localized at entire space-
time surface and the de-localization inside Euclidian region defining the line of generalized
Feynman diagram is a good candidate for the right-handed neutrino generating the least
broken super-symmetry.This super-symmetry seems however to di↵er from the ordinary one
in that ⌫R is expected to behave like a passive spectator in the scattering. Also for the
left-handed neutrino solutions localized inside string world sheet the condition that cou-
pling to right-handed neutrino vanishes is guaranteed if gamma matrices are either purely
Minkowskian or CP2 like inside the world sheet.

4.1.3 Identification of WCW gamma matrices as super Hamiltonians

The basic super-algebra corresponds to the fermionic oscillator operators and can be regarded as
a generalization N super algebras by replacing N with the number of solutions of the modified
Dirac equation which can be infinite. This leads to QFT SUSY limit of TGD di↵erent in many
respects crucially from standard SUSYs.

WCW gamma matrices are identified as super generators of super-symplectic and are expressible
in terms of these oscillator operators. In the original proposal super-symplectic and super charges
were assumed to be expressible as integrals over 2-dimensional partonic surfaces X2 and interior
degrees of freedom of X4 can be regarded as zero modes representing classical variables in one-one
correspondence with quantal degrees of freedom atX3

l as indeed required by quantum measurement
theory.

Quite recently (at the end of 2013) it became clear that one must perform a generalization
analogous to a transition from field theory to string models requiring the replacement of points of
partonic 2-surfaces with stringy curves connecting the points of two partonic 2-surfaces. This does
not mean loss of e↵ective 2-dimensionality implied by strong form of general coordinate invariance
but allows genuine generalization of super-conformal invariance in 4-D context.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found here [L13]. Another glossary type
representation involving both pdf and html files can be found at http://www.tgdtheory.fi/
tgdglossary.pdf. The topics relevant to this chapter are given by the following list.

• WCW gamma matrices [L41]

• WCW spinor fields [L42]

4.2 WCW spinor structure: general definition

The basic problem in constructing WCW spinor structure is clearly the construction of the explicit
representation for the gamma matrices of WCW. One should be able to identify the space, where
these gamma matrices act as well as the counterparts of the ”free” gamma matrices, in terms of
which the gamma matrices would be representable using generalized vielbein coe�cients.

4.2.1 Defining relations for gamma matrices

The ordinary definition of the gamma matrix algebra is in terms of the anti-commutators

{�A, �B} = 2gAB .

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
http://www.tgdtheory.fi/tgdglossary.pdf
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This definition served implicitly also as a basic definition of the gamma matrix algebra in TGD
context until the di�culties related to the understanding of WCW d’Alembertian defined in terms
of the square of the Dirac operator forced to reconsider the definition. If WCW allows Kähler struc-
ture, the most general definition allows to replace the metric any covariantly constant Hermitian
form. In particular, gAB can be replaced with

{�†A,�B} = iJAB , (4.2.1)

where JAB denotes the matrix element of the Kähler form of WCW. The reason is that gamma
matrices carry fermion number and are non-hermitian in all coordinate systems. This definition is
numerically equivalent with the standard one in the complex coordinates but in arbitrary coordi-
nates situation is di↵erent since in general coordinates iJkl is a nontrivial positive square root of
gkl. The realization of this delicacy is necessary in order to understand how the square of WCW
Dirac operator comes out correctly. Obviously, what one must do is the equivalent of replacing
D2 = (�kDk)2 with DD̂ with D̂ defined as

D̂ = iJkl�†lDk .

4.2.2 General vielbein representations

There are two ideas, which make the solution of the problem obvious.

1. Since the classical time development in bosonic degrees of freedom (induced gauge fields) is
coded into the geometry of WCW it seems natural to expect that same applies in the case
of the spinor structure. The time development of the induced spinor fields dictated by TGD
counterpart of the massless Dirac action should be coded into the definition of the WCW
spinor structure. This leads to the challenge of defining what classical spinor field means.

2. Since classical scalar field in WCW corresponds to second quantized boson fields of the
imbedding space same correspondence should apply in the case of the fermions, too. The
spinor fields of WCW should correspond to second quantized fermion field of the imbedding
space and the space of the configuration space spinors should be more or less identical with
the Fock space of the second quantized fermion field of imbedding space or X4(X3). Since
classical spinor fields at space-time surface are obtained by restricting the spinor structure to
the space-time surface, one might consider the possibility that life is really simple: the second
quantized spinor field corresponds to the free spinor field of the imbedding space satisfying
the counterpart of the massless Dirac equation and more or less standard anti-commutation
relations. Unfortunately life is not so simple as the construction of WCW spinor structure
demonstrates: second quantization must be performed for induced spinor fields.

It is relatively simple to fill in the details once these basic ideas are accepted.

1. The only natural candidate for the second quantized spinor field is just the on X4. Since
this field is free field, one can indeed perform second quantization and construct fermionic
oscillator operator algebra with unique anti-commutation relations. The space of WCW
spinors can be identified as the associated with these oscillator operators. This space depends
on 3-surface and strictly speaking one should speak of the Fock bundle having WCW as its
base space.

2. The gamma matrices of WCW (or rather fermionic Kac Moody generators) are representable
as super positions of the fermionic oscillator algebra generators:

�+A = En
Aa

†
n

��A = Ēn
Aan

iJAB̄ =
X
n

En
AĒ

n
B (4.2.2)
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where En
A are the vielbein coe�cients. Induced spinor fields can possess zero modes and

there is no oscillator operators associated with these modes. Since oscillator operators are
spin 1/2 objects, WCW gamma matrices are analogous to spin 3/2 spinor fields (in a very
general sense). Therefore the generalized vielbein and WCW metric is analogous to the pair
of spin 3/2 and spin 2 fields encountered in super gravitation! Notice that the contractions
jAk�k of the complexified gamma matrices with the isometry generators are genuine spin
1/2 objects labeled by the quantum numbers labeling isometry generators. In particular, in
CP2 degrees of freedom these fermions are color octets.

3. A further great idea inspired by the symplectic and Kähler structures of WCW is that
configuration gamma matrices are actually generators of super-symplectic symmetries. This
simplifies enormously the construction allows to deduce explicit formulas for the gamma
matrices.

4.2.3 Inner product for WCW spinor fields

The conjugation operation for WCW spinor s corresponds to the standard ket ! bra operation
for the states of the Fock space:

 $ | i
 ̄ $ h | (4.2.3)

The inner product for WCW spinor s at a given point of WCW is just the standard Fock space
inner product, which is unitary.

 ̄1(X
3) 2(X

3) = h 1| 2i|X3 (4.2.4)

WCW inner product for two WCW spinor fields is obtained as the integral of the Fock space inner
product over the whole WCW using the vacuum functional exp(K) as a weight factor

h 1| 2i =

Z
h 1| 2i|X3exp(K)

p
GdX3 (4.2.5)

This inner product is obviously unitary. A modified form of the inner product is obtained by
including the factor exp(K/2) in the definition of the spinor field. In fact, the construction of the
central extension for the isometry algebra leads automatically to the appearance of this factor in
vacuum spinor field.

The inner product di↵ers from the standard inner product for, say, Minkowski space spinors in
that integration is over the entire WCW rather than over a time= constant slice of the WCW. Also
the presence of the vacuum functional makes it di↵erent from the finite dimensional inner product.
These are not un-physical features. The point is that (apart from classical non-determinism forcing
to generalized the concept of 3-surface) Di↵4 invariance dictates the behavior of WCW spinor field
completely: it is determined form its values at the moment of the big bang. Therefore there is no
need to postulate any Dirac equation to determine the behavior and therefore no need to use the
inner product derived from dynamics.

4.2.4 Holonomy group of the vielbein connection

Generalized vielbein allows huge gauge symmetry. An important constraint on physical observables
is that they do not depend at all on the gauge chosen to represent the gamma matrices. This is
indeed achieved using vielbein connection, which is now quadratic in fermionic oscillator operators.
The holonomy group of the vielbein connection is the WCW counterpart of the electro-weak gauge
group and its algebra is expected to have same general structure as the algebra of the WCW
isometries. In particular, the generators of this algebra should be labeled by conformal weights
like the elements of Kac Moody algebras. In present case however conformal weights are complex
as the construction of WCW geometry demonstrates.
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4.2.5 Realization of WCW gamma matrices in terms of super symmetry
generators

In string models super symmetry generators behave e↵ectively as gamma matrices and it is very
tempting to assume that WCW gamma matrices can be regarded as generators of the symplectic
algebra extended to super-symplectic Kac Moody type algebra. The experience with string models
suggests also that radial Virasoro algebra extends to Super Virasoro algebra. There are good
reasons to expect that WCW Dirac operator and its square give automatically a realization of this
algebra. It this is indeed the case, then WCW spinor structure as well as Dirac equation reduces
to mere group theory.

One can actually guess the general form of the super-symplectic algebra. The form is a direct
generalization of the ordinary super Kac Moody algebra. The complexified super generators SA

are identifiable as WCW gamma matrices:

�A = SA . (4.2.6)

The anti-commutators {�†A,�B}+ = i2JA,B define a Hermitian matrix, which is proportional to the
Kähler form of the configuration space rather than metric as usually. Only in complex coordinates
the anti-commutators equal to the metric numerically. This is, apart from the multiplicative
constant n, is expressible as the Poisson bracket of the WCW Hamiltonians HA and HB . Therefore
one should be able to identify super generators SA(rM ) for each values of rM as the counterparts
of fluxes. The anti-commutators between the super generators SA and their Hermitian conjugates
should read as

{SA, S
†
B}+ = iQm(H[A,B]) . (4.2.7)

and should be induced directly from the anti-commutation relations of free second quantized spinor
fields of the imbedding space restricted to the light cone boundary.

The commutation relations between s and super generators follow solely from the transformation
properties of the super generators under symplectic transformations, which are same as for the
Hamiltonians themselves

{HAm, SBn}� = S[Am,Bn] , (4.2.8)

and are of the same form as in the case of Super-Kac-Moody algebra.
The task is to derive an explicit representation for the super generators SA in both cases. For

obvious reason the spinor fields restricted to the 3-surfaces on the light cone boundary �M4
+⇥CP2

can be used. Leptonic/quark like oscillator operators are used to construct Ramond/NS type
algebra.

What is then the strategy that one should follow?

1. WCW Hamiltonians correspond to either magnetic or electric flux Hamiltonians and the
conjecture is that these representations are equivalent. It turns out that this electric-magnetic
duality generalizes to the level of super charges. It also turns out that quark representation
is the only possible option whereas leptonic super charges super-symmetrize the ordinary
function algebra of the light cone boundary.

2. The simplest option would be that second quantized imbedding space spinors could be used
in the definition of super charges. This turns out to not work and one must second quantize
the induced spinor fields.

3. The task is to identify a super-symmetric variational principle for the induced spinors: ordi-
nary Dirac action does not work. It turns out that in the most plausible scenario the modified
Dirac action varied with respect to both imbedding space coordinates and spinor fields is the
fundamental action principle. The c-number parts of the conserved symplectic charges asso-
ciated with this action give rise to bosonic conserved charges defining WCW Hamiltonians.
The second quantization of the spinor fields reduces to the requirement that super charges and
Hamiltonians generate super-symplectic algebra determining the anti-commutation relations
for the induced spinor fields.
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4.2.6 Central extension as symplectic extension at configuration space
level

The earlier attempts to understand the emergence of central extension of super-symplectic algebra
were based on the notion of symplectic extension. This general view is not given up although it
seems that this abstract approach is not very practical. Symplectic extension emerged originally in
the attempts to construct formal expression for the WCW Dirac equation. The rather obvious idea
was that the Dirac equation reduces to super Virasoro conditions with Super Virasoro generators
involving the Dirac operator of the imbedding space. The basic di�culty was the necessity to
assign to the gamma matrices of the imbedding space fermion number. In the recent formulation
the Dirac operator of H does not appear in in the Super Virasoro conditions so that this problem
disappears.

The proposal that Super Virasoro conditions should replaced with conditions stating that the
commutator of super-symplectic and super Kac-Moody algebras annihilates physical states, looks
rather feasible. One could call these conditions as WCW Dirac equation but at this moment I feel
that this would be just play with words and mask the group theoretical content of these conditions.
In any case, the formulas for the symplectic extension and action of isometry generators on WCW
spinor deserve to be summarized.

Symplectic extension

The Abelian extension of the super-symplectic algebra is obtained by an extremely simple trick.
Replace the ordinary derivatives appearing in the definition of, say spinorial isometry generator,
by the covariant derivatives defined by a coupling to a multiple of the Kähler potential.

jAk@k ! jAkDk ,

Dk = @k + ikAk/2 . (4.2.9)

where Ak denotes Kähler potential. The reality of the parameter k is dictated by the Hermiticity
requirement and also by the requirement that Abelian extension reduces to the standard form
in Cartan algebra. k is expected to be integer also by the requirement that covariant derivative
corresponds to connection (quantization of magnetic charge).

The commutation relations for the centrally extended generators JA read:

[JA, JB ] = J [A,B] + ikjAkJklj
Bl ⌘ J [A,B] + ikJAB . (4.2.10)

Since Kähler form defines symplectic structure in WCW one can express Abelian extension term
as a Poisson bracket of two Hamiltonians

JAB ⌘ jAkJklj
Bl = {HA, HB} . (4.2.11)

Notice that Poisson bracket is well defined also when Kähler form is degenerate.
The extension indeed has acceptable properties:

1. Jacobi-identities reduce to the form

X
cyclic

H [A,[B,C]] = 0 , (4.2.12)

and therefore to the Jacobi identities of the original Lie- algebra in Hamiltonian representa-
tion.
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2. In the Cartan algebra Abelian extension reduces to a constant term since the Poisson bracket
for two commuting generators must be a multiple of a unit matrix. This feature is clearly
crucial for the non-triviality of the Abelian extension and is encountered already at the level
of ordinary (q, p) Poisson algebra: although the di↵erential operators @p and @q commute the
Poisson bracket of the corresponding Hamiltonians p and q is nontrivial: {p, q} = 1. Therefore
the extension term commutes with the generators of the Cartan subalgebra. Extension is
also local U(1) extension since Poisson algebra di↵ers from the Lie-algebra of the vector fields
in that it contains constant Hamiltonian (”1” in the commutator), which commutes with all
other Hamiltonians and corresponds to a vanishing vector field.

3. For the generators not belonging to Cartan sub-algebra of CH isometries Abelian extension
term is not annihilated by the generators of the original algebra and in this respect the
extension di↵ers from the standard central extension for the loop algebras. It must be
however emphasized that for the super-symplectic algebra generators correspond to products
of �M4

+ and CP2 Hamiltonians and this means that generators of say �M4
+-local SU(3)

Cartan algebra are non-commuting and the commutator is completely analogous to central
extension term since it is symmetric with respect to SU(3) generators.

4. The proposed method yields a trivial extension in the case of Di↵4. The reason is the (four-
dimensional!) Di↵ degeneracy of the Kähler form. Abelian extension term is given by the
contraction of the Di↵4 generators with the Kähler potential

jAkJklj
Bl = 0 , (4.2.13)

which vanishes identically by the Di↵ degeneracy of the Kähler form. Therefore neither
3- or 4-dimensional Di↵ invariance is not expected to cause any di�culties. Recall that 4-
dimensional Di↵ degeneracy is what is needed to eliminate time like vibrational excitations
from the spectrum of the theory. By the way, the fact that the loop space metric is not Di↵
degenerate makes understandable the emergence of Di↵ anomalies in string models [B27, B20]
.

5. The extension is trivial also for the other zero norm generators of the tangent space algebra,
in particular for the k2 = Im(k) = 0 symplectic generators possible present so that these
generators indeed act as genuine U(1) transformations.

6. Concerning the solution of WCWDirac equation the maximum of Kähler function is expected
to be special, much like origin of Minkowski space and symmetric space property suggests
that the construction of solutions reduces to this point. At this point the generators and
Hamiltonians of the algebra h in the defining Cartan decomposition g = h+ t should vanish.
h corresponds to integer values of k1 = Re(k) for Cartan algebra of super-symplectic algebra
and integer valued conformal weights n for Super Kac-Moody algebra. The algebra reduces
at the maximum to an exceptionally simple form since only central extension contributes
to the metric and Kähler form. In the ideal case the elements of the metric and Kähler
form could be even diagonal. The degeneracy of the metric might of course pose additional
complications.

Super symplectic action on WCW spinor s

The generators of symplectic transformations are obtained in the spinor representation of the
isometry group of WCW by the following formal construction. Take isometry generator in the
spinor representation and add to the covariant derivative Dk defined by vielbein connection the
coupling to the multiple of the Kähler potential: Dk ! Dk + ikAk/2.

JA = jAkDk +Dljk⌃
kl/2 ,

! ĴA = jAk(Dk + ikAk/2) +Dlj
A
k ⌃

kl/2 ,

(4.2.14)
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This induces the required central term to the commutation relations. Introduce complex coor-
dinates and define bosonic creation and annihilation operators as (1, 0) and (0, 1) parts of the
modified isometry generators

B†
A = JA

+ = jAk(Dk + ... ,

BA = JA
� = jAk̄(Dk̄ + ... .

(4.2.15)

where ”k” refers now to complex coordinates and ”k̄” to their conjugates.
Fermionic generators are obtained as the contractions of the complexified gamma matrices with

the isometry generators

�†A = jAk�k ,

�A = jAk̄�k̄ . (4.2.16)

Notice that the bosonic Cartan algebra generators obey standard oscillator algebra commutation
relations and annihilate fermionic Cartan algebra generators. Hermiticity condition holds in the
sense that creation type generators are hermitian conjugates of the annihilation operator type
generators. There are two kinds of representations depending on whether one uses leptonic or
quark like oscillator operators to construct the gammas. These will be assumed to correspond to
Ramond and NS type generators with the radial plane waves being labeled by integer and half odd
integer indices respectively.

The non-vanishing commutators between the Cartan algebra bosonic generators are given by
the matrix elements of the Kähler form in the basis of formed by the isometry generators

[B†
A, BB ] = J(jA†, jB) ⌘ JĀB . (4.2.17)

and are isometry invariant quantities. The commutators between local SU(3) generators not
belonging to Cartan algebra are just those of the local gauge algebra with Abelian extension term
added.

The anti-commutators between the fermionic generators are given by the elements of the metric
(as opposed to Kähler form in the case of bosonic generators) in the basis formed by the isometry
generators

{�A†,�B} = 2g(jA†, jB) ⌘ 2gĀB . (4.2.18)

and are invariant under isometries. Numerically the commutators and anti-commutators di↵er
only the presence of the imaginary unit and the scale factor R relating the metric and Kähler form
to each other (the factor R is same for CP2 metric and Kähler form).

The commutators between bosonic and fermionic generators are given by

[BA,�B ] = �[A,B] . (4.2.19)

The presence of vielbein and rotation terms in the representation of the isometry generators is
essential for obtaining these nice commutations relations. The commutators vanish identically for
Cartan algebra generators. From the commutation relations it is clear that Super Kac Moody
algebra structure is directly related to the Kähler structure of WCW: the anti-commutator of
fermionic generators is proportional to the metric and the commutator of the bosonic generators
is proportional to the Kähler form. It is this algebra, which should generate the solutions of the
field equations of the theory.

The vielbein and rotational parts of the bosonic isometry generators are quadratic in the
fermionic oscillator operators and this suggests the interpretation as the fermionic contribution
to the isometry currents. This means that the action of the bosonic generators is essentially non-
perturbative since it creates fermion anti-fermion pairs besides exciting bosonic degrees of freedom.
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4.2.7 WCW Cli↵ord algebra as a hyper-finite factor of type II
1

The naive expectation is that the trace of the unit matrix associated with the Cli↵ord algebra
spanned by WCW sigma matrices is infinite and thus defines an excellent candidate for a source of
divergences in perturbation theory. This potential source of infinities remained un-noticed until it
became clear that there is a connection with von Neumann algebras [A35] . In fact, for a separable
Hilbert space defines a standard representation for so called [A46] . This guarantees that the trace
of the unit matrix equals to unity and there is no danger about divergences.

Philosophical ideas behind von Neumann algebras

The goal of von Neumann was to generalize the algebra of quantum mechanical observables. The
basic ideas behind the von Neumann algebra are dictated by physics. The algebra elements allow
Hermitian conjugation ⇤ and observables correspond to Hermitian operators. Any measurable
function f(A) of operator A belongs to the algebra and one can say that non-commutative measure
theory is in question.

The predictions of quantum theory are expressible in terms of traces of observables. Density
matrix defining expectations of observables in ensemble is the basic example. The highly non-
trivial requirement of von Neumann was that identical a priori probabilities for a detection of
states of infinite state system must make sense. Since quantum mechanical expectation values are
expressible in terms of operator traces, this requires that unit operator has unit trace: tr(Id) = 1.

In the finite-dimensional case it is easy to build observables out of minimal projections to 1-
dimensional eigen spaces of observables. For infinite-dimensional case the probably of projection
to 1-dimensional sub-space vanishes if each state is equally probable. The notion of observable
must thus be modified by excluding 1-dimensional minimal projections, and allow only projections
for which the trace would be infinite using the straightforward generalization of the matrix algebra
trace as the dimension of the projection.

The non-trivial implication of the fact that traces of projections are never larger than one is that
the eigen spaces of the density matrix must be infinite-dimensional for non-vanishing projection
probabilities. Quantum measurements can lead with a finite probability only to mixed states with
a density matrix which is projection operator to infinite-dimensional subspace. The simple von
Neumann algebras for which unit operator has unit trace are known as factors of type II1 [A46] .

The definitions of adopted by von Neumann allow however more general algebras. Type In
algebras correspond to finite-dimensional matrix algebras with finite traces whereas I1 associated
with a separable infinite-dimensional Hilbert space does not allow bounded traces. For algebras of
type III non-trivial traces are always infinite and the notion of trace becomes useless.

von Neumann, Dirac, and Feynman

The association of algebras of type I with the standard quantum mechanics allowed to unify matrix
mechanism with wave mechanics. Note however that the assumption about continuous momentum
state basis is in conflict with separability but the particle-in-box idealization allows to circumvent
this problem (the notion of space-time sheet brings the box in physics as something completely
real).

Because of the finiteness of traces von Neumann regarded the factors of type II1 as fundamental
and factors of type III as pathological. The highly pragmatic and successful approach of Dirac
based on the notion of delta function, plus the emergence of Feynman graphs, the possibility to
formulate the notion of delta function rigorously in terms of distributions, and the emergence of
path integral approach meant that von Neumann approach was forgotten by particle physicists.

Algebras of type II1 have emerged only much later in conformal and topological quantum field
theories [A56, A62] allowing to deduce invariants of knots, links and 3-manifolds. Also algebraic
structures known as bi-algebras, Hopf algebras, and ribbon algebras [A47, A33] relate closely to
type II1 factors. In topological quantum computation [B21] based on braid groups [A64] modular
S-matrices they play an especially important role.
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Cli↵ord algebra of WCW as von Neumann algebra

The Cli↵ord algebra of WCW provides a school example of a hyper-finite factor of type II1,
which means that fermionic sector does not produce divergence problems. Super-symmetry means
that also ”orbital” degrees of freedom corresponding to the deformations of 3-surface define similar
factor. The general theory of hyper-finite factors of type II1 is very rich and leads to rather detailed
understanding of the general structure of S-matrix in TGD framework. For instance, there is a
unitary evolution operator intrinsic to the von Neumann algebra defining in a natural manner
single particle time evolution. Also a connection with 3-dimensional topological quantum field
theories and knot theory, conformal field theories, braid groups, quantum groups, and quantum
counterparts of quaternionic and octonionic division algebras emerges naturally. These aspects are
discussed in detail in [K60] .

4.3 An attempt to understand preferred extremals of Kähler
action

Preferred extremal of Kähler action is one of the basic poorly defined notions of TGD. There are
pressing motivations for understanding what ”preferred” really means. For instance, the conformal
invariance of string models naturally generalizes to 4-D invariance defined by quantum Yangian
of quantum a�ne algebra (Kac-Moody type algebra) characterized by two complex coordinates
and therefore explaining naturally the e↵ective 2-dimensionality [K61]. The problem is however
how to assign a complex coordinate with the string world sheet having Minkowskian signature
of metric. One can hope that the understanding of preferred extremals could allow to identify
two preferred complex coordinates whose existence is also suggested by number theoretical vision
giving preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The
best one could hope is a general solution of field equations in accordance with the hints that TGD
is integrable quantum theory.

4.3.1 What ”preferred” could mean?

The first question is what preferred extremal could mean.

1. In positive energy ontology preferred extremal would be a space-time surface assignable to
given 3-surface and unique in the ideal situation: since one cannot pose conditions to the
normal derivatives of imbedding space coordinates at 3-surface, there is infinity of extremals.
Some additional conditions are required and space-time surface would be analogous to Bohr
orbit : hence the attribute ”preferred”. The problem would be to understand what ”pre-
ferred” could mean. The non-determinism of Kähler action however destroyed this dream in
its original form and led to zero energy ontology (ZEO).

2. In ZEO one considers extremals as space-time surfaces connecting two space-like 3-surfaces
at the boundaries. One might hope that these 4-surfaces are unique. The non-determinism
of Kähler action suggests that this is not the case. At least there is conformal invariance
respecting the light-likeness of the 3-D parton orbits at which the signature of the induced
metric changes: the conformal transformations would leave the space-like 3-D ends or at least
partonic 2-surfaces invariant. This non-determinism would correspond to quantum criticality.

3. E↵ective 2-dimensionality follows from strong form of general coordinate invariance (GCI)
stating that light-like partonic orbits and space-like 3-surfaces at the ends of space-time
surface are equivalent physically: partonic 2-surfaces and their 4-D tangent space data would
determine everything. One can however worry about how e↵ective 2-dimensionality relates
to the the fact that the modes of the induced spinor field are localized at string world sheets
and partonic 2-surface. Are the tangent space data equivalent with the data characterizing
string world sheets as surfaces carrying vanishing electroweak fields?

There is however a problem: the hierarchy of Planck constants (dark matter) requires that
the conformal equivalence classes of light-like surfaces must be counted as physical degrees
of freedom so that either space-like or light-like surfaces do not seem to be quite enough.
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Should one then include also the light-like partonic orbits to the what one calls 3-surface?
The resulting connected 3-surfaces would define analogs of Wilson loops. Could the conformal
equivalence class of the preferred extremal be unique without any additional conditions? If
so, one could get rid of the attribute ”preferred”. The fractal character of the many-sheeted
space-time however suggests that one can have this kind of uniqueness only in given length
scale resolution and that ”radiative corrections” due to the non-determinism are always
present.

These considerations show that the notion of preferred extremal is still far from being precisely
defined and it is not even clear whether the attribute ”preferred” is needed. If not then the question
is what are the extremals of Kähler action.

4.3.2 What is known about extremals?

A lot is is known about properties of extremals and just by trying to integrate all this understand-
ing, one might gain new visions. The problem is that all these arguments are heuristic and rely
heavily on physical intuition. The following considerations relate to the space-time regions having
Minkowskian signature of the induced metric. The attempt to generalize the construction also to
Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.

1. Hamilton-Jacobi coordinates for M4 (discussed in this chapter) define natural preferred co-
ordinates for Minkowskian space-time sheet and might allow to identify string world sheets
for X4 as those for M4. Hamilton-Jacobi coordinates consist of light-like coordinate m and
its dual defining local 2-plane M2 ⇢ M4 and complex transversal complex coordinates (w,w)
for a plane E2

x orthogonal to M2
x at each point of M4. Clearly, hyper-complex analyticity

and complex analyticity are in question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by
partonic 2-surfaces (string world sheets).

3. The quaternionic planes of octonion space containing preferred hyper-complex plane are
labelled by CP2, which might be called CPmod

2 [K52]. The identification CP2 = CPmod
2

motivates the notion of M8 ��M4 ⇥CP2 duality [K13]. It also inspires a concrete solution
ansatz assuming the equivalence of two di↵erent identifications of the quaternionic tangent
space of the space-time sheet and implying that string world sheets can be regarded as
strings in the 6-D coset space G2/SU(3). The group G2 of octonion automorphisms has
already earlier appeared in TGD framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the
CP2 = CPmod

2 conditions reduce to string model for partonic 2-surfaces in CP2 = SU(3)/U(2).
String model in both cases could mean just hypercomplex/complex analyticity for the coor-
dinates of the coset space as functions of hyper-complex/complex coordinate of string world
sheet/partonic 2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = q1 + Iq2, where qi is quaternion and I is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions.
Map preferred coordinates of H = M4 ⇥ CP2 to octonionic coordinate, form an arbitrary
octonion analytic function having expansion with real Taylor or Laurent coe�cients to avoid
problems due to non-commutativity and non-associativity. Map the outcome to a point of
H to get a map H ! H. This procedure is nothing but a generalization of Wick rotation to
get an 8-D generalization of analytic map.

2. Identify the preferred extremals of Kähler action as surfaces obtained by requiring the van-
ishing of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string
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world sheets would correspond to commutative sub-manifolds of the space-time surface and
of imbedding space and would emerge naturally. The ends of braid strands at partonic 2-
surface would naturally correspond to the poles of the octonion analytic functions. This
would mean a huge generalization of conformal invariance of string models to octonionic
conformal invariance and an exact solution of the field equations of TGD and presumably of
quantum TGD itself.

4.3.3 Basic ideas about preferred extremals

The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.
The challenge is to formulate this more precisely at the level of the preferred extremals of Kähler
action.

1. Almost topological QFT property means that the Kähler action reduces to Chern-Simons
terms assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in
the action density implied automatically if conserved Kähler current is proportional to the
instanton current with proportionality coe�cient some scalar function.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is
that the flow lines of these currents define global coordinates. This means that these currents
are Beltrami flows [B19] so that corresponding 1-forms J satisfy the condition J ^ dJ = 0.
These conditions are satisfied if

J = �r 

hold true for conserved currents. From this one obtains that  defines global coordinate
varying along flow lines of J .

3. A possible interpretation is in terms of local polarization and momentum directions defined
by the scalar functions involved and natural additional conditions are that the gradients of
 and � are orthogonal:

r� ·r = 0 ,

and that the  satisfies massless d’Alembert equation

r2 = 0

as a consequence of current conservation. If  defines a light-like vector field - in other words

r ·r = 0 ,

the light-like dual of � -call it �c- defines a light-like like coordinate and � and �c defines a
light-like plane at each point of space-time sheet.

If also � satisfies d’Alembert equation

r2� = 0 ,

also the current

K =  r�

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal
to time-lik plane defined by local light-like momentum direction.
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If � allows a continuation to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of space-time surface by  and its dual (defining hyper-complex
coordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to
provide space-time surface with four coordinates very much analogous with Hamilton-Jacobi
coordinates of M4.

This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J
defined Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection
with the mathematics of string models. The two complex coordinates assignable to the
Yangian of a�ne algebra would naturally relate to string world sheets and partonic 2-surfaces
and the highly non-trivial challenge is to identify them appropriately.

Hamilton-Jacobi coordinates for M4

The earlier attempts to construct preferred extremals [K5] led to the realization that so called
Hamilton-Jacobi coordinates (m,w) for M4 define its slicing by string world sheets parametrized
by partonic 2-surfaces. m would be pair of light-like conjugate coordinates associated with an
integrable distribution of planes M2 and w would define a complex coordinate for the integrable
distribution of 2-planes E2 orthogonal to M2. There is a great temptation to assume that these
coordinates define preferred coordinates for M4.

1. The slicing is very much analogous to that for space-time sheets and the natural question is
how these slicings relate. What is of special interest is that the momentum plane M2 can
be defined by massless momentum. The scaling of this vector does not matter so that these
planes are labelled by points z of sphere S2 telling the direction of the line M2 \ E3, when
one assigns rest frame and therefore S2 with the preferred time coordinate defined by the
line connecting the tips of CD. This direction vector can be mapped to a twistor consisting of
a spinor and its conjugate. The complex scalings of the twistor (u, u) ! �u, u/�) define the
same plane. Projective twistor like entities defining CP1 having only one complex component
instead of three are in question. This complex number defines with certain prerequisites a
local coordinate for space-time sheet and together with the complex coordinate of E2 could
serve as a pair of complex coordinates (z, w) for space-time sheet. This brings strongly in
mind the two complex coordinates appearing in the expansion of the generators of quantum
Yangian of quantum a�ne algebra [K61].

2. The coordinate  appearing in Beltrami flow defines the light-like vector field defining M2

distribution. Its hyper-complex conjugate would define  c and conjugate light-like direction.
An attractive possibility is that � allows analytic continuation to a holomorphic function of
w. In this manner one would have four coordinates for M4 also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M2(x) ⇢ M4 = M2

x ⇥ E2
x representing momentum plane and polarization plane

E2 ⇢ E2
x⇥T (CP2). The moduli space of planes E2 ⇢ E6 is 8-dimensional and parametrized

by SO(6)/SO(2) ⇥ SO(4) for a given E2
x. How can one achieve this selection and what

conditions it must satisfy? Certainly the choice must be integrable but this is not the only
condition.

Space-time surfaces as associative/co-associative surfaces

The idea that number theory determines classical dynamics in terms of associativity condition
means that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-
time. It took several trials before the recent form of this hypothesis was achieved.

1. Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the imbedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds
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to a preferred time axes (and rest frame) identified naturally as that connecting the tips of
CD. What modified gamma matrices mean depends on variational principle for space-time
surface. For volume action one would obtain induced gamma matrices. For Kähler action
one obtains something di↵erent. In particular, the modified gamma matrices do not define
vector basis identical with tangent vector basis of space-time surface.

2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kähler action span quaternionic sub-
space of the octonionic tangent space [K18]. A further condition is that each quaternionic
space defined in this manner contains a preferred hyper-complex subspace of octonions.

3. The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at
given point. For instance, for massless extremals these densities are proportional to light-like
vector so that the situation is degenerate and the space in question reduces to 2-D hyper-
complex sub-space since light-like vector defines plane M2.

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M2 ⇢ M4 for preferred extremals? For massless extremals [K5] this condition
would be true. The orthogonal decomposition T (X4) = M2 �? E2 can be defined at each
point if this is true. For massless extremals also the functions  and � can be identified.

2. One should answer also the following delicate question. Can M2 really depend on point x of
space-time? CP2 as a moduli space of quaternionic planes emerges naturally if M2 is same
everywhere. It however seems that one should allow an integrable distribution of M2

x such
that M2

x is same for all points of a given partonic 2-surface.

How could one speak about fixed CP2 (the imbedding space) at the entire space-time sheet
even when M2

x varies?

(a) Note first that G2 defines the Lie group of octonionic automorphisms and G2 action is
needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups
of G2 are related by G2 automorphism. Clearly, one must assign to each point of a
string world sheet in the slicing parameterizing the partonic 2-surfaces an element of
G2. One would have Minkowskian string model with G2 as a target space. As a matter
fact, this string model is defined in the target space G2/SU(3) having dimension D = 6
since SU(3) automorphisms leave given SU(3) invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units
and octonionic unit q1 with ”color isospin” I3 = 1/2 and ”color hypercharge” Y = �1/3
and its conjugate q1 with opposite color isospin and hypercharge.

(c) The CP2 point assigned with the quaternionic basis would correspond to the SU(3)
rotation needed to rotate the standard basis to this basis and would actually corre-
spond to the first row of SU(3) rotation matrix. Hyper-complex analyticity is the basic
property of the solutions of the field equations representing Minkowskian string world
sheets. Also now the same assumption is highly natural. In the case of string mod-
els in Minkowski space, the reduction of the induced metric to standard form implies
Virasoro conditions and similar conditions are expected also now. There is no need to
introduce action principle -just the hyper-complex analycitity is enough-since Kähler
action already defines it.

3. The WZW model inspired approach to the situation would be following. The parameteriza-
tion corresponds to a map g : X2 ! G2 for which g defines a flat G2 connection at string
world sheet. WZW type action would give rise to this kind of situation. The transition
G2 ! G2/SU(3) would require that one gauges SU(3) degrees of freedom by bringing in
SU(3) connection. Similar procedure for CP2 = SU(3)/U(2) would bring in SU(3) valued

http://en.wikipedia.org/wiki/G2_(mathematics)
http://en.wikipedia.org/wiki/WZW_model
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chiral field and U(2) gauge field. Instead of introducing these connections one can simply
introduce G2/SU(3) and SU(3)/U(2) valued chiral fields. What this observation suggests
that this ansatz indeed predicts gluons and electroweak gauge bosons assignable to string
like objects so that the mathematical picture would be consistent with physical intuition.

The two interpretations of CP2

An old observation very relevant for what I have called M8 �H duality [K13] is that the moduli
space of quaternionic sub-spaces of octonionic space (identifiable as M8) containing preferred
hyper-complex plane is CP2. Or equivalently, the space of two planes whose addition extends
hyper-complex plane to some quaternionic subspace can be parametrized by CP2. This CP2

can be called it CPmod
2 to avoid confusion. In the recent case this would mean that the space

E2(x) ⇢ E2
x ⇥ T (CP2) is represented by a point of CPmod

2 . On the other hand, the imbedding of
space-time surface to H defines a point of ”real” CP2. This gives two di↵erent CP2s.

1. The highly suggestive idea is that the identification CPmod
2 = CP2 (apart from isometry) is

crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to CP2 would fix the local polarization plane completely. This condition for E2(x)
would be purely local and depend on the values of CP2 coordinates only. Second condition
for E2(x) would involve the gradients of imbedding space coordinates including those of CP2

coordinates.

2. The conditions that the planes M2
x form an integrable distribution at space-like level and that

M2
x is determined by the modified gamma matrices. The integrability of this distribution for

M4 could imply the integrability for X2. X4 would di↵er from M4 only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M2s.

Does this mean that one can begin from vacuum extremal with constant values of CP2

coordinates and makes them non-constant but allows to depend only on transversal degrees
of freedom? This condition is too strong even for simplest massless extremals for which CP2

coordinates depend on transversal coordinates defined by ✏ ·m and ✏ · k. One could however
allow dependence of CP2 coordinates on light-like M4 coordinate since the modification of
the induced metric is light-like so that light-like coordinate remains light-like coordinate in
this modification of the metric.

Therefore, if one generalizes directly what is known about massless extremals, the most
general dependence of CP2 points on the light-like coordinates assignable to the distribu-
tion of M2

x would be dependence on either of the light-like coordinates of Hamilton-Jacobi
coordinates but not both.

4.3.4 What could be the construction recipe for the preferred extremals
assuming CP

2

= CPmod

2

identification?

The crucial condition is that the planes E2(x) determined by the point of CP2 = CPmod
2 identifica-

tion and by the tangent space of E2
x ⇥CP2 are same. The challenge is to transform this condition

to an explicit form. CP2 = CPmod
2 identification should be general coordinate invariant. This

requires that also the representation of E2 as (e2, e3) plane is general coordinate invariant suggest-
ing that the use of preferred CP2 coordinates - presumably complex Eguchi-Hanson coordinates
- could make life easy. Preferred coordinates are also suggested by number theoretical vision. A
careful consideration of the situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of
X4 but not in general identical with the tangent space: this would be the case only if the action
were 4-volume. I will use the notation Tm

x (X4) about the modified tangent space and call the
vectors of Tm

x (X4) modified tangent vectors. I hope that this would not cause confusion.

CP2 = CPmod
2 condition

Quaternionic property of the counterpart of Tm
x (X4) allows an explicit formulation using the

tangent vectors of Tm
x (X4).
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1. The unit vector pair (e2, e3) should correspond to a unique tangent vector of H defined
by the coordinate di↵erentials dhk in some natural coordinates used. Complex Eguchi-
Hanson coordinates [L1] are a natural candidate for CP2 and require complexified octonionic
imaginary units. If octonionic units correspond to the tangent vector basis of H uniquely,
this is possible.

2. The pair (e2, e3) as also its complexification (q1 = e2 + ie3, q1 = e2 � ie3) is expressible as a
linear combination of octonionic units I2, ...I7 should be mapped to a point of CPmod

2 = CP2

in canonical manner. This mapping is what should be expressed explicitly. One should
express given (e2, e3) in terms of SU(3) rotation applied to a standard vector. After that
one should define the corresponding CP2 point by the bundle projection SU(3) ! CP2.

3. The tangent vector pair

(@wh
k, @wh

k)

defines second representation of the tangent space of E2(x). This pair should be equivalent
with the pair (q1, q1). Here one must be however very cautious with the choice of coordinates.
If the choice of w is unique apart from constant the gradients should be unique. One can use
also real coordinates (x, y) instead of (w = x+ iy, w = x� iy) and the pair (e2, e3). One can
project the tangent vector pair to the standard vielbein basis which must correspond to the
octonionic basis

(@xh
k, @yh

k) ! (@xh
keAk eA, @yh

keAk )eA) $ (e2, e3) ,

where the eA denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (e2, e3) derived from the knowledge of CP2

projection.

Formulation of quaternionicity condition in terms of octonionic structure constants

One can consider also a formulation of the quaternionic tangent planes in terms of (e2, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic
algebra. The expressions for octonionic resp. quaternionic structure constants can be found at
[A17] resp. [A20].

1. The ansatz is

{Ek} = {1, I1, E2, E3} ,

E2 = E2ke
k ⌘

7X
k=2

E2ke
k , E3 = E3ke

k ⌘
7X

k=2

E3ke
k ,

|E2| = 1 , |E3| = 1 . (4.3.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle [A17]
gives

f1klE2k = E3l , f1klE3k = �E2l , fklrE2kE3l = �r1 . (4.3.2)

Here the indices are raised by unit metric so that there is no di↵erence between lower and
upper indices. Summation convention is assumed. Also the contribution of the real unit is
present in the structure constants of third equation but this contribution must vanish.

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Quaternions
http://en.wikipedia.org/wiki/Octonion
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3. The conditions are linear and quadratic in the coe�cients E2k and E3k and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coe�cient matrix acting on (E2, E3) is of the form✓

f1 1
�1 f1

◆
,

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due
to the highly symmetric properties of the structure constants. In fact the equations can be
written as eigen conditions

f1 � (E2 ± iE3) = ⌥i(E2 ± iE3) ,

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I1 analogous to color hyper charge. Both values of color hyper charged are obtained.

Explicit expression for the CP2 = CPmod
2 conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like (1, 1, 3, 3) under
SU(3). Note the analogy of triplet with color triplet of quarks. One can write complexified
basis as (1, e1, (q1, q2, q3), (q1q2, q3)). The expressions for complexified basis elements are

(q1, q2, q3) =
1p
2
(e2 + ie3, e4 + ie5, e6 + ie7) .

These options can be seen to be possible by studying octonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind of line
can be used to form pair of complexified unit and its conjugate. In the tangent space of
M4 ⇥ CP2 the basis vectors q1, and q2 are mixtures of E2

x and CP2 tangent vectors. q3
involves only CP2 tangent vectors and there is a temptation to interpret it as the analog of
the quark having no color isospin.

2. The quaternionic basis is real and must transform like (1, 1, q1, q1), where q1 is any quark
in the triplet and q1 its conjugate in antitriplet. Having fixed some basis one can perform
SU(3) rotations to get a new basis. The action of the rotation is by 3 ⇥ 3 special unitary
matrix. The over all phases of its rows do not matter since they induce only a rotation in
(e2, e3) plane not a↵ecting the plane itself. The action of SU(3) on q1 is simply the action
of its first row on (q1, q2, q3) triplet:

q1 ! (Uq)1 = U11q1 + U12q2 + U13q3 ⌘ z1q1 + z2q2 + z3q3

= z1(e2 + ie3) + z2(e4 + ie5) + z3(e6 + ie7) . (4.3.3)

The triplets (z1, z2, z3) defining a complex unit vector and point of S5. Since overall phase
does not matter a point of CP2 is in question. The new real octonion units are given by the
formulas

e2 ! Re(z1)e2 +Re(z2)e4 +Re(z3)e6 � Im(z1)e3 � Im(z2)e5 � Im(z3)e7 ,

e3 ! Im(z1)e2 + Im(z2)e4 + Im(z3)e6 +Re(z1)e3 +Re(z2)e5 +Re(z3)e7 .

(4.3.4)

For instance the CP2 coordinates corresponding to the coordinate patch (z1, z2, z3) with
z3 6= 0 are obtained as (⇠1, ⇠2) = (z1/z3, z2/z3).

http://en.wikipedia.org/wiki/Octonion
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Using these expressions the equations expressing the conjecture CP2 = CPmod
2 equivalence can

be expressed explicitly as first order di↵erential equations. The conditions state the equivalence

(e2, e3) $ (@xh
keAk eA, @yh

keAk eA) , (4.3.5)

where eA denote octonion units. The comparison of two pairs of vectors requires normalization
of the tangent vectors on the right hand side to unit vectors so that one takes unit vector in the
direction of the tangent vector. After this the vectors can be equated. This allows to expresses
the contractions of the partial derivatives with vielbein vectors with the 6 components of e2 and
e3. Each condition gives 6+6 first order partial di↵erential equations which are non-linear by the
presence of the overal normalization factor for the right hand side. The equations are invariant
under scalings of (x, y). The very special form of these equations suggests that some symmetry is
involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamilton-Jacobi coordinates for M4 and Eguchi-Hanson complex co-
ordinates in which SU(2)⇥ U(1) is represented linearly for CP2. These coordinates are preferred
because they carry deep physical meaning.

Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP2 = CPmod
2

conditions one has what one might call string model with 6-dimensional G2/SU(3) as targent
space. The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable as a point
of G2/SU(3) defining what one means with standard quaternionic plane at given point of string
world sheet. The hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and par-
tonic 2-surfaces central for the proposed mathematical applications of TGD [K23, K24, K50, K63].
This duality suggests that the solutions to the CP2 = CPmod

2 conditions could reduce to holomor-
phy with respect to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions.
The dependence on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regarded as dual
string models inG2/SU(3) and SU(3)/U(2) and also to string model inM4 andX4! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-
surfaces. TGD seems to yield an inflation of string models! This not actually surprising since the
slicing of space-time sheets by string world sheets and partonic 2-surfaces implies automatically
various kinds of maps having interpretation in terms of string orbits.

4.4 Representations for WCW gamma matrices in terms of
super-symplectic charges at light cone boundary

During years I have considered several variants for the representation of WCW gamma matrices
and each of these proposals has had some weakness.

1. One question has been whether the Noether currents assignable to WCW Hamiltonians
should play any role in the construction or whether one can use only the generalization of flux
Hamiltonians. Magnetic flux Hamiltonians do not refer to the space-time dynamics implying
genuine 2-dimensionality, which is a catastrophe. If the sum of the magnetic and electric
flux Hamiltonians and the weak form of self duality is assumed e↵ective 2-dimensionality
is achieved. The challenge is to identify the super-partners of the flux Hamiltonians and
postulate correct anti-commutation relations for the induced spinor fields to achieve anti-
commutation to flux Hamiltonians.

2. In the original proposal for WCW gamma matrices the covariantly constant right handed
spinors played a key role. This led to interpretational problems with quarks. Are they needed
at all or do leptons and quarks define somehow equivalent representations? I discovered only
recently a brutally simple but deadly objection against this approach: the resulting WCW
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gamma matrices do not generate all WCW spinors from Fock vacuum. Therefore all modes
of the induced spinor fields must be used.

The latter objection forced to realize that nothing is changed if one replaces the covariantly
constant right handed neutrino with the collection of quark spinor modes qn resp. leptonic spinor
modes Ln multiplied by the contractions JA+ = jAk�k resp. its conjugate JA� = jAk�k. It is
essential that only of these contractions is used for a given H-chirality.

1. If the anti-commutator of the spinor fields is or form J = J↵�✏↵��2(x, y) at X2 for magnetic
flux Hamiltonians and appropriate generalization of this fro the sum of magnetic and electric
flux Hamiltonians, the ”half-Poisson bracket” @kHAJkl@lHB from the quark spinor field and
its conjugate as anti-commutator from the leptonic spinor field can combine to the full Poisson
bracket if the remaining factors are identical.

2. This happens if the quark modes and lepton-like modes are in 1-1 correspondence and the
contractions of the eigenmodes resulting in the contraction satisfy qm�0qn = Lm�0Ln = �mn.
The resulting Hamiltonians define an X2-local algebra: that this extension is needed became
obvious already earlier. A stronger condition is that the spinors can be expressed in terms
of scalar function bases {�m} so that one would have qm,i = {�m}qi and Lm,i = {�m}Li so
that one would assign to the super-currents the local Hamiltonians �mHA.

3. One could of course still argue that it is questionable to use sum of quark and lepton gamma
matrices since this the resulting objects to not have a well defined fermion number and cannot
be used to generate physical states from vacuum. How seriously this argument should be
taken is not clear to me at this moment. One could of course consider also a scenario in
which one divides leptonic (or quark) modes to two classes analogous to quark and lepton
modes and uses JA+ resp. JA� for these two classes.

In any case, the recent view is that all modes of the induced spinor fields must be used,
that lepton-quark degeneracy is absolutely essential for the construction of WCW geometry, and
that the original super-symmetrization of the flux Hamiltonians combined with weak electric-
magnetic duality is the correct approach. There are also fermionic Noether charges and their
super counterparts implied by the criticality but these can be assigned with zero modes.

This section represents both the earlier version of the construction of WCW gamma matrices
and the construction introducing explicitly the notion of finite measurement resolution. The mo-
tivation for the latter option is that if the number the modes of modified Dirac operator is finite,
strictly local anti-commutation relations fail unless one restricts the set of points included to that
corresponding to number theoretic braid. In the following integral expressions for WCW Hamil-
tonians and their super-counterparts are derived first. After that the motivations for replacing
integrals with sums are discussed and the expressions for Hamiltonians and super Hamiltonians
are derived.

4.4.1 Magnetic flux representation of the super-symplectic algebra

In order to derive representation of WCW gamma matrices and super charges it is good to restate
the basic facts about the magnetic flux representation of WCW gamma matrices using the original
approach based on 2-dimensional integrals.

4.4.2 Quantization of the modified Dirac action and configuration space
geometry

The quantization of the modified Dirac action involves a fusion of various number theoretical ideas.
The naive approach would be based on standard canonical quantization of induced spinor fields by
posing anti-commutation relations between  and canonical momentum density @L/@(@t ).
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Generalized magnetic and electric fluxes

Isometry invariants are just a special case of fluxes defining natural coordinate variables for WCW.
Canonical transformations of CP2 act as U(1) gauge transformations on the Kähler potential of
CP2 (similar conclusion holds at the level of �M4

+ ⇥ CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fs,n,k defining the Lorentz covariant function basis HA, A ⌘ (a, s, n, k) at the light cone
boundary: HA = Ha ⇥ f(s, n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind magnetic or electric flux via the following
formulas:

Qm/e(HA|X2) =

Z
X2

HAJm/e . (4.4.1)

Here the magnetic (electric) flux Jm (Je) denotes the flux associated with induced Kähler field and
its dual which is well-defined since X2 is part of 4-D space-time surface.

The flux Hamiltonians

Qi(HA|X2) = Qi(HA|X2) , A ⌘ (a, s, n, k) (4.4.2)

provide a representation of WCW Hamiltonians as far as the ”kinetic” part of Kähler form is
considered.

Anti-commutation relations between oscillator operators associated with same par-
tonic 2-surface

The construction of WCW gamma matrices leads to the anti-commutation relations given by

{ (x)�0, (x)} = [Je + Jm)�2x,y ,

Je =

Z
J03pg4 . (4.4.3)

Kähler magnetic flux Jm = ✏↵�J↵�
p
g2 has no dependence on the induced metric.

If the weak- form of the electric-magnetic duality holds true, Kähler electric flux relates to it
via the formula

J03pg4 = KJ12 ,

where K is symplectic invariant and identifiable in terms of Kähler coupling strength from classical
charge quantization condition for Kähler electric flux. The condition that the flux of F 03 =
(~/gK)J03 defining the counterpart of Kähler electric field equals to the Kähler charge gK gives
the condition K = g2K/~ = 4⇡↵K , where gK is Kähler coupling constant. Within experimental
uncertainties one has ↵K = g2K/4⇡~0 = ↵em ' 1/137, where ↵em is finite structure constant in
electron length scale and ~0 is the standard value of Planck constant. The arguments leading to the
identification ✏± 1 at the opposite boundaries of CD are discussed in [K22] , [L4] . An alternative
identification is as ✏ = 0 but predicts that WCW is trivial in M4 degrees of freedom if Kähler
function reduces to Chern-Simons terms.

The general form of the anti-commutation relations is therefore

{ (x)�0, (x)} = (1 +K)J�2x,y . (4.4.4)

What is nice that at the limit of vacuum extremals the right hand side vanishes when both J and
J1 vanish so that spinor fields become non-dynamical. One can criticize the non-vanishing of the
anti-commutator for vacuum extremals of Kähler action.
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For the latter option the fermionic counterparts of local flux Hamiltonians can be written in
the form

HA,±,n = ✏q(A,⌥, n)HA,±,q,n + ✏L(A,±)HA,⌥,L,n ,

HA,+,q,n =

I
 JA

+qnd
2x ,

HA,�,q,n =

I
qnJ

A
� d

2x ,

HA,�,L,n =

I
 JA

+Lnd
2x ,

HA,+,L,n =

I
LnJ

A
� d

2x ,

JA
+ = jAk�k , JA

� = jAk�k . (4.4.5)

The commutative parameters ✏q(A,±, n) resp. ✏L(A,±, n) are assumed to carry quark resp. lepton
number opposite to that of HA,⌥,q,n resp. HA,⌥,L,n and satisfy ✏i(A,+, n)✏i(A,�, n) = 1. One
encounters a hierarchy discrete algebras satisfying this condition in the construction of a symplectic
analog of conformal quantum field theory required by the construction of quantum TGD [K43] .
Associativity condition fixes uniquely the commutative multiplication of these units and analogs
of plane waves with discrete momentum are in question.

Suppose that there is a one-one correspondence between quark modes and leptonic modes is
satisfied and the label n decomposes as n = (m, i), where n labels a scalar function basis and i
labels spinor components. This would give

qn = qm,i = �mqi ,

Ln = Lm,i = �mLi ,

qi�
0qj = Li�

0Lj = gij . (4.4.6)

Suppose that the inner products gij are constant. The simplest possibility is gij = �ij Under these
assumptions the anti-commutators of the super-symmetric flux Hamiltonians give flux Hamiltoni-
ans.

{HA,+,n, HA,�,n} = gij

I
�m�nHAJd

2x . (4.4.7)

The product of scalar functions can be expressed as

�m�n = c k
mn�k . (4.4.8)

Note that the notion of symplectic QFT [K12] led to a scalar function algebra of similar kind
consisting of phase factors and there excellent reasons to consider the possibility that there is a
deep connection with this approach.

One expects that the symplectic algebra is restricted to a direct sum of symplectic algebras
localized to the regions where the induced Kähler form is non-vanishing implying that the algebras
associated with di↵erent region form to a direct sum. Also the contributions to WCW metric
are direct sums. The symplectic algebras associated with di↵erent region can be truncated to
finite-dimensional spaces of symplectic algebras associated with the regions in question. As far
as coordinatization of the reduced WCW is considered, these symplectic sub-spaces are enough.
These truncated algebras naturally correspond to the hyper-finite factor property of the Cli↵ord
algebra of WCW.
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Generalization of WCW Hamiltonians and anti-commutation relations between flux
Hamiltonians belonging to di↵erent ends of CD

This picture requires a generalization of the view about configuration space Hamiltonians since
also the interaction term between the ends of the line is present not taken into account in the
previous approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [K10, K9] , [L5]

Q(HA) =

Z
HAJd

2x . (4.4.9)

works for the kinetic terms only since J is not expectred to be the same at the ends of the
line.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One
starts from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B

as JA,B ⌘ Q({HA, HB}). One has @HA/@tB = {HB , HA}, where tB is the parameter asso-
ciated with the exponentiation of HB . The inverse JAB of JA,B = @HB/@tA is expressible
as JA,B = @tA/@HB . From these formulas one can deduce by using chain rule that the
bracket {Q(HA), Q(HB} = @tCQ(HA)JCD@tDQ(HB) of flux Hamiltonians equals to the
flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the inter-
action term. The symplectic conjugation associated with the interaction term permutes the
WCW coordinates assignable to the ends of the line. One should reduce this apparently non-
local symplectic conjugation (if one thinks the ends of line as separate objects) to a non-local
symplectic conjugation for �CD ⇥ CP2 by identifying the points of lower and upper end of
CD related by time reflection and assuming that conjugation corresponds to time reflection.
Formally this gives a well defined generalization of the local Poisson brackets between time
reflected points at the boundaries of CD. The connection of Hermitian conjugation and time
reflection in quantum field theories is is in accordance with this picture.

3. Perhaps the only manner to proceed is to assign to the flux Hamiltonian also a part obtained
by the replacement of the flux integral over X2 with an integral over the projection of X2 to a
sphere S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as
two varieties corresponding to homologically trivial and non-trivial spheres. The projection
is defined as by the geodesic line orthogonal to S2 and going through the point of X2. The
hierarchy of Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a
unique sphere S2 as a sphere for which the radial coordinate rM or the light-cone boundary
defined uniquely is constant: this radial coordinate corresponds to spherical coordinate in
the rest system defined by the time-like vector connecting the tips of CD. Either spheres or
possibly both of them could be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [K12] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only
that the S2 coordinates of the projection are algebraic and that these coordinates correspond
to the discretization of S2 in terms of the phase angles associated with ✓ and �.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int = (1 +K)

Z
S2
±

HAX�2(s+, s�)d
2s± = (1 +K)

Z
P (X2

+)\P (X2
�)

@(s1, s2)

@(x1
±, x

2
±)

d2x± .(4.4.10)
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Here the Poisson brackets between ends of the line using the rules involve delta function
�2(s+, s�) at S2 and the resulting Hamiltonians can be expressed as a similar integral of
H[A,B] over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = J+
kl + J�

kl ,

Jkl
± = @↵s

k@�s
lJ↵�

± . (4.4.11)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of
Kähler form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same
should hold true now. In the recent case JA,B would contain an interaction term defined
in terms of flux Hamiltonians and the previous argument should go through also now by
identifying Hamiltonians as sums of two contributions and by introducing the doubling of
the coordinates tA.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that
one must add to the super-Hamiltonian completely analogous term obtained by replacing
J with X@(s1, s2)/@(x1

±, x
2
±). Besides the anti-commutation relations defining correct anti-

commutators to flux Hamiltonians, one should pose anti-commutation relations consistent
with the anti-commutation relations of super Hamiltonians. In these anti-commutation rela-
tions J�2(x, y) would be replaced with X�2(s+, s�). This would guarantee that the oscillator
operators at the ends of the line are not independent and that the resulting Hamiltonian re-
duces to integral over either end for H[A,B].

4.4.3 Expressions for WCW super-symplectic generators in finite mea-
surement resolution

The expressions of WCW Hamiltonians and their super counterparts just discussed were based on
2-dimensional integrals. This is problematic for several reasons.

1. In p-adic context integrals do not makes sense so that this representation fails in p-adic
context (for pe-adic numbers see [A31] ). Sums would be more appropriate if one wants
number theoretic universality at the level of basic formulas.

2. The use of sums would also conform with the notion of finite measurement resolution having
discretization in terms of intersections of X2 with number theoretic braids as a space-time
correlate.

3. Number theoretic duality suggests a unique realization of the discretization in the sense that
only the points of partonic 2-surfaceX2 whose �M4

± projections commute in hyper-octonionic
sense and thus belong to the intersections of the projection PM4(X2) with radial light-like
geodesics M± representing intersections of M2 ⇢ M4 ⇢ M8 with �M4

± ⇥ CP2 contribute to
WCW Hamiltonians and super Hamiltonians and therefore to the WCW metric.

Clearly, finite measurement resolution seems to be an unavoidable aspect of the geometrization
of WCW as one can expect on basis of the fact that WCW Cli↵ord algebra provides representation
for hyper-finite factors of type II1 whose inclusions provide a representation for the finite mea-
surement resolution. This means that WCW can be represented as a finite-dimensional space in
arbitrary precise approximation so that also also configuration Cli↵ord algebra and WCW spinor
fields becomes finite-dimensional.

The modification of anti-commutation relations to this case is
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{ (xm)�0, (xn)} = (1 +K)J�x
m

,x
n

. (4.4.12)

Note that the constancy of �0 implies a complete symmetry between the two points. The number
of points must be the maximal one consistent with the Kronecker delta type anti-commutation
relations so that information is not lost.

The question arises about the choice of the points xm. This choice should general coordinate
invariant. The number theoretic vision leads to the notion of number theoretic braid defined as the
set of points common to real and p-adic variant of X2. The points of the number theoretic braid
are excellent candidates for points xn. The p-adic variant exists only if X2 is defined by rational
functions with coe�cients which are possibly algebraic and thus make sense both in real and p-
adic sense. These points belong to the algebraic extension of rational numbers appearing in the
representation of X2 as an algebraic surface but one can consider quite generally the possibility
that the points of the number theoretic braid are rational or in a finite algebraic extension of
rationals. What is important that if one restricts the consideration to rational points this criterion
makes sense even if X2 is not algebraic. In the generic case one can expect that the number of
these points is finite.

4.4.4 WCW geometry and hierarchy of inclusions of hyper-finite factors
of type II

1

The WCW metric defined as anti-commutators of the WCW gamma matrices is extremely degen-
erate since it e↵ectively corresponds to a quadratic form in N -dimensional space, where Nm is the
total number of the eigenmodes of DK . Since two Hamiltonians whose values and corresponding
Killing vector fields co-incide at the points of B are equivalent for given ray M±, it is natural to
pose a cuto↵ in the number of Hamiltonians used for the representation of reduced WCW in given
region inside which induced Kähler form is non-vanishing. The natural manner to pose this cuto↵
is by ordering the representations with respect to dimension and eigenvalue of Casimir operator
for the irreducible representations of SO(3)⇥ SO(4) in case of M8 and for the representations of
SO(3)⇥ SU(3) in case of H.

This boils down to a hierarchy of approximate representations of the WCW as Kähler manifold
with spinor structure with a truncation of the Cli↵ord algebra to a finite dimensional Cli↵ord
algebra. This is in spirit with the proposed interpretation of the inclusion sequence of hyper-finite
factors of type II1 and with the very notion of hyper-finiteness.

A rather concrete connection of WCW geometry with generalized eigenvalue spectrum of the
Kähler-Dirac (K-D) operator and basic quantum physics suggests itself if the Dirac determinant
can be identified as exponent of Kähler action. One must however be however aware of following
points.

1. It would be exaggeration to say that Kähler function emerges from K-D action. The reason
is that K-D gamma matrices appear in K-D action and internal consistency requires that an
extremal of K-D action is in question. Hence it seems that Khler action and K-D action are in
completely democratic position and one can wonder whether the possible connection actually
gives any profound insights or means anything practical. It could only create technical
challenges and one can claim that the definition of exponent of vacuum functional reducing
to exponent of Chern-Simons terms looks much more practical and elegant.

2. Kähler function corresponds to Kähler action in Euclidian space-time regions assignable to
the lines of generalized Feynman diagrams. It is not clear whether one represent also the
Kähler action from Minkowskian regions in this manner.

3. The definition of the Dirac determinant is far from obvious. The spectrum of the Kähler Dirac
(KD) operator was originally identified in terms of generalized eigenvalues. The identification
coming first in mind would be in terms of conformal weights assignable to the modes of KD
operator. The experience with the string models suggests that these conformal weights are
integer valued, which would mean that the multiplicative contribution from given string world
sheet is constant and cannot depend on 3-surface at all!
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The boundary conditions at the string curves at the space-like ends of space-time surface
however give algebraic form of Dirac equation with the analog of Higgs coupling in algebraic
form (pk�k + �n) = 0, with pk identifiable as four-momentum of fermionic line emanating
from partonic 2-surface. The normal component �n (in time direction) of the vector defined
by K-D gamma matrices defines the analog of Higgs vacuum expectation value, and could be
covariantly constant along string curve for a suitable choice of string coordinates. h2 ⌘ (�n)2

could be interpreted as ground state conformal weight. In p-adic mass calculations ground
state conformal weight must be negative half-odd integer and the time-like character of �n

could explain this. h2 could have p-adically small deviation from half-odd integer value and
give rise to a Higgs like additional contribution to the conformal weights.

Since spinor modes e↵ectively propagate as particles with momentum pk along braid strands
one could argue that one must include h2 to the integer valued conformal weight so that
the square of Dirac determinant would be defined as as the product of conformal weights
h(n) = h2 + nM2

0 , M0 the mass scale determined by CP2 radius.

The resulting determinant - if well-defined - would depend on space-time surface and would
be obtained as a perturbation from the determinant assignable to Riemann Zeta. Modulus
squared for the exponent of vacuum functional would be analogous to the square of Dirac
determinant associated with a massless fermion with eigenvalues of m2 replaced with h(n).
The overall determinant would be product over the determinants coming from various strings
and possibly also from he partonic 2-surfaces.

If one accepts this questionable proposal, one can relate WCW geometry directly to elementary
particle physics. For instance, from the general expression of Kähler metric in terms of Kähler
function

Gkl = @k@lK =
@k@lexp(K)

exp(K)
� @kexp(K)

exp(K)
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exp(K)
, (4.4.13)

and from the expression of exp(K) =
Q

i �i as the product of of finite number of eigenvalues of
DK(X3), the expression
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for the WCW metric follows. Here complex coordinates refer to the complex coordinates of WCW.
A good candidate for these complex coordinates are the complex coordinates of S2⇥S, S = CP2

or E4, for the points of B so that a close connection with the geometry of imbedding space
is obtained. Once these coordinates have been specified G can be contracted with the Killing
vector fields of WCW isometries defining the coordinates for the truncated WCW. By studying
the behavior of eigenvalue spectrum under small deformations of X3

l by symplectic transformations
of �CD ⇥ S the components of G can be estimated.



Chapter 5

Does the Modified Dirac Equation
Define the Fundamental Action
Principle?

5.1 Introduction

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the Kähler-Dirac action is an excellent candidate in this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional
of the theory having interpretation as product of the exponent of Kähler function of world of
classical worlds (WCW) identified as Kähler action coming from Euclidian space-time regions and
the exponent of imaginary contribution identified as Kähler action from Minkowskian regions. It
seems however that the most one can demand is that Dirac determinant equals to the exponent of
Kähler action. The reason is that Kähler-Dirac gamma matrices involving canonical momentum
densities for Kähler action appear in modified (Kähler-Dirac) action.

5.1.1 What are the basic equations of quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two
kinds of equations at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals
of Kähler action. Preferred extremals are quantum critical in the sense that second varia-
tion vanishes for critical deformations representing zero modes. This condition guarantees
that corresponding fermionic currents linear in deformations are conserved. There is infinite
hierarchy of these currents and they define fermionic counterparts for zero modes.

Zero energy ontology (ZEO) was motivated by the non-determinism of Kähler action sug-
gesting that it di�cult to assign unique preferred extremal to given 3-surface in positive
energy ontology. In ZEO one can consider the possibility that the attribute ”preferred” is
not needed in given measurement resolution since the basic objects are now either pairs of
space-like 3-surfaces at the ends of CD or these plus parton orbits (light-like 3-surfaces at
which the signature of the induced metric changes).

2. The purely quantal equations are associated with the representations of various super-conformal
algebras and with the Kähler-Dirac equation. The requirement that there are deformations of
the space-time surface - actually infinite number of them - giving rise to conserved fermionic
charges implies quantum criticality at the level of Kähler action in the sense of critical de-
formations.
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3. The precise forms of Kähler action and Kähler Dirac equation at e↵ective and real boundaries
(boundary conditions) are not completely fixed without further input. For Kähler action the
inputs are Lagrange multiplier terms at boundary like 3-surfaces expressing weak form of
electric-magnetic duality and the equality of quantal and classical charges in Cartan algebra
required by quantum classical correspondence (QCC). These states with well-defined classical
charges might correspond to outcomes of state function reduction implying localization in
WCW.

The condition that fermionic propagator is non-trivial forces the addition of Chern-Simons
Dirac term at the partonic orbits at which the signature of the induced metric changes.
Supersymmetry requires the addition of Chern-Simons term at partonic orbits to Kähler
action. This means explicit breaking of CP and T. The e↵ective reduction of both Kähler
and Kähler-Dirac equation to boundary terms means enormous calculational simplification
and is consistent with the vision inspired by twistor approach [K44].

4. At the level of WCW spinor fields describing zero energy states quantal equations involve
also generalized Feynman rules for M -matrix generalizing S-matrix to a ”complex square
root” of density matrix and defined by time-like entanglement coe�cients between positive
and negative energy parts of zero energy states is certainly the basic goal of quantum TGD.

5. The notion of weak electric-magnetic duality leads to a detailed understanding of how TGD
reduces to almost topological quantum field theory. If Kähler current defines 4-D Beltrami
flow, it is possible to find a gauge in which Coulomb contribution to Kähler action vanishes so
that it reduces to Chern-Simons term. If light-like 3-surfaces and ends of space-time surface
are extremals of Chern-Simons action also e↵ective 2-dimensionality is realized. The condi-
tion that the theory reduces to almost topological QFT and the hydrodynamical character of
field equations leads to a detailed ansatz for the general solution of field equations and also for
the solutions of the modified Dirac equation relying on the notion of Beltrami flow for which
the flow parameter associated with the flow lines defined by a conserved current extends to
a global coordinate. This makes the theory is in well-defined sense completely integrable.
Direct connection with massless theories emerges: every conserved Beltrami currents corre-
sponds to a pair of scalar functions with the first one satisfying massless d’Alembert equation
in the induced metric. The orthogonality of the gradients of these functions allows interpre-
tation in terms of polarization and momentum directions. The Beltrami flow property can
be also seen as one aspect of quantum criticality since the conserved currents associated with
critical deformations define this kind of pairs.

6. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that
Planck constant could have large values in both astrophysical systems involving dark mat-
ter and also in biology. The realization of the hierarchy in terms of the singular coverings
and possibly also factor spaces of CD and CP2 emerged from consistency conditions. It
however seems that TGD actually predicts this hierarchy of covering spaces. The extreme
non-linearity of the field equations defined by Kähler action means that the correspondence
between canonical momentum densities and time derivatives of the imbedding space co-
ordinates is 1-to-many. This leads naturally to the introduction of the covering space of
CD ⇥ CP2, where CD denotes causal diamond defined as intersection of future and past
directed light-cones.

At the level of WCW there is the generalization of the Dirac equation, which can be regarded
as a purely classical Dirac equation. The modified Dirac operators associated with quarks and
leptons carry fermion number but the Dirac equations are well-defined. An orthogonal basis of
solutions of these Dirac operators define in zero energy ontology a basis of zero energy states. The
M -matrices defining entanglement between positive and negative energy parts of the zero energy
state define what can be regarded as analogs of thermal S-matrices. The M-matrices associated
with the solution basis of the WCW Dirac equation define by their orthogonality unitary U-matrix
between zero energy states. This matrix finds the proper interpretation in TGD inspired theory of
consciousness. WCW Dirac equation as the analog of super-Virasoro conditions for the ”gamma
fields” of superstring models defining super counterparts of Virasoro generators was the main focus
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during earlier period of quantum TGD but has not received so much attention lately and will not
be discussed in this chapter.

Quantum classical correspondence (QCC) requires a coupling between quantum and classical
and this coupling should also give rise to a generalization of quantum measurement theory. The
big question mark is how to realize this coupling.

1. The proposal discussed in this chapter is that the addition of a measurement interaction
term to the Kähler-Dirac action could do the job, solve a handful of problems of quantum
TGD and unify various visions about the physics predicted by quantum TGD. This proposal
implies QCC at the level of Kähler-Dirac action and Kähler action.

2. Another possibility is that QCC is realized at the level of WCW Dirac operator and Kähler-
Dirac operator contains only interior term. The vanishing of the normal component of fermion
current replaces Chern-Simons Dirac operator at various boundary like surfaces. I have pro-
posed that WCW spinor fields with given quantum charges in Cartan algebra are superposi-
tions of space-time surfaces with same classical charges. A stronger form of QCC at the level
of WCW would be that classical correlation functions for various geometric observables are
identical with quantal correlation functions.

QCC could be realized at the level of WCW by putting it in by hand. One can of course
consider also the possibility that the equality of quantal and classical Cartan charges is real-
ized by adding constraint terms realized using Lagrange multipliers at the space-like ends of
space-time surface at the boundaries of CD. This procedure would be very much like the ther-
modynamical procedure used to fix the average energy or particle number of the the system
with Lagrange multipliers identified as temperature or chemical potential. Since quantum
TGD in zero energy ontology (ZEO) can be regarded as square root of thermodynamics, the
procedure looks logically sound.

5.1.2 Kähler-Dirac equation for induced classical spinor fields

The basic vision is that WCW geometry reduces to the second quantization of induced spinor fields.
This means that WCW gamma matrices are linear combinations of fermionic oscillator operators
and the Dirac determinant equals to vacuum functional of the theory. An unproven conjecture is
that this determinant equals to the exponent of Kähler action for its preferred extremal.

The motivation for the Kähler-Dirac action came from the observation that the counterpart
of the ordinary Dirac equation is internally consistent only if the space-time surfaces are minimal
surfaces. One can however assign to any general coordinate invariant action principle for space-
time surfaces a unique Kähler-Dirac action, which is internally consistent and super-symmetric.
By quantum-classical correspondence space-time geometry must carry information about conserved
quantum charges assignable to partonic 2-surfaces and it took considerable to to realize that this
is achieved via measurement interaction terms realized as Lagrangian multiplier terms stating that
classical conserved charges belonging to Cartan algebra are equal to their quantum counterparts
for the space-time surfaces in quantum suerposition.

Second key idea [K69, K80] is that the well-definedness of em charge eigenvalue for spinor modes
requires their localization to 2-D string world sheets and possibly also partonic 2-surfaces at which
induced W boson field and possibly also Z0 field vanish. Due to the presence of classical W boson
fields this is possible only if localization takes plce at 2-D string world sheets and partonic 2-surfaces.
Therefore string theory like structure emerges as part of TGD. The super Hamiltoanians defined
in terms fluxes of Hammiltonians over partonic 2-surfaces are modified: a super-Hamiltonian at
point of partonic 2-surface is replaced with an integral over stringy curve connecting points of two
partonic 2-surfaces. Boundary conditions for the modes of induced spinor field can be interpreted
as classical correlate for the stringy mass formula.

Preferred extremals as critical extremals

The study of the Kähler-Dirac equation leads to a detailed view about criticality. Quantum
criticality [D5] fixes the values of Kähler coupling strength as the analog of critical temperature.
Quantum criticality implies that second variation of Kähler action vanishes for critical deformations
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and the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K ! K + f + f . p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

The discovery that the hierarchy of Planck constants realized in terms of singular covering spaces
of CD ⇥ CP2 can be understood in terms of the extremely non-linear dynamics of Kähler action
implying 1-to-many correspondence between canonical momentum densities and time derivatives
of the imbedding space coordinates led to a further very concrete understanding of the criticality
at space-time level and its relationship to zero energy ontology [K22] .

Criticality is accompanied by conformal invariance and this leads to the proposal that critical
deformations correspond to Kac-Moody type conformal algebra respecting the light-likeness of the
partonic orbits and acting trivially at partonic 2-surfaces. Sub-algebras of conformal algebras with
conformal weights divisible by integer n would act as gauge symmetries and these algebras would
form an inclusion hierarchy defining hierarchy of symmetry breakings. n would also characterize
the value of Planck constant heff = n⇥ h assignable to various phases of dark matter.

Inclusion of the Chern-Simons Dirac term

Kähler action contains Chern-Simons term cancelling the Chern-Simons contribution of Kähler
action at space-time interior at partonic orbit reducing to Chern-Simons terms so that only the
contribution at space-like ends of space-time surface at the boundaries of causal diamond (CD)
remains.

By supersymmetry also Kähler-Dirac action contains Chern-Simons Dirac term at partonic
orbits implying non-trivial fermionic propagator at the boundaries of string world sheets at which
the spinor modes are localized. The generalized eigenvalues ipk�k of C-S-D operator correspond
to virtual four-momenta.

The inclusion of Chern-Simons term localized at partonic orbits to the definition of Kähler
action and Chern-Simons-Dirac term to the definition Kähler-Dirac action at partonic orbits implies
explicit breaking of CP and T. This term should explain the CP breaking associated with the CKM
matrix of quarks.

5.1.3 Dirac determinant as exponent of Kähler action?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling con-
stants and predicting even quantum criticality and realizing quantum gravitational holography.
An obvious guess is that Dirac determinant equals to the vacuum functional identified as expo-
nent of Kähler function from Euclidian space-time regions and its its imaginary counterpart from
Minkowskian space-time regions. This does not mean that Kähler-Dirac action would be alone
enough as the original dream was. The reason is simple: Kähler-Dirac gamma matrices are defined
in terms of canonical momentum densities of Kähler action.

1. The natural definition of Dirac determinant is as the product of the generalized eigenvalues.
This product makes sense in Cli↵ord algebra and by symmetries must be equal proportional
to unit matrix. One can defined the product also as product of hyper-quaternionic numbers.
The product contains natural IR cuto↵ posed by the size of the CD involved and UV cuto↵
defined by the size of the smalles sub-CD. The hypohtesis that the determinant equals to
exponent of Kähler action forces its finiteness. Dirac determinant depends on string world
sheet. For instance, if one poses periodic boundary conditions the generalized eigenvalues of
C-S-D operator depend on the length of the fermion line measured using the metric defined
by the anticommutators of C-S-D gamma matrices.

2. One can also add to Kähler action 3-D boundary terms defining measurement interaction.
In particular, fixing the classical conserved charges of the space-time surfaces in the quan-
tum superposition. Also Kähler-Dirac action contains measurement interaction term coming
from these terms. In absence of measurement interaction terms Kähler-Dirac equation gives
boundary term �n = 0. This equation is satisfied if one has �n = pk�k = 0 where
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pk is light-like incoming four-momentum. Space-like boundaries correspond to on-mass-shell
states and do not contribute to Dirac determinant.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found here [L13]. Another glossary type
representation involving both pdf and html files can be found at http://www.tgdtheory.fi/
tgdglossary.pdf. The topics relevant to this chapter are given by the following list.

• TGD as infinite-dimensional geometry [L37]

• WCW spinor fields [L42]

• KD equation [L25]

• Kaehler-Dirac action [L24]

5.2 Weak form electric-magnetic duality and its implica-
tions

The notion of electric-magnetic duality [B2] was proposed first by Olive and Montonen and is
central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two di↵erent phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric
monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant
rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kähler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K10] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this con-
cept leads to precise predictions. The point is that elementary particles do not generate monopole
fields in macroscopic length scales: at least when one considers visible matter. The first question is
whether elementary particles could have vanishing magnetic charges: this turns out to be impossi-
ble. The next question is how the screening of the magnetic charges could take place and leads to
an identification of the physical particles as string like objects identified as pairs magnetic charged
wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,�1,�1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads
to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kähler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
http://www.tgdtheory.fi/tgdglossary.pdf
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5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
all isometry currents are proportional to Kähler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field
associated with Chern-Simons action). Intuitively this picture is attractive. A more general
ansatz would allow several Beltrami flows meaning multi-hydrodynamics. The integrability
conditions boil down to two scalar functions: the first one satisfies massless d’Alembert
equation in the induced metric and the the gradients of the scalar functions are orthogonal.
The interpretation in terms of momentum and polarization directions is natural. Also Chern-
Simons Dirac equation implies the localization of solutions to flow lines, and this is consistent
with the localization solutions of Kähler-Dirac equation to string world sheets.

5.2.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Num-
ber theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the imbedding space coordinates in
the space-time regions with Minkowskian resp. Euclidian signature of the induced metric. This
is a condition on modified gamma matrices and hyper-quaternionicity states that they span a
hyper-quaternionic sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of �M4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Kähler form assignable to the complement of the tangent
space of X2 ⇢ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The
presence of the induced metric is however troublesome since the presence of the induced
metric means that the simple transformation properties of flux Hamiltonians under symplectic
transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This ap-
proach involves also quaternions. These arguments suggest that the duality in some form
might work. The full electric magnetic duality is certainly too strong and implies that space-
time surface at the partonic 2-surface corresponds to piece of CP2 type vacuum extremal
and can hold only in the deep interior of the region with Euclidian signature. In the region
surrounding wormhole throat at both sides the condition must be replaced with a weaker
condition.
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4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2)
such (x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates
labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces
and string world sheets making sense in the regions of space-time sheet with Minkowskian
signature. The assumption about the slicing allows to preserve general coordinate invariance.
The weakest condition is that the generalized Kähler electric fluxes are apart from constant
proportional to Kähler magnetic fluxes. This requires the condition

J03pg4 = KJ12 . (5.2.1)

A more general form of this duality is suggested by the considerations of [K22] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for
preferred extremals to Chern-Simons terms [B1] at the boundaries of CD and at light-like
wormhole throats. This form is following

Jn�pg4 = K✏⇥ ✏n���J��
p
g4 . (5.2.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. ✏ is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric
at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (5.2.3)

where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on
Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant
then K could be a non-constant function of X2 depending on string world sheet coordinates.
The light-like radial coordinate of the light-cone boundary indeed defines a symplectically
invariant slicing and this slicing could be shifted along the time axis defined by the tips of
CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm =
e

~

I
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.
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2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L1] , [L1]
read as

� =
eFem

~ = 3J � sin2(✓W )R03 ,

Z0 =
gZFZ

~ = 2R03 . (5.2.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem

and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~Fem + sin2(✓W )
gZ
6~FZ . (5.2.5)

3. The weak duality condition when integrated over X2 implies

e2

3~Qem +
g2Zp

6
QZ,V = K

I
J = Kn ,

QZ,V =
I3V
2

�Qem , p = sin2(✓W ) . (5.2.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3L+sin2(✓W )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.

The coe�cients are dimensionless and expressible in terms of the gauge coupling strengths
and using ~ = r~0 one can write

↵emQem + p
↵Z

2
QZ,V =

3

4⇡
⇥ rnK ,

↵em =
e2

4⇡~0
, ↵Z =

g2Z
4⇡~0

=
↵em

p(1� p)
. (5.2.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-
surface. The linear coupling of the modified Dirac operator to conserved charges implies
correlation between the geometry of space-time sheet and quantum numbers assigned to the
partonic 2-surface. The assumption of standard quantized values for Qem and QZ would
be also seen as the identification of the fine structure constants ↵em and ↵Z . This however
requires weak isospin invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric
field equals to the Kähler charge gK would give the condition K = g2K/~, where gK is Kähler
coupling constant which should invariant under coupling constant evolution by quantum
criticality. Within experimental uncertainties one has ↵K = g2K/4⇡~0 = ↵em ' 1/137, where
↵em is finite structure constant in electron length scale and ~0 is the standard value of Planck
constant.
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2. The quantization of Planck constants makes the condition highly non-trivial. The most gen-
eral quantization of r is as rationals but there are good arguments favoring the quantization
as integers corresponding to the allowance of only singular coverings of CD andn CP2. The
point is that in this case a given value of Planck constant corresponds to a finite number
pages of the ”Big Book”. The quantization of the Planck constant implies a further quan-
tization of K and would suggest that K scales as 1/r unless the spectrum of values of Qem

and QZ allowed by the quantization condition scales as r. This is quite possible and the
interpretation would be that each of the r sheets of the covering carries (possibly same) el-
ementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The
interpretation in terms of anyonic phases [K37] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also
Kähler function is proportional to 1/↵K and therefore to ~. This implies that for large
values of ~ Kähler coupling strength g2K/4⇡ becomes very small and large fluctuations are
suppressed in the functional integral. The basic motivation for introducing the hierarchy of
Planck constants was indeed that the scaling ↵ ! ↵/r allows to achieve the convergence
of perturbation theory: Nature itself would solve the problems of the theoretician. This of
course does not mean that the physical states would remain as such and the replacement of
single particles with anyonic states in order to satisfy the condition for K would realize this
concretely.

4. The condition K = g2K/~ implies that the Kähler magnetic charge is always accompanied by
Kähler electric charge. A more general condition would read as

K = n⇥ g2K
~ , n 2 Z . (5.2.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kähler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that
abelian Z0 flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (5.2.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for CP2 type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of CP2 radius and ↵K the e↵ective replacement g2K ! 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could
be self-dual so that the density of Kähler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP2 is such that in CP2 coordinates for the Euclidian region the tensor (g↵�gµ⌫ � g↵⌫gµ�)/

p
g

remains invariant. This is certainly the case for CP2 type vacuum extremals since by the light-
likeness of M4 projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.



172
Chapter 5. Does the Modified Dirac Equation Define the Fundamental Action

Principle?

Reduction of the quantization of Kähler electric charge to that of electromagnetic
charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field,
which is a linear combination of induced Kahler field and classical Z0 field

� = 3J � sin2✓WR03 ,

Z0 = 2R03 . (5.2.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman
diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to
the fermion content of the partonic 2-surfaces reduces to the classical Kähler electric flux
at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must
increase smoothly from a vanishing value at both sides of wormhole throat to its value in the
deep interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kähler form and classical Z0 fields and color gauge fields are e↵ec-
tively absent. Only in phases with a large value of Planck constant classical Z0 field and
other classical weak fields and color gauge field could make themselves visible. Cell mem-
brane could be one such system [K41]. This conforms with the general picture about color
confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-
vanishing only in Euclidian regions of space-time so that both Reissner-Nordström metric and
CP2 are allowed as simplest possible solutions of field equations [K56]. The extremely small
value of the observed cosmological constant needed in GRT type cosmology could be equal
to the large cosmological constant associated with CP2 metric multiplied with the 3-volume
fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmo-
logical constant term in Euclidian regions. The weak form of electric-magnetic duality would
guarantee also now the preferred extremal property and prevent the reduction to a mere
topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.
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5.2.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
macroscopic length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be
a wormhole throat. If the magnetically charged wormhole contact is electromagnetically
neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion
only the electromagnetic charge of the fermion is visible on longer length scales. The distance
of this wormhole throat from the fermionic one should be of the order weak boson Compton
length. An interpretation as a bound state of fermion and a wormhole throat state with the
quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing
throat would have quantum numbers of X�1/2 = ⌫L⌫R or X1/2 = ⌫L⌫R. ⌫L⌫R would
not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-
partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism
would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and
corresponding space-time sheets and leave only electromagnetic interaction as a long ranged
interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I3V cancel each other at both space-time sheets involved so that one obtains at both
space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed
magnetic character of fundamental particles should become visible at TeV energies so that
LHC might have surprises in store!

Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be e↵ectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region
in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced W boson
fields are vanishing. The vanishing of classical Z0 field can be poses as additional condition - at
least in scales above weak scale. In the generic case this requires that the spinor mode is restricted
to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD
reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting
the modes are expected to allow restriction to 2-surfaces. This localization is possible only for
Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
e↵ective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from di↵erent space-time sheet tend to vanish above weak scale and that
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well-definedness of em charge at classical level follows from the e↵ective absence of classical weak
gauge fields.

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state q±1/2 � X⌥1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (±2,⌥1,⌥1). This brings in mind the spectrum
of color hyper charges coming as (±2,⌥1,⌥1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kähler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered CP2

and believed on M4 ⇥ S2.
p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark

variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

p
2 in the most

general case. The dark variants of the particle would have the same mass as the original one. In
particular, Mersenne primes Mk = 2k � 1 and Gaussian Mersennes MG,k = (1 + i)k � 1 has been
proposed to define zoomed copies of these physics. At the level of magnetic confinement this would
mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107�89)/2 = 512. The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of M89 physics takes place in some shorter
scale and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons
would be by a factor 2(89�61)/2 = 214 higher and about 1.6 ⇥ 104 TeV. M89 quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths Le(k) =

p
5L(k): they are associated with Gaussian

Mersennes MG,k, k = 151, 157, 163, 167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [D3] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and
anti-fermions at the wormhole throat but these do not give rise to graviton like states [K19] . The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
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in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however di�cult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make
possible twistor description of virtual particles allowing only massless particles (in 4-D sense
usually and in 8-D sense in TGD framework). The notion of virtual fermion makes sense
only if one assumes in the interaction region a topological condensation creating another
wormhole throat having no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one
describe the state as superposition of non-parallel on mass shell states so that the composite
state would be automatically massive? The description as superposition of on mass shell
states does not conform with the idea that bound state formation requires binding energy.
In TGD framework the notion of negentropic entanglement has been suggested to make
possible the analogs of bound states consisting of on mass shell states so that the binding
energy is zero [K28] . If this kind of states are in question the description of virtual states in
terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that
there is infinite number of this kind of states serving as analogs for the excitations of string
like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations
are possible. If this picture is correct, the situation would not change in an essential manner
from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K29] .

5.2.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated
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also for the modified Dirac action action. I gave up this proposal but the following argument shows
that Kähler action with weak form of electric-magnetic duality e↵ectively reduces to Chern-Simons
action plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term j↵KA↵

plus and integral of the boundary term Jn�A�
p
g4 over the wormhole throats and of the

quantity J0�A�
p
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jn� = 4⇡↵K✏n���J�� at throats and to J0� =
4⇡↵K✏0���J�� at the ends, the Kähler function reduces to the counterpart of Chern-Simons
action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 ! r~0 would e↵ectively describe this. Boundary conditions would however
give 1/r factor so that ~ would disappear from the Kähler function! The original attempt to
realize quantum TGD as an almost topological QFT was in terms of Chern-Simons action
but was given up. It is somewhat surprising that Kähler action gives Chern-Simons action
in the vacuum sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to
an almost topological QFT. The attribute ”almost” would come from the fact that one has non-
vanishing classical Noether charges defined by Kähler action and non-trivial quantum dynamics in
M4 degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which
is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of
Coulomb interaction term deserve a detailed analysis.

1. For the known extremals j↵K either vanishes or is light-like (”massless extremals” for which
weak self-duality condition does not make sense [K5] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kähler action. This implies that the M4 part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M4 degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
variations of Kähler function must respect the weak electro-magnetic duality which relates
Kähler electric field depending on the induced 4-metric at 3-surface to the Kähler magnetic
field. Therefore the dependence on M4 coordinates creeps via a Lagrange multiplier term

Z
⇤↵(J

n↵ �K✏n↵��J� gamma)
p
g4d

3x . (5.2.11)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question
about how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides CP2 Kähler form
there would be the Kähler form assignable to the light-cone boundary reducing to that for
rM = constant sphere - call it J1. The generalization of the weak form of self-duality
would be Jn� = ✏n���K(J�� + ✏J1

��). This form implies that the boundary term gives a

non-trivial contribution to the M4 part of the WCW metric even without the constraint
from electric-magnetic duality. Kähler charge is not a↵ected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kähler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.
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4. The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation � is

j↵K@↵� = �j↵A↵ . (5.2.12)

This di↵erential equation can be reduced to an ordinary di↵erential equation along the flow
lines jK by using dx↵/dt = j↵K . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate di↵erential
is proportional to the covariant form of Kähler current: dt = �jK . This condition in turn
implies d2t = d(�jK) = d(�jK) = d� ^ jK + �djK = 0 implying jK ^ djK = 0 or more
concretely,

✏↵���jK� @�j
K
delta = 0 . (5.2.13)

jK is a four-dimensional counterpart of Beltrami field [B19] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler
action [K5] . The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jK ^ J = 0. One manner to guarantee this is the
topologization of the Kähler current meaning that it is proportional to the instanton current:
jK = �jI , where jI = ⇤(J ^A) is the instanton current, which is not conserved for 4-D CP2

projection. The conservation of jK implies the condition j↵I @↵� = @↵j↵� and from this � can
be integrated if the integrability condition jI^djI = 0 holds true implying the same condition
for jK . By introducing at least 3 or CP2 coordinates as space-time coordinates, one finds that
the contravariant form of jI is purely topological so that the integrability condition fixes the
dependence on M4 coordinates and this selection is coded into the scalar function �. These
functions define families of conserved currents j↵K� and j↵I � and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A ! A+r� for which the scalar function the integral

R
j↵K@↵� reduces to a total divergence

a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

D↵(j
↵�) = 0 . (5.2.14)

As a consequence Coulomb term reduces to a di↵erence of the conserved charges Qe
� =R

j0�
p
g4d3x at the ends of the CD vanishing identically. The change of the Chern-Simons

type term is trivial if the total weighted Kähler magnetic fluxQm
� =

PR
J�dA over wormhole

throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
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charges would provide a representation for the charges associated with the infinitesimal criti-
cal deformations not a↵ecting Kähler action. The gauge transformed Kähler gauge potential
couples to the modified Dirac equation and its e↵ect could be visible in the value of Kähler
function and therefore also in the properties of the preferred extremal. The e↵ect on WCW
metric would however vanish since K would transform only by an addition of a real part of
a holomorphic function.

7. A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred ex-
tremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of �CD ⇥ CP2 generating the gauge transfor-
mation represented by �. This interpretation makes sense if the fluxes defined by Qm

� and
corresponding Hamiltonians a↵ect only zero modes rather than quantum fluctuating degrees
of freedom.

8. Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic orbits
and Kähler-Dirac action with Chern-Simons Dirac term at partonic orbits emerged. Mea-
surement interaction terms would correspond to Lagrange multiplier terms at the ends of
space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to modified Dirac action
as boundary term.

Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kähler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.

One can assign to partonic orbits Chern-Simons Dirac action and now the condition would
be that the action of C-S-D operator equals to that of massless M4 Dirac operator. C-S-D
Dirac action would give rise to massless Dirac propagator. Twistor Grassmann approach
suggests that also the virtual fermions reduce e↵ectively to massless on-shell states but have
non-physical helicity.

5.2.4 About the notion of measurement interaction

The notion of measurement has been central notion in quantum TGD but the precise definition of
this notion is far from clear. In the following two possibly equivalent formulations are considered.
The first formulation relies on the gauge transformations leaving Coulomb term of Kähler action
unchanged and the second one to the interpretation of TGD as a square root of thermodynamics
allowing to fix the values of conserved classical charges for zero energy energy state using Lagrange
multipliers analogous to chemical potentials.

1. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
A ! A+r� for which the scalar function the integral

R
j↵K@↵� reduces to a total divergence

a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

D↵(j
↵�) = 0 . (5.2.15)

As a consequence Coulomb term reduces to a di↵erence of the conserved charges Qe
� =R

j0�
p
g4d3x at the ends of the CD vanishing identically. The change of the Chern-Simons

type term is trivial if the total weighted Kähler magnetic fluxQm
� =

PR
J�dA over wormhole

throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.
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2. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the modified Dirac
interaction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal crit-
ical deformations not a↵ecting Kähler action.

The gauge transformed Kähler potential couples to the modified Dirac equation and its e↵ect
could be visible in the value of Kähler function and therefore also in the properties of the pre-
ferred extremal. The e↵ect on WCW metric would however vanish since K would transform
only by an addition of a real part of a holomorphic function. Kähler function is identified as
a Dirac determinant of Chern-Simons Dirac operator (after many turns and twists) and the
spectrum of this operator should not be invariant under these gauge transformations if this
picture is correct. This is is achieved if the gauge transformation is carried only in the Dirac
action corresponding to instanton term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action
can be guessed to correspond just to the Chern-Simons contribution from the instanton term.

3. A reasonable looking guess for the explicit realization of the quantum classical correspon-
dence between quantum numbers and space-time geometry is that the deformation of the
preferred extremal due to the addition of the measurement interaction term is induced by a
U(1) gauge transformation induced by a transformation of �CD⇥CP2 generating the gauge
transformation represented by �. This interpretation makes sense if the fluxes defined by
Qm

� and corresponding Hamiltonians a↵ect only zero modes rather than quantum fluctuating
degrees of freedom.

In zero energy ontology (ZEO) TGD can be seen as square root of thermodynamics and this
suggests an alternative manner to define what measurement interaction term means.

1. The condition that the space-time sheets appearing in superposition of space-time surfaces
with given quantum numbers in Cartan algebra have same classical quantum numbers as-
sociated with Kähler action can be realized in terms of Lagrange multipliers in standard
manner. These kind of terms would be analogous to various chemical potential terms in
the partition function. One could call them measurement interaction terms. Measurement
interaction terms would code the values of quantum charges to the space-time geometry.

Kähler action contains also Chern-Simons term at partonic orbits compensating the Chern-
Simons terms coming from Kähler action when weak form of electric-magnetic duality is as-
sumed. This guarantees that Kähler action for preferred extremals reduces to Chern-Simons
terms at the space-like ends of the spacetime surface and one obtains almost topological
QFT.

2. If Kähler-Dirac action is constructed from Kähler action in super-symmetric manner by
defining the modified gamma matrices in terms of canonical momentum densities one obtains
also the fermionic counterparts of the Lagrange multiplier terms at partonic orbits and could
call also them measurement interaction terms. Besides this one has also the Chern-Simons
Dirac terms associated with the partonic orbits giving ordinary massless Dirac propagator.
In presence of measurement interaction terms at the space-like ends of the space-time surface
the boundary conditions �n = 0 at the ends would be modified by the addition of term
coming from the modified gamma matrix associated with the Lagrange multiplier terms. The
original generalized massless generalized eigenvalue spectrum pk�k of �n would be modified
to massive spectrum given by the condition

(�n +
X
i

�i�
↵
Q

i

D↵) = 0 ,

where Qi refers to i:th conserved charge.
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An interesting question is whether these two manners to introduce measurement interaction
terms are actually equivalent.

To sum up, one could understand the basic properties of WCW metric in this framework. E↵ec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two di↵erent time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the
terms from light-like wormhole throats giving interaction term between positive and negative en-
ergy parts of the state. Hence Kähler function could be calculated without any knowledge about
the interior of the space-time sheets and TGD would reduce to almost topological QFT as specu-
lated earlier. Needless to say this would have immense boost to the program of constructing WCW
Kähler geometry.

5.2.5 Kähler action for Euclidian regions as Kähler function and Kähler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kähler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kähler action would
be complex. The Euclidian contribution would have a natural interpretation as positive definite
Kähler function but how should one interpret the imaginary Minkowskian contribution? Certainly
the path integral approach to quantum field theories supports its presence. For some mysterious
reason I was able to forget this nasty question and serious consideration of the obvious answer to
it. Only when I worked between possibile connections between TGD and Floer homology [K63]
I realized that the Minkowskian contribution is an excellent candidate for Morse function whose
critical points give information about WCW homology. This would fit nicely with the vision about
TGD as almost topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would
have a mathematically well-defined theory. Minkowskian contribution would give the quantal
interference e↵ects and stationary phase approximation. The analog of Floer homology would
represent quantum superpositions of critical points identifiable as ground states defined by the
extrema of Kähler action for Minkowskian regions. Perturbative approach to quantum TGD would
rely on functional integrals around the extrema of Kähler function. One would have maxima also
for the Kähler function but only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should
one assume that the reduction to Chern-Simons terms occurs for the preferred extremals in both
Minkowskian and Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [K18] involve local
light-like momentum direction which does not make sense in the Euclidian regions. This does
not however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-
one correspondences with the solutions of the modified Dirac equation. The interpretation for
the counterparts of momentum and polarization would be in terms of classical representation
of color quantum numbers.

2. If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. I have ear-
lier claimed that without any other contributions the first term would be identical with that
from Minkowskian region apart from imaginary unit and di↵erent coe�cient. This statement
is wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian
and Minkowskian regions.
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3. There is also an argument stating that Dirac determinant for Chern-Simons Dirac action
equals to Kähler function, which would be lost if Euclidian regions would not obey holography.
The argument obviously generalizes and applies to both Morse and Kähler function which
are definitely not proportional to each other.

CP breaking and ground state degeneracy

The Minkowskian contribution of Kähler action is imaginary due to the negativity of the met-
ric determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms
at wormhole throats. Ground state degeneracy due to the possibility of having both signs for
Minkowskian contribution to the exponent of vacuum functional provides a general view about the
description of CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV.
The vacuum functional and its conjugate are associated with the states in the inner product
so that the phases of vacuum functionals cancel if only one sign for the phase is allowed.
Minkowskian contribution would have no physical significance. This of course cannot be
the case. The ground state is actually degenerate corresponding to the phase factor and
its complex conjugate since

p
g can have two signs in Minkowskian regions. Therefore the

inner products between states associated with the two ground states define 2⇥ 2 matrix and
non-diagonal elements contain interference terms due to the presence of the phase factor. At
the limit of full CP2 type vacuum extremal the two ground states would reduce to each other
and the determinant of the matrix would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K � K and of CKM matrix should reduce to
this mixing. K0 mesons would be CP even and odd states in the first approximation and
correspond to the sum and di↵erence of the ground states. Small mixing would be present
having exponential sensitivity to the actions of CP2 type extremals representing wormhole
throats. This might allow to understand qualitatively why the mixing is about 50 times
larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation
at either upper or lower boundary of CD. Do long- and shortlived neutral K mesons corre-
spond to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or
almost completely to a fixed arrow of time induced by environment? Is the dominant part of
the arrow same for both or is it opposite for long and short-lived neutral measons? Di↵erent
lifetimes would suggest that the arrow must be the same and apart from small leakage that
induced by environment. CP breaking would be induced by the fact that CP is performed
only K0 but not for the environment in the construction of states. One can probably imagine
also alternative interpretations.

5.2.6 A general solution ansatz based on almost topological QFT prop-
erty

The basic vision behind the ansatz is the reduction of quantum TGD to almost topological QFT.
This requires that the flow parameters associated with the flow lines of isometry currents and
Kähler current extend to global coordinates. This leads to integrability conditions implying gener-
alized Beltrami flow and Kähler action for the preferred extremals reduces to Chern-Simons action
when weak electro-weak duality is applied as boundary conditions. The strongest form of the
hydrodynamical interpretation requires that all conserved currents are parallel to Kähler current.
In the more general case one would have several hydrodynamic flows. Also the braidings (several
of them for the most general ansatz) assigned with the light-like 3-surfaces are naturally defined
by the flow lines of conserved currents. The independent behavior of particles at di↵erent flow
lines can be seen as a realization of the complete integrability of the theory. In free quantum field
theories on mass shell Fourier components are in a similar role but the geometric interpretation
in terms of flow is of course lacking. This picture should generalize also to the solution of the
modified Dirac equation.



182
Chapter 5. Does the Modified Dirac Equation Define the Fundamental Action

Principle?

Basic field equations

Consider first the equations at general level.

1. The breaking of the Poincare symmetry due to the presence of monopole field occurs and
leads to the isometry group T ⇥SO(3)⇥SU(3) corresponding to time translations, rotations,
and color group. The Cartan algebra is four-dimensional and field equations reduce to the
conservation laws of energy E, angular momentum J , color isospin I3, and color hypercharge
Y .

2. Quite generally, one can write the field equations as conservation laws for I, J, I3, and Y .

D↵

⇥
D�(J

↵�HA)� j↵KHA + T↵�jlAhkl@�h
l
⇤

= 0 . (5.2.16)

The first term gives a contraction of the symmetric Ricci tensor with antisymmetric Kähler
form and vanishes so that one has

D↵

⇥
j↵KHA � T↵�jkAhkl@�h

l
⇤

= 0 . (5.2.17)

For energy one has HA = 1 and energy current associated with the flow lines is proportional
to the Kähler current. Its divergence vanishes identically.

3. One can express the divergence of the term involving energy momentum tensor as as sum of
terms involving j↵KJ↵� and contraction of second fundamental form with energy momentum
tensor so that one obtains

j↵KD↵H
A = j↵KJ �

↵ jA� + T↵�Hk
↵�j

A
k . (5.2.18)

Hydrodynamical solution ansatz

The characteristic feature of the solution ansatz would be the reduction of the dynamics to hydro-
dynamics analogous to that for a continuous distribution of particles initially at the end of X3 of
the light-like 3-surface moving along flow lines defined by currents jA satisfying the integrability
condition jA^djA = 0. Field theory would reduce e↵ectively to particle mechanics along flow lines
with conserved charges defined by various isometry currents. The strongest condition is that all
isometry currents jA and also Kähler current jK are proportional to the same current j. The more
general option corresponds to multi-hydrodynamics.

Conserved currents are analogous to hydrodynamical currents in the sense that the flow pa-
rameter along flow lines extends to a global space-time coordinate. The conserved current is
proportional to the gradient r� of the coordinate varying along the flow lines: J =  r� and by
a proper choice of  one can allow to have conservation. The initial values of  and � can be
selected freely along the flow lines beginning from either the end of the space-time surface or from
wormhole throats.

If one requires hydrodynamics also for Chern-Simons action (e↵ective 2-dimensionality is re-
quired for preferred extremals), the initial values of scalar functions can be chosen freely only at
the partonic 2-surfaces. The freedom to chose the initial values of the charges conserved along
flow lines at the partonic 2-surfaces means the existence of an infinite number of conserved charges
so that the theory would be integrable and even in two di↵erent coordinate directions. The basic
di↵erence as compared to ordinary conservation laws is that the conserved currents are parallel
and their flow parameter extends to a global coordinate.
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1. The most general assumption is that the conserved isometry currents

J↵
A = j↵KHA � T↵�jkAhkl@�h

l (5.2.19)

and Kähler current are integrable in the sense that JA ^ JA = 0 and jK ^ jK = 0 hold true.
One could imagine the possibility that the currents are not parallel.

2. The integrability condition dJA ^ JA = 0 is satisfied if one one has

JA =  Ad�A . (5.2.20)

The conservation of JA gives

d ⇤ ( Ad�A) = 0 . (5.2.21)

This would mean separate hydrodynamics for each of the currents involved. In principle
there is not need to assume any further conditions and one can imagine infinite basis of
scalar function pairs ( A,�A) since criticality implies infinite number deformations implying
conserved Noether currents.

3. The conservation condition reduces to d’Alembert equation in the induced metric if one
assumes that r A is orthogonal with every d�A.

d ⇤ d�A = 0 , d A · d�A = 0 . (5.2.22)

Taking x = �A as a coordinate the orthogonality condition states gxj@j A = 0 and in
the general case one cannot solve the condition by simply assuming that  A depends on
the coordinates transversal to �A only. These conditions bring in mind p · p = 0 and p · e
condition for massless modes of Maxwell field having fixed momentum and polarization. d�A

would correspond to p and d A to polarization. The condition that each isometry current
corresponds its own pair ( A,�A) would mean that each isometry current corresponds to
independent light-like momentum and polarization. Ordinary free quantum field theory
would support this view whereas hydrodynamics and QFT limit of TGD would support
single flow.

These are the most general hydrodynamical conditions that one can assume. One can consider
also more restricted scenarios.

1. The strongest ansatz is inspired by the hydrodynamical picture in which all conserved isom-
etry charges flow along same flow lines so that one would have

JA =  Ad� . (5.2.23)

In this case same � would satisfy simultaneously the d’Alembert type equations.

d ⇤ d� = 0 , d A · d� = 0. (5.2.24)

This would mean that the massless modes associated with isometry currents move in parallel
manner but can have di↵erent polarizations. The spinor modes associated with light-light
like 3-surfaces carry parallel four-momenta, which suggest that this option is correct. This
allows a very general family of solutions and one can have a complete 3-dimensional basis of
functions  A with gradient orthogonal to d�.
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2. Isometry invariance under T ⇥SO(3)⇥SU(3) allows to consider the possibility that one has

JA = kA Ad�G(A) , d ⇤ (d�G(A)) = 0 , d A · d�G(A)) = 0 . (5.2.25)

where G(A) is T for energy current, SO(3) for angular momentum currents and SU(3) for
color currents. Energy would thus flow along its own flux lines, angular momentum along its
own flow lines, and color quantum numbers along their own flow lines. For instance, color
currents would di↵er from each other only by a numerical constant. The replacement of  A

with  G(A) would be too strong a condition since Killing vector fields are not related by a
constant factor.

To sum up, the most general option is that each conserved current JA defines its own integrable
flow lines defined by the scalar function pair ( A,�A). A complete basis of scalar functions
satisfying the d’Alembert type equation guaranteeing current conservation could be imagined with
restrictions coming from the e↵ective 2-dimensionality reducing the scalar function basis e↵ectively
to the partonic 2-surface. The diametrically opposite option corresponds to the basis obtained by
assuming that only single � is involved.

The proposed solution ansatz can be compared to the earlier ansatz [K22] stating that Kähler
current is topologized in the sense that for D(CP2) = 3 it is proportional to the identically
conserved instanton current (so that 4-D Lorentz force vanishes) and vanishes for D(CP2) = 4
(Maxwell phase). This hypothesis requires that instanton current is Beltrami field for D(CP2) = 3.
In the recent case the assumption that also instanton current satisfies the Beltrami hypothesis in
strong sense (single function �) generalizes the topologization hypothesis for D(CP2) = 3. As
a matter fact, the topologization hypothesis applies to isometry currents also for D(CP2) = 4
although instanton current is not conserved anymore.

Can one require the extremal property in the case of Chern-Simons action?

E↵ective 2-dimensionality is achieved if the ends and wormhole throats are extremals of Chern-
Simons action. The strongest condition would be that space-time surfaces allow orthogonal slicings
by 3-surfaces which are extremals of Chern-Simons action.

Also in this case one can require that the flow parameter associated with the flow lines of the
isometry currents extends to a global coordinate. Kähler magnetic field B = ⇤J defines a conserved
current so that all conserved currents would flow along the field lines of B and one would have 3-D
Beltrami flow. Note that in magnetohydrodynamics the standard assumption is that currents flow
along the field lines of the magnetic field.

For wormhole throats light-likeness causes some complications since the induced metric is degen-
erate and the contravariant metric must be restricted to the complement of the light-like direction.
This means that d’Alembert equation reduces to 2-dimensional Laplace equation. For space-like
3-surfaces one obtains the counterpart of Laplace equation with partonic 2-surfaces serving as
sources. The interpretation in terms of analogs of Coulomb potentials created by 2-D charge
distributions would be natural.

5.2.7 Hydrodynamic picture in fermionic sector

Super-symmetry inspires the conjecture that the hydrodynamical picture applies also to the solu-
tions of the modified Dirac equation. This would mean that the solutions of Dirac equation can
be localized to lower-dimensional surface or even flow lines.

Basic objection

The obvious objection against the localization to sub-manifolds is that it is not consistent with
uncertainty principle in transversal degrees of freedom. More concretely, the assumption that the
mode is localized to a lower-dimensional surface of X4 implies that the action of the transversal
part of Dirac operator in question acts on delta function and gives something singular.
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The situation changes if the Dirac operator in question has vanishing transversal part at the
lower-dimensional surface. This is not possible for the Dirac operator defined by the induced metric
but is quite possible in the case of Kähler-Dirac operator. For instance, in the case of massless
extremals Kähler-Dirac gamma matrices are non-vanishing in single direction only and the solution
modes could be one-dimensional. For more general preferred extremals such as cosmic strings this
is not the case.

In fact, there is a strong physical argument in favor of the localization of spinor modes at 2-D
string world sheets so that hydrodynamical picture would result but with flow lines replaced with
fermionic string world sheets.

1. Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is
very natural constraint and not trivially satisfied because classical W boson fields are present.
As a matter fact, all weak fields should be e↵ectively absent above weak scale. How this is
possible classical weak fields identified as induced gauge fields are certainly present.

2. The condition that em charge is well defined for spinor modes implies that the space-time
region in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced
W boson fields are vanishing. The vanishing of classical Z0 field can be poses as additional
condition - at least in scales above weak scale. In the generic case this requires that the spinor
mode is restricted to 2-D surface: string world sheet or possibly also partonic 2-surface.
This implies that TGD reduces to string model in fermionic sector. Even for preferred
extremals with 2-D projecting the modes are expected to allow restriction to 2-surfaces.
This localization is possible only for Kähler-Dirac action and requires that the part of the
Kähler-Dirac operator transversal to 2-surface vanishes.

3. This localization does not hold for cosmic string solutions which however have 2-D CP2

projection which should have vanishing weak fields so that 4-D spinor modes with well-
defined em charge are possible.

4. A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
e↵ective metric obtained by summing to Minkowski metric the deviations of the induced met-
rics of space-time sheets from Minkowski metric. For gauge potentials a similar identification
applies. YM-Einstein equations coupled with matter and with non-vanishing cosmological
constant are expected on basis of Poincare invariance. One cannot exclude the possibility
that the sums of weak gauge potentials from di↵erent space-time sheet tend to vanish above
weak scale and that well-definedness of em charge at classical level follows from the e↵ective
absence of classical weak gauge fields.

4-dimensional modified Dirac equation and hydrodynamical picture

In following consideration is restricted to preferred extremals for which one has decomposition to
regions characterized by local light-like vector and polarization direction. In this case one has good
hopes that the modes can be restricted to 1-D light-like geodesics.

Consider first the solutions of of the induced spinor field in the interior of space-time surface.

1. The local inner products of the modes of the induced spinor fields define conserved currents

D↵J
↵
mn = 0 ,

J↵
mn = um�̂

↵un ,

�̂↵ =
@LK

@(@↵hk)
�k . (5.2.26)

The conjecture is that the flow parameters of also these currents extend to a global coordinate
so that one would have in the completely general case the condition
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J↵
mn = �mnd mn ,

d ⇤ (d�mn) = 0 , r mn · �mn = 0 . (5.2.27)

The condition �mn = � would mean that the massless modes propagate in parallel manner
and along the flow lines of Kähler current. The conservation condition along the flow line
implies tht the current component Jmn is constant along it. Everything would reduce to
initial values at the ends of the space-time sheet boundaries of CD and 3-D modified Dirac
equation would reduce everything to initial values at partonic 2-surfaces.

2. One might hope that the conservation of these super currents for all modes is equivalent with
the modified Dirac equation. The modes un appearing in  in quantized theory would be
kind of ”square roots” of the basis �mn and the challenge would be to deduce the modes
from the conservation laws.

3. The quantization of the induced spinor field in 4-D sense would be fixed by those at 3-D
space-like ends by the fact that the oscillator operators are carried along the flow lines as
such so that the anti-commutator of the induced spinor field at the opposite ends of the flow
lines at the light-like boundaries of CD is in principle fixed by the anti-commutations at the
either end. The anti-commutations at 3-D surfaces cannot be fixed freely since one has 3-D
Chern-Simons flow reducing the anti-commutations to those at partonic 2-surfaces.

The following argument suggests that induced spinor fields are in a suitable gauge simply
constant along the flow lines of the Kähler current just as massless spinor modes are constant
along the geodesic in the direction of momentum.

1. The modified gamma matrices are of form T↵
k �

k, T↵
k = @LK/@(@↵hk). The H-vectors T↵

k can
be expressed as linear combinations of a subset of Killing vector fields jkA spanning the tangent
space of H. For CP2 the natural choice are the 4 Lie-algebra generators in the complement
of U(2) sub-algebra. For CD one can used generator time translation and three generators of
rotation group SO(3). The completeness of the basis defined by the subset of Killing vector
fields gives completeness relation hk

l = jAkjAk. This implies T↵k = T↵kjAk j
k
A = T↵AjkA. One

can defined gamma matrices �A as �kjkA to get T↵
k �

k = T↵A�A.

2. This together with the condition that all isometry currents are proportional to the Kähler
current (or if this vanishes to same conserved current- say energy current) satisfying Bel-
trami flow property implies that one can reduce the modified Dirac equation to an ordinary
di↵erential equation along flow lines. The quantities T tA are constant along the flow lines
and one obtains

T tAjADt = 0 . (5.2.28)

By choosing the gauge suitably the spinors are just constant along flow lines so that the spinor
basis reduces by e↵ective 2-dimensionality to a complete spinor basis at partonic 2-surfaces.

5.3 An attempt to understand preferred extremals of Kähler
action

Preferred extremal of Kähler action is one of the basic poorly defined notions of TGD. There are
pressing motivations for understanding what ”preferred” really means. For instance, the conformal
invariance of string models naturally generalizes to 4-D invariance defined by quantum Yangian
of quantum a�ne algebra (Kac-Moody type algebra) characterized by two complex coordinates
and therefore explaining naturally the e↵ective 2-dimensionality [K61]. The problem is however
how to assign a complex coordinate with the string world sheet having Minkowskian signature
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of metric. One can hope that the understanding of preferred extremals could allow to identify
two preferred complex coordinates whose existence is also suggested by number theoretical vision
giving preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The
best one could hope is a general solution of field equations in accordance with the hints that TGD
is integrable quantum theory.

5.3.1 What ”preferred” could mean?

The first question is what preferred extremal could mean.

1. In positive energy ontology preferred extremal would be a space-time surface assignable to
given 3-surface and unique in the ideal situation: since one cannot pose conditions to the
normal derivatives of imbedding space coordinates at 3-surface, there is infinity of extremals.
Some additional conditions are required and space-time surface would be analogous to Bohr
orbit : hence the attribute ”preferred”. The problem would be to understand what ”pre-
ferred” could mean. The non-determinism of Kähler action however destroyed this dream in
its original form and led to zero energy ontology (ZEO).

2. In ZEO one considers extremals as space-time surfaces connecting two space-like 3-surfaces
at the boundaries. One might hope that these 4-surfaces are unique. The non-determinism
of Kähler action suggests that this is not the case. At least there is conformal invariance
respecting the light-likeness of the 3-D parton orbits at which the signature of the induced
metric changes: the conformal transformations would leave the space-like 3-D ends or at least
partonic 2-surfaces invariant. This non-determinism would correspond to quantum criticality.

3. E↵ective 2-dimensionality follows from strong form of general coordinate invariance (GCI)
stating that light-like partonic orbits and space-like 3-surfaces at the ends of space-time
surface are equivalent physically: partonic 2-surfaces and their 4-D tangent space data would
determine everything. One can however worry about how e↵ective 2-dimensionality relates
to the the fact that the modes of the induced spinor field are localized at string world sheets
and partonic 2-surface. Are the tangent space data equivalent with the data characterizing
string world sheets as surfaces carrying vanishing electroweak fields?

There is however a problem: the hierarchy of Planck constants (dark matter) requires that
the conformal equivalence classes of light-like surfaces must be counted as physical degrees
of freedom so that either space-like or light-like surfaces do not seem to be quite enough.

Should one then include also the light-like partonic orbits to the what one calls 3-surface?
The resulting connected 3-surfaces would define analogs of Wilson loops. Could the conformal
equivalence class of the preferred extremal be unique without any additional conditions? If
so, one could get rid of the attribute ”preferred”. The fractal character of the many-sheeted
space-time however suggests that one can have this kind of uniqueness only in given length
scale resolution and that ”radiative corrections” due to the non-determinism are always
present.

These considerations show that the notion of preferred extremal is still far from being precisely
defined and it is not even clear whether the attribute ”preferred” is needed. If not then the question
is what are the extremals of Kähler action.

5.3.2 What is known about extremals?

A lot is is known about properties of extremals and just by trying to integrate all this understand-
ing, one might gain new visions. The problem is that all these arguments are heuristic and rely
heavily on physical intuition. The following considerations relate to the space-time regions having
Minkowskian signature of the induced metric. The attempt to generalize the construction also to
Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.
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1. Hamilton-Jacobi coordinates for M4 (discussed in this chapter) define natural preferred co-
ordinates for Minkowskian space-time sheet and might allow to identify string world sheets
for X4 as those for M4. Hamilton-Jacobi coordinates consist of light-like coordinate m and
its dual defining local 2-plane M2 ⇢ M4 and complex transversal complex coordinates (w,w)
for a plane E2

x orthogonal to M2
x at each point of M4. Clearly, hyper-complex analyticity

and complex analyticity are in question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by
partonic 2-surfaces (string world sheets).

3. The quaternionic planes of octonion space containing preferred hyper-complex plane are
labelled by CP2, which might be called CPmod

2 [K52]. The identification CP2 = CPmod
2

motivates the notion of M8 ��M4 ⇥CP2 duality [K13]. It also inspires a concrete solution
ansatz assuming the equivalence of two di↵erent identifications of the quaternionic tangent
space of the space-time sheet and implying that string world sheets can be regarded as
strings in the 6-D coset space G2/SU(3). The group G2 of octonion automorphisms has
already earlier appeared in TGD framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the
CP2 = CPmod

2 conditions reduce to string model for partonic 2-surfaces in CP2 = SU(3)/U(2).
String model in both cases could mean just hypercomplex/complex analyticity for the coor-
dinates of the coset space as functions of hyper-complex/complex coordinate of string world
sheet/partonic 2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = q1 + Iq2, where qi is quaternion and I is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions.
Map preferred coordinates of H = M4 ⇥ CP2 to octonionic coordinate, form an arbitrary
octonion analytic function having expansion with real Taylor or Laurent coe�cients to avoid
problems due to non-commutativity and non-associativity. Map the outcome to a point of
H to get a map H ! H. This procedure is nothing but a generalization of Wick rotation to
get an 8-D generalization of analytic map.

2. Identify the preferred extremals of Kähler action as surfaces obtained by requiring the van-
ishing of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string
world sheets would correspond to commutative sub-manifolds of the space-time surface and
of imbedding space and would emerge naturally. The ends of braid strands at partonic 2-
surface would naturally correspond to the poles of the octonion analytic functions. This
would mean a huge generalization of conformal invariance of string models to octonionic
conformal invariance and an exact solution of the field equations of TGD and presumably of
quantum TGD itself.

5.3.3 Basic ideas about preferred extremals

The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.
The challenge is to formulate this more precisely at the level of the preferred extremals of Kähler
action.

1. Almost topological QFT property means that the Kähler action reduces to Chern-Simons
terms assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in
the action density implied automatically if conserved Kähler current is proportional to the
instanton current with proportionality coe�cient some scalar function.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is
that the flow lines of these currents define global coordinates. This means that these currents
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are Beltrami flows [B19] so that corresponding 1-forms J satisfy the condition J ^ dJ = 0.
These conditions are satisfied if

J = �r 

hold true for conserved currents. From this one obtains that  defines global coordinate
varying along flow lines of J .

3. A possible interpretation is in terms of local polarization and momentum directions defined
by the scalar functions involved and natural additional conditions are that the gradients of
 and � are orthogonal:

r� ·r = 0 ,

and that the  satisfies massless d’Alembert equation

r2 = 0

as a consequence of current conservation. If  defines a light-like vector field - in other words

r ·r = 0 ,

the light-like dual of � -call it �c- defines a light-like like coordinate and � and �c defines a
light-like plane at each point of space-time sheet.

If also � satisfies d’Alembert equation

r2� = 0 ,

also the current

K =  r�

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal
to time-lik plane defined by local light-like momentum direction.

If � allows a continuation to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of space-time surface by  and its dual (defining hyper-complex
coordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to
provide space-time surface with four coordinates very much analogous with Hamilton-Jacobi
coordinates of M4.

This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J
defined Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection
with the mathematics of string models. The two complex coordinates assignable to the
Yangian of a�ne algebra would naturally relate to string world sheets and partonic 2-surfaces
and the highly non-trivial challenge is to identify them appropriately.
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Hamilton-Jacobi coordinates for M4

The earlier attempts to construct preferred extremals [K5] led to the realization that so called
Hamilton-Jacobi coordinates (m,w) for M4 define its slicing by string world sheets parametrized
by partonic 2-surfaces. m would be pair of light-like conjugate coordinates associated with an
integrable distribution of planes M2 and w would define a complex coordinate for the integrable
distribution of 2-planes E2 orthogonal to M2. There is a great temptation to assume that these
coordinates define preferred coordinates for M4.

1. The slicing is very much analogous to that for space-time sheets and the natural question is
how these slicings relate. What is of special interest is that the momentum plane M2 can
be defined by massless momentum. The scaling of this vector does not matter so that these
planes are labelled by points z of sphere S2 telling the direction of the line M2 \ E3, when
one assigns rest frame and therefore S2 with the preferred time coordinate defined by the
line connecting the tips of CD. This direction vector can be mapped to a twistor consisting of
a spinor and its conjugate. The complex scalings of the twistor (u, u) ! �u, u/�) define the
same plane. Projective twistor like entities defining CP1 having only one complex component
instead of three are in question. This complex number defines with certain prerequisites a
local coordinate for space-time sheet and together with the complex coordinate of E2 could
serve as a pair of complex coordinates (z, w) for space-time sheet. This brings strongly in
mind the two complex coordinates appearing in the expansion of the generators of quantum
Yangian of quantum a�ne algebra [K61].

2. The coordinate  appearing in Beltrami flow defines the light-like vector field defining M2

distribution. Its hyper-complex conjugate would define  c and conjugate light-like direction.
An attractive possibility is that � allows analytic continuation to a holomorphic function of
w. In this manner one would have four coordinates for M4 also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M2(x) ⇢ M4 = M2

x ⇥ E2
x representing momentum plane and polarization plane

E2 ⇢ E2
x⇥T (CP2). The moduli space of planes E2 ⇢ E6 is 8-dimensional and parametrized

by SO(6)/SO(2) ⇥ SO(4) for a given E2
x. How can one achieve this selection and what

conditions it must satisfy? Certainly the choice must be integrable but this is not the only
condition.

Space-time surfaces as associative/co-associative surfaces

The idea that number theory determines classical dynamics in terms of associativity condition
means that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-
time. It took several trials before the recent form of this hypothesis was achieved.

1. Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the imbedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds
to a preferred time axes (and rest frame) identified naturally as that connecting the tips of
CD. What modified gamma matrices mean depends on variational principle for space-time
surface. For volume action one would obtain induced gamma matrices. For Kähler action
one obtains something di↵erent. In particular, the modified gamma matrices do not define
vector basis identical with tangent vector basis of space-time surface.

2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kähler action span quaternionic sub-
space of the octonionic tangent space [K18]. A further condition is that each quaternionic
space defined in this manner contains a preferred hyper-complex subspace of octonions.

3. The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at
given point. For instance, for massless extremals these densities are proportional to light-like
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vector so that the situation is degenerate and the space in question reduces to 2-D hyper-
complex sub-space since light-like vector defines plane M2.

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M2 ⇢ M4 for preferred extremals? For massless extremals [K5] this condition
would be true. The orthogonal decomposition T (X4) = M2 �? E2 can be defined at each
point if this is true. For massless extremals also the functions  and � can be identified.

2. One should answer also the following delicate question. Can M2 really depend on point x of
space-time? CP2 as a moduli space of quaternionic planes emerges naturally if M2 is same
everywhere. It however seems that one should allow an integrable distribution of M2

x such
that M2

x is same for all points of a given partonic 2-surface.

How could one speak about fixed CP2 (the imbedding space) at the entire space-time sheet
even when M2

x varies?

(a) Note first that G2 defines the Lie group of octonionic automorphisms and G2 action is
needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups
of G2 are related by G2 automorphism. Clearly, one must assign to each point of a
string world sheet in the slicing parameterizing the partonic 2-surfaces an element of
G2. One would have Minkowskian string model with G2 as a target space. As a matter
fact, this string model is defined in the target space G2/SU(3) having dimension D = 6
since SU(3) automorphisms leave given SU(3) invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units
and octonionic unit q1 with ”color isospin” I3 = 1/2 and ”color hypercharge” Y = �1/3
and its conjugate q1 with opposite color isospin and hypercharge.

(c) The CP2 point assigned with the quaternionic basis would correspond to the SU(3)
rotation needed to rotate the standard basis to this basis and would actually corre-
spond to the first row of SU(3) rotation matrix. Hyper-complex analyticity is the basic
property of the solutions of the field equations representing Minkowskian string world
sheets. Also now the same assumption is highly natural. In the case of string mod-
els in Minkowski space, the reduction of the induced metric to standard form implies
Virasoro conditions and similar conditions are expected also now. There is no need to
introduce action principle -just the hyper-complex analycitity is enough-since Kähler
action already defines it.

3. The WZW model inspired approach to the situation would be following. The parameteriza-
tion corresponds to a map g : X2 ! G2 for which g defines a flat G2 connection at string
world sheet. WZW type action would give rise to this kind of situation. The transition
G2 ! G2/SU(3) would require that one gauges SU(3) degrees of freedom by bringing in
SU(3) connection. Similar procedure for CP2 = SU(3)/U(2) would bring in SU(3) valued
chiral field and U(2) gauge field. Instead of introducing these connections one can simply
introduce G2/SU(3) and SU(3)/U(2) valued chiral fields. What this observation suggests
that this ansatz indeed predicts gluons and electroweak gauge bosons assignable to string
like objects so that the mathematical picture would be consistent with physical intuition.

The two interpretations of CP2

An old observation very relevant for what I have called M8 �H duality [K13] is that the moduli
space of quaternionic sub-spaces of octonionic space (identifiable as M8) containing preferred
hyper-complex plane is CP2. Or equivalently, the space of two planes whose addition extends
hyper-complex plane to some quaternionic subspace can be parametrized by CP2. This CP2

can be called it CPmod
2 to avoid confusion. In the recent case this would mean that the space

E2(x) ⇢ E2
x ⇥ T (CP2) is represented by a point of CPmod

2 . On the other hand, the imbedding of
space-time surface to H defines a point of ”real” CP2. This gives two di↵erent CP2s.

http://en.wikipedia.org/wiki/G2_(mathematics)
http://en.wikipedia.org/wiki/WZW_model
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1. The highly suggestive idea is that the identification CPmod
2 = CP2 (apart from isometry) is

crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to CP2 would fix the local polarization plane completely. This condition for E2(x)
would be purely local and depend on the values of CP2 coordinates only. Second condition
for E2(x) would involve the gradients of imbedding space coordinates including those of CP2

coordinates.

2. The conditions that the planes M2
x form an integrable distribution at space-like level and that

M2
x is determined by the modified gamma matrices. The integrability of this distribution for

M4 could imply the integrability for X2. X4 would di↵er from M4 only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M2s.

Does this mean that one can begin from vacuum extremal with constant values of CP2

coordinates and makes them non-constant but allows to depend only on transversal degrees
of freedom? This condition is too strong even for simplest massless extremals for which CP2

coordinates depend on transversal coordinates defined by ✏ ·m and ✏ · k. One could however
allow dependence of CP2 coordinates on light-like M4 coordinate since the modification of
the induced metric is light-like so that light-like coordinate remains light-like coordinate in
this modification of the metric.

Therefore, if one generalizes directly what is known about massless extremals, the most
general dependence of CP2 points on the light-like coordinates assignable to the distribu-
tion of M2

x would be dependence on either of the light-like coordinates of Hamilton-Jacobi
coordinates but not both.

5.3.4 What could be the construction recipe for the preferred extremals
assuming CP

2

= CPmod

2

identification?

The crucial condition is that the planes E2(x) determined by the point of CP2 = CPmod
2 identifica-

tion and by the tangent space of E2
x ⇥CP2 are same. The challenge is to transform this condition

to an explicit form. CP2 = CPmod
2 identification should be general coordinate invariant. This

requires that also the representation of E2 as (e2, e3) plane is general coordinate invariant suggest-
ing that the use of preferred CP2 coordinates - presumably complex Eguchi-Hanson coordinates
- could make life easy. Preferred coordinates are also suggested by number theoretical vision. A
careful consideration of the situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of
X4 but not in general identical with the tangent space: this would be the case only if the action
were 4-volume. I will use the notation Tm

x (X4) about the modified tangent space and call the
vectors of Tm

x (X4) modified tangent vectors. I hope that this would not cause confusion.

CP2 = CPmod
2 condition

Quaternionic property of the counterpart of Tm
x (X4) allows an explicit formulation using the

tangent vectors of Tm
x (X4).

1. The unit vector pair (e2, e3) should correspond to a unique tangent vector of H defined
by the coordinate di↵erentials dhk in some natural coordinates used. Complex Eguchi-
Hanson coordinates [L1] are a natural candidate for CP2 and require complexified octonionic
imaginary units. If octonionic units correspond to the tangent vector basis of H uniquely,
this is possible.

2. The pair (e2, e3) as also its complexification (q1 = e2 + ie3, q1 = e2 � ie3) is expressible as a
linear combination of octonionic units I2, ...I7 should be mapped to a point of CPmod

2 = CP2

in canonical manner. This mapping is what should be expressed explicitly. One should
express given (e2, e3) in terms of SU(3) rotation applied to a standard vector. After that
one should define the corresponding CP2 point by the bundle projection SU(3) ! CP2.

3. The tangent vector pair

(@wh
k, @wh

k)
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defines second representation of the tangent space of E2(x). This pair should be equivalent
with the pair (q1, q1). Here one must be however very cautious with the choice of coordinates.
If the choice of w is unique apart from constant the gradients should be unique. One can use
also real coordinates (x, y) instead of (w = x+ iy, w = x� iy) and the pair (e2, e3). One can
project the tangent vector pair to the standard vielbein basis which must correspond to the
octonionic basis

(@xh
k, @yh

k) ! (@xh
keAk eA, @yh

keAk )eA) $ (e2, e3) ,

where the eA denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (e2, e3) derived from the knowledge of CP2

projection.

Formulation of quaternionicity condition in terms of octonionic structure constants

One can consider also a formulation of the quaternionic tangent planes in terms of (e2, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic
algebra. The expressions for octonionic resp. quaternionic structure constants can be found at
[A17] resp. [A20].

1. The ansatz is

{Ek} = {1, I1, E2, E3} ,

E2 = E2ke
k ⌘

7X
k=2

E2ke
k , E3 = E3ke

k ⌘
7X

k=2

E3ke
k ,

|E2| = 1 , |E3| = 1 . (5.3.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle [A17]
gives

f1klE2k = E3l , f1klE3k = �E2l , fklrE2kE3l = �r1 . (5.3.2)

Here the indices are raised by unit metric so that there is no di↵erence between lower and
upper indices. Summation convention is assumed. Also the contribution of the real unit is
present in the structure constants of third equation but this contribution must vanish.

3. The conditions are linear and quadratic in the coe�cients E2k and E3k and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coe�cient matrix acting on (E2, E3) is of the form✓

f1 1
�1 f1

◆
,

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due
to the highly symmetric properties of the structure constants. In fact the equations can be
written as eigen conditions

f1 � (E2 ± iE3) = ⌥i(E2 ± iE3) ,

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I1 analogous to color hyper charge. Both values of color hyper charged are obtained.

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Quaternions
http://en.wikipedia.org/wiki/Octonion
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Explicit expression for the CP2 = CPmod
2 conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like (1, 1, 3, 3) under
SU(3). Note the analogy of triplet with color triplet of quarks. One can write complexified
basis as (1, e1, (q1, q2, q3), (q1q2, q3)). The expressions for complexified basis elements are

(q1, q2, q3) =
1p
2
(e2 + ie3, e4 + ie5, e6 + ie7) .

These options can be seen to be possible by studying octonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind of line
can be used to form pair of complexified unit and its conjugate. In the tangent space of
M4 ⇥ CP2 the basis vectors q1, and q2 are mixtures of E2

x and CP2 tangent vectors. q3
involves only CP2 tangent vectors and there is a temptation to interpret it as the analog of
the quark having no color isospin.

2. The quaternionic basis is real and must transform like (1, 1, q1, q1), where q1 is any quark
in the triplet and q1 its conjugate in antitriplet. Having fixed some basis one can perform
SU(3) rotations to get a new basis. The action of the rotation is by 3 ⇥ 3 special unitary
matrix. The over all phases of its rows do not matter since they induce only a rotation in
(e2, e3) plane not a↵ecting the plane itself. The action of SU(3) on q1 is simply the action
of its first row on (q1, q2, q3) triplet:

q1 ! (Uq)1 = U11q1 + U12q2 + U13q3 ⌘ z1q1 + z2q2 + z3q3

= z1(e2 + ie3) + z2(e4 + ie5) + z3(e6 + ie7) . (5.3.3)

The triplets (z1, z2, z3) defining a complex unit vector and point of S5. Since overall phase
does not matter a point of CP2 is in question. The new real octonion units are given by the
formulas

e2 ! Re(z1)e2 +Re(z2)e4 +Re(z3)e6 � Im(z1)e3 � Im(z2)e5 � Im(z3)e7 ,

e3 ! Im(z1)e2 + Im(z2)e4 + Im(z3)e6 +Re(z1)e3 +Re(z2)e5 +Re(z3)e7 .

(5.3.4)

For instance the CP2 coordinates corresponding to the coordinate patch (z1, z2, z3) with
z3 6= 0 are obtained as (⇠1, ⇠2) = (z1/z3, z2/z3).

Using these expressions the equations expressing the conjecture CP2 = CPmod
2 equivalence can

be expressed explicitly as first order di↵erential equations. The conditions state the equivalence

(e2, e3) $ (@xh
keAk eA, @yh

keAk eA) , (5.3.5)

where eA denote octonion units. The comparison of two pairs of vectors requires normalization
of the tangent vectors on the right hand side to unit vectors so that one takes unit vector in the
direction of the tangent vector. After this the vectors can be equated. This allows to expresses
the contractions of the partial derivatives with vielbein vectors with the 6 components of e2 and
e3. Each condition gives 6+6 first order partial di↵erential equations which are non-linear by the
presence of the overal normalization factor for the right hand side. The equations are invariant
under scalings of (x, y). The very special form of these equations suggests that some symmetry is
involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamilton-Jacobi coordinates for M4 and Eguchi-Hanson complex co-
ordinates in which SU(2)⇥ U(1) is represented linearly for CP2. These coordinates are preferred
because they carry deep physical meaning.

http://en.wikipedia.org/wiki/Octonion
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Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP2 = CPmod
2

conditions one has what one might call string model with 6-dimensional G2/SU(3) as targent
space. The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable as a point
of G2/SU(3) defining what one means with standard quaternionic plane at given point of string
world sheet. The hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and par-
tonic 2-surfaces central for the proposed mathematical applications of TGD [K23, K24, K50, K63].
This duality suggests that the solutions to the CP2 = CPmod

2 conditions could reduce to holomor-
phy with respect to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions.
The dependence on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regarded as dual
string models inG2/SU(3) and SU(3)/U(2) and also to string model inM4 andX4! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-
surfaces. TGD seems to yield an inflation of string models! This not actually surprising since the
slicing of space-time sheets by string world sheets and partonic 2-surfaces implies automatically
various kinds of maps having interpretation in terms of string orbits.

5.4 Handful of problems with a common resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It
is essential to make trials, even if one is aware that they are probably wrong. When stares long
enough to the letters which do not quite fit, one suddenly realizes what one particular crossword
must actually be and it is soon clear what those other crosswords are. In the following I describe
an example in which this analogy is rather concrete.

I will first summarize the problems of ordinary Dirac action based on induced gamma ma-
trices and propose modified Dirac action (or Kähler Dirac action as solution). After that I will
describe the general structures of Kähler action and Kähler Dirac action. The non-trivial terms
are associated to 3-D boundary like surfaces - that is ends of space-time surface inside CD and
light-like 3-surfaces at which the signature of the induced metric changes. These terms are induced
as Lagrange multiplier terms guaranteeing weak form of E-M duality and quantum classical corre-
spondence (QCC) between classical and quantal Cartan charges. The condition guaranteeing that
Chern-Simons Dirac propagator reduces to ordinary massless Dirac propagator must be however
assumed as a property of the modes of Kähler Dirac equation rather than forced by a separate
term in the Kähler-Dirac action as thought originally.

5.4.1 Why modified Dirac action?

Problems associated with the ordinary Dirac action

In the following the problems of the ordinary Dirac action are discussed and the notion of modified
Dirac action is introduced.

Minimal 2-surface represents a situation in which the representation of surface reduces to a
complex-analytic map. This implies that induced metric is hermitian so that it has no diagonal
components in complex coordinates (z, z) and the second fundamental form has only diagonal
components of type Hk

zz. This implies that minimal surface is in question since the trace of the
second fundamental form vanishes. At first it seems that the same must happen also in the more
general case with the consequence that the space-time surface is a minimal surface. Although
many basic extremals of Kähler action are minimal surfaces, it seems di�cult to believe that
minimal surface property plus extremization of Kähler action could really boil down to the absolute
minimization of Kähler action or some other general principle selecting preferred extremals as Bohr
orbits [K10, K52] .

This brings in mind a similar long-standing problem associated with the Dirac equation for the
induced spinors. The problem is that right-handed neutrino generates super-symmetry only pro-
vided that space-time surface and its boundary are minimal surfaces. Although one could interpret
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this as a geometric symmetry breaking, there is a strong feeling that something goes wrong. In-
duced Dirac equation and super-symmetry fix the variational principle but this variational principle
is not consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the induced spinors
is consistent with the super-symmetry of the WCW geometry. Super-symmetry would obviously
require that for vacuum extremals of Kähler action also induced spinor fields represent vacua. This
is however not the case. This super-symmetry is however assumed in the construction of WCW
geometry so that there is internal inconsistency.

Super-symmetry forces modified Dirac equation

The above described three problems have a common solution. Nothing prevents from starting
directly from the hypothesis of a super-symmetry generated by covariantly constant right-handed
neutrino and finding a Dirac action which is consistent with this super-symmetry. Field equations
can be written as

D↵T
↵
k = 0 ,

T↵
k =

@

@hk
↵

LK . (5.4.1)

If super-symmetry is present one can assign to this current its super-symmetric counterpart

J↵k = ⌫R�
kT↵

l �
l ,

D↵J
↵k = 0 . (5.4.2)

having a vanishing divergence. The isometry currents currents and super-currents are obtained by
contracting T↵

k and J↵
k with the Killing vector fields of super-symmetries. Note also that the

super current

J↵ = ⌫RT
↵
l �

l (5.4.3)

has a vanishing divergence.
By using the covariant constancy of the right-handed neutrino spinor, one finds that the diver-

gence of the super current reduces to

D↵J
↵k = ⌫R�

kT↵
l �

lD↵ .

(5.4.4)

The requirement that this current vanishes is guaranteed if one assumes that modified Dirac
equation

�̂↵D↵ = 0 ,

�̂↵ = T↵
l �

l . (5.4.5)

This equation must be derivable from a modified Dirac action. It indeed is. The action is given by

L =  �̂↵D↵ . (5.4.6)

Thus the variational principle exists. For this variational principle induced gamma matrices are
replaced with e↵ective induced gamma matrices and the requirement

Dµ�̂
µ = 0 (5.4.7)
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guaranteeing that super-symmetry is identically satisfied if the bosonic field equations are satis-
fied. For the ordinary Dirac action this condition would lead to the minimal surface property.
What sounds strange that the essentially hydrodynamical equations defined by Kähler action have
fermionic counterpart: this is very far from intuitive expectations raised by ordinary Dirac equation
and something which one might not guess without taking super-symmetry very seriously.

How can one avoid minimal surface property?

These observations suggest how to avoid the emergence of the minimal surface property as a
consequence of field equations. It is not induced metric which appears in field equations. Rather,
the e↵ective metric appearing in the field equations is defined by the anti-commutators of �̂µ

ĝµ⌫ = {�̂µ, �̂⌫} = 2T k
µT⌫k . (5.4.8)

Here the index raising and lowering is however performed by using the induced metric so that
the problems resulting from the non-invertibility of the e↵ective metric are avoided. It is this
dynamically generated e↵ective metric which must appear in the number theoretic formulation of
the theory.

Field equations state that space-time surface is minimal surface with respect to the e↵ective
metric. Note that a priori the choice of the bosonic action principle is arbitrary. The requirement
that e↵ective metric defined by energy momentum tensor has only non-diagonal components except
in the case of non-light-like coordinates, is satisfied for the known solutions of field equations.

Does the modified Dirac action define the fundamental action principle?

There is quite fundamental and elegant interpretation of the modified Dirac action as a fundamental
action principle discussed also in [K52] . In this approach vacuum functional can be defined as the
Grassmannian functional integral associated with the exponent of the modified Dirac action. This
definition is invariant with respect to the scalings of the Dirac action so that theory contains no
free parameters.

An alternative definition is as a Dirac determinant which might be calculated in TGD framework
without applying the poorly defined functional integral. There are good reasons to expect that the
Dirac determinant equals to the exponent of Kähler function for a preferred Bohr orbit like extremal
of the Kähler action with the value of Kähler coupling strength coming out as a prediction. Hence
the dynamics of the modified Dirac action at light-like partonic 3-surfaces X3

l , even when restricted
to almost-topological dynamics induced by Chern-Simons action, would dictate the dynamics at
the interior of the space-time sheet.

The knowledge of the symplectic currents and super-currents, together with the anti-commutation
relations stating that the fermionic super-currents SA and SB associated with HamiltoniansHA and
HB anti-commute to a bosonic current H[A,B], allows in principle to deduce the anti-commutation
relations satisfied by the induced spinor field. In fact, these conditions replace the usual anti-
commutation relations used to quantize free spinor field. Since the normal ordering of the Dirac
action would give Kähler action,

Kähler coupling strength would be determined completely by the anti-commutation relations
of the super-symplectic algebra. Kähler coupling strength would be dynamical and the selection
of preferred extremals of Kähler action would be more or less equivalent with quantum criticality
because criticality corresponds to conformal invariance and the hyper-quaternionic version of the
super-conformal invariance results only for the extrema of Kähler action. p-Adic (or possibly
more general) coupling constant evolution and quantum criticality would come out as a prediction
whereas in the case that Kähler action is introduced as primary object, the value of Kähler coupling
strength must be fixed by quantum criticality hypothesis.

The mixing of the M4 chiralities of the imbedding space spinors serves as a signal for particle
massivation and breaking of super-conformal symmetry. The induced gamma matrices for the
space-time surfaces which are deformations of M4 indeed contain a small contribution from CP2

gamma matrices: this implies a mixing of M4 chiralities even for the modified Dirac action so that
there is no need to introduce this mixing by hand.
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5.4.2 Overall view about Kähler action and Kähler Dirac action

In the following the most recent view about Kähler action and the modified Dirac action (Kähler-
Dirac action) is explained in more detail.

1. The minimal formulation involves in the bosonic case only 4-D Kähler action with Chern-
Simons boundary term localized to partonic orbits at which the signature of the induced
metric changes. The coe�cient of Chern-Simons term is chosen so that this contribution to
bosonic action cancels the Chern-Simons term coming from Kähler action (by weak form of
electric-magnetic duality) so that for preferred extremals Kähler action reduces to Chern-
Simons terms at the ends of space-time surface at boundaries of causal diamond (CD).

There are constraint terms expressing weak form of electric-magnetic duality and constraints
forcing the total quantal charges for Kähler-Dirac action in Cartan algebra to be identical
with total classical charges for Kähler action. This realizes quantum classical correspondence.
The constraints do not a↵ect quantum fluctuating degrees of freedom if classical charges
parametrize zero modes so that the localization to a quantum superposition of space-time
surfaces with same classical charges is possible.

2. By supersymmetry requirement the modified Dirac action corresponding to the bosonic action
is obtained by associating to the various pieces in the bosonic action canonical momentum
densities and contracting them with imbedding space gamma matrices to obtain modified
gamma matrices. This gives rise to Kähler-Dirac equation in the interior of space-time
surface. At partonic orbits one only assumes that spinors are generalized eigen modes of
Chern-Simons Dirac operator with generalized eigenvalues pk�k identified as virtual four-
momenta so that C-S-D term gives fermionic propagators. At the ends of space-time surface
one obtains boundary conditions stating in absence of measurement interaction terms that
fundamental fermions are massless on-mass-shell states.

Lagrange multiplier terms in Kähler action

Weak form of E-M duality can be realized by adding to Kähler action 3-D constraint terms realized
in terms of Lagrange multipliers. These contribute to the Chern-Simons Dirac action too by
modifying the definition of the modified gamma matrices.

Quantum classical correspondence (QCC) is the principle motivating further additional terms
in Kähler action.

1. QCC suggests a correlation between 4-D geometry of space-time sheet and quantum numbers.
This could result if the classical charges in Cartan algebra are identical with the quantal ones
assignable to Kähler-Dirac action. This would give very powerful constraint on the allowed
space-time sheets in the superposition of space-time sheets defining WCW spinor field. An
even strong condition would be that classical correlation functions are equal to quantal ones.

2. The equality of quantal and classical Cartan charges could be realized by adding constraint
terms realized using Lagrange multipliers at the space-like ends of space-time surface at the
boundaries of CD. This procedure would be very much like the thermodynamical procedure
used to fix the average energy or particle number of the the system using Lagrange multipliers
identified as temperature or chemical potential. Since quantum TGD can be regarded as
square root of thermodynamics in zero energy ontology (ZEO), the procedure looks logically
sound.

3. The consistency with Kähler-Dirac equation for which Chern-Simons boundary term at par-
ton orbits (not genuine boundaries) seems necessary suggests that also Kähler action has
Chern-Simons term as a boundary term at partonic orbits. Kähler action would thus reduce
to contributions from the space-like ends of the space-time surface.

Boundary terms for Kähler-Dirac action

Weak form of E-M duality implies the reduction of Kähler action to Chern-Simons terms for
preferred extremals satisfying j ·A = 0 (contraction of Kähler current and Kähler gauge potential
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vanishes). One obtains Chern-Simons terms at space-like 3-surfaces at the ends of space-time
surface at boundaries of causal diamond and at light-like 3-surfaces defined by parton orbits having
vanishing determinant of induced 4-metric. The naive guess that consistency requires Kähler-Dirac-
Chern Simons equation at partonic orbits. This need not however be correct and therefore it is
best to carefully consider what one wants.

1. What one wants?

It is could to make first clear what one really wants.

1. What one wants is generalized Feynman diagrams demanding massless Dirac propagators at
the boundaries of string world sheets interpreted as fermionic lines of generalized Feynman
diagrams. This gives hopes that twistor Grassmannian approach emerges at QFT limit. This
boils down to the condition

p
g4�

n = pk�k = 0

at the space-like ends of space-time surface. The general idea is that the space-time geometry
near the fermion line would define the on mass shell massless four-momentum propagating
along the line and quantum classical correspondence would be realized.

The basic condition is thus that
p
g4�n is constant at the space-like boundaries of string

world sheets and depends only on the piece of this boundary representing fermion line rather
than on its point. Otherwise the propagator does not exist as a global notion. Constancy
allows to write

p
g4�n = pk�k since only M4 gamma matrices are constant.

Partonic orbits are not boundaries in the usual sense of the word and this condition is not
elegant at them since g4 vanishes at them. The assignement of Chern-Simons Dirac action
to partonic orbits required to be continuous at them solves the problems. One can require
that the induced spinors are generalized eigenstates of C-S-D operator with eigenvalues with
correspond to virtual four-moment. This guarantees that one obtains massless Dirac propa-
gator from C-S-D action. Note that the localization of induced spinor fields to string world
sheets implies that fermionic propagation takes place along their boundaries and one obtains
the braid picture.

2. If pk associated with the partonic orbit is light-like one can assume massless Dirac equation
and restriction of the induced spinor field inside the Euclidian regions defining the line of
generalized Feynman diagram since the fermion current in the normal direction vanishes.
The interpretation would be as on mass-shell massless fermion. If pk is not light-like, this
is not possible and induced spinor field is delocalized outside the Euclidian portions of the
line of generalized Feynman diagram: interactions would be basically due to the dispersion
of induced spinor fields to Minkowskian regions. The interpretation would be as a virtual
particle. The challenge is to find whether this interpretation makes sense and whether it
is possible to articulate this idea mathematically. The alternative assumption is that also
virtual particles can localized inside Euclidian regions.

3. One can wonder what the spectrum of pk could be. If the identification of pk as virtual
momentum is correct, continuous mass spectrum suggests itself. Boundary conditions at
the ends of CD might imply quantized mass spectrum and the study of C-S-D equation
indeed suggets this if periodic boundary conditions are assumed. For the incoming lines of
generalized Feynman diagram one expects light-like momenta so that �n should be light-like.
This assumption is consistent with super-conformal invariance since physical states would
correspond to bound states of massless fermions, whose four-momenta need not be parallel.
Stringy mass spectrum would be outcome of super-conformal invariance and 2-sheetedness
forced by boundary conditions for Kähler action would be essential for massivation.

2. Chern-Simons Dirac action from mathematical consistency
A further natural condition is that the possible boundary term is well-defined. At partonic

orbits the boundary term of Kähler-Dirac action need not be well-defined since
p
g4�n becomes

singular. This leaves only Chern-Simons Dirac action
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 �↵C�SD↵ 

under consideration at both sides of the partonic orbits and one can consider continuity of C-S-D
action as the boundary condition. Here �↵C�S denotes the C-S-D gamma matrix, which does not
depend on the induced metric and is non-vanishing and well-defined. This picture conforms also
with the view about TGD as almost topological QFT.

One could restrict Chern-Simons-Dirac action to partonic orbits since they are special in the
sense that they are not genuine boundaries. Also Kähler action would naturally contain Chern-
Simons term.

One can require that the action of Chern-Simons Dirac operator is equal to multiplication with
ipk�k so that massless Dirac propagator is the outcome. Since Chern-Simons term involves only
CP2 gamma matrices this would define the analog of Dirac equation at the level of imbedding space.
I have proposed this equation already earlier and introduction this it as generalized eigenvalue
equation having pseudomomenta pk as its solutions.

If C-S-D and C-S terms are assigned also with the space-like ends of space-time surface, Kähler
action and Kähler function vanish identically if the weak form of em duality holds true. Hence
C-S-D and C-S terms can be assigned only with partonic orbits. If space-like ends of space-time
surface involve no Chern-Simons term, one obtains the boundary condition

p
g4�

n = 0 (5.4.9)

at them.  would behave like massless mode locally. The condition
p
g4�n = ��kpk = 0 would

state that incoming fermion is massless mode globally. The physical interpretation would be as
incoming massless fermions.

Constraint terms at space-like ends of space-time surface

There are constraint terms coming from the condition that weak form of electric-magnetic duality
holds true and also from the condition that classical charges for the space-time sheets in the
superposition are identical with quantal charges which are net fermionic charges assignable to the
strings.

These terms give additional contribution to the algebraic equation �n = 0 making in partial
di↵erential equation reducing to ordinary di↵erential equation if induced spinor fields are local-
ized at 2-D surfaces. These terms vanish if  is covariantly constant along the boundary of the
string world sheet so that fundamental fermions remain massless. By 1-dimensionality covariant
constancy can be always achieved.

Some details about Chern-Simons Dirac equation

To avoid confusion some general comments are in order. Only the Chern-Simons Dirac operator
will be considered. Modified gamma matrices contain also the contribution from the Lagrange
multiplier term stating weak form of electric-magnetic duality. At space-like 3-surface one has
also the contribution coming from the Lagrange multiplier terms identifying classical and quantal
charges in Cartan algebra.

When C-S-D action at partonic orbits is included, one obtains what I have called generalized
eigenvalue equation introduced in ad hoc manner in order to define Dirac determinant. Now Dirac
determinant at least formally reduces to the same expression as in massless gauge theories. Dirac
determinant could be also defined directly as the product of generalized eigenvalues pk�k defining
virtual momenta propagating in fermion lines. Also the identification as hyperquaternions makes
sense and the outcome is by symmetries real number or perhaps complex number.

One can of course wonder whether the Dirac determinant has anything to do with the exponent
of Kähler action! Measurement interaction term states that the action of DC�S modified by
the contribution from em-duality constraint is identical with that of the Dirac operator of M4

regarded as algebraic multiplication with pk�k, where pk is the four-momentum associated with the
propagator line defined by the light-like orbit of parton. This simplifies the formalism enormously
and gives a direct connection with similar condition posed independently in twistorial approach
[K44].
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One can require that the modes annihilated by Kähler-Dirac operator are eigenstates of C-S-D
oeprator with generalized eigenvalues pk�k giving rise to fermion propagator Consider now the
properties of eigenmodes of DC�S .

1. For pk = 0 there is vacuum avoidance in the sense that  must vanish in the regions where
the modified gamma matrices vanish.

2. If only CP2 Kähler form appears in the Kähler action, the modified Dirac action defined by
the Chern-Simons term is non-vanishing only when the dimension of the CP2 projection of
the 3-surface is D(CP2) � 2 and the induced Kähler field is non-vanishing. This conforms
with the properties of Kähler action.

D(CP2)  2 is inconsistent with the weak form of electric-magnetic duality. The extrema
of Chern-Simons action have D(CP2)  2 and vanishing Chern-Simons density so that they
would naturally represent on mass shell particles appearing as incoming and outgoing parti-
cles. This conforms with the interpretation of the basic extremals as free particles (massless
extremals and cosmic strings with 2-D CP2 projection). One could say that CP breaking is
not present for free particles but unavoidably accompanies the propagator lines.

The explicit expression of DC�S without constraint terms from the weak form of electric-
magnetic duality is given by

D = �̂µDµ +
1

2
Dµ�̂

µ ,

�̂µ =
@LC�S

@µhk
�k = ✏µ↵�

⇥
2Jkl@↵h

lA� + J↵�Ak

⇤
�kDµ ,

Dµ�̂
µ = B↵

K(Jk↵ + @↵Ak) ,

B↵
K = ✏↵��J�� , Jk↵ = Jkl@↵s

l , ✏̂↵�� = ✏↵��
p
g3 . (5.4.10)

Note ✏̂↵�� does not depend on the induced metric.
The extremals of Chern-Simons action satisfy

B↵
K(Jkl + @lAk)@↵h

l = 0 , B↵
K = ✏↵��J�� . (5.4.11)

For non-vanishing Kähler magnetic field B↵ these equations hold true when CP2 projection is
2-dimensional and S2 projection is 1-dimensional or vice versa. This implies a vanishing of Chern-
Simons action for both options. Consider for the simplicity the case when S2 projection is 1-
dimensional.

1. Suppose that one can assign a global coordinate to the flow lines of the Kähler magnetic field.
In this case one might hope that ordinary intuitions about motion in constant magnetic field
might be helpful. The repetition of the discussion of [K22] leads to the condition B^dB = 0
implying that a Beltrami flow for which current flows along the field lines and Lorentz forces
vanishes is in question. This need not be the generic case.

2. With this assumption the Chern-Simons Dirac operator reduces to a one-dimensional Dirac
operator

D = ✏̂r↵�
⇥
2Jkl@↵h

lA� + J↵�Ak

⇤
�kDr . (5.4.12)

3. Consider first the general solutions of the modified Dirac equation when M4 Dirac operator
pk�k annhilates the spinor so that on mass shell massless fermion is in question. The spinor
is covariantly constant with respect to the coordinate r:

Dr = 0 . (5.4.13)
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The solution to this condition can be written immediately in terms of a non-integrable phase
factor Pexp(i

R
Ardr), where integration is along curve with constant transversal coordinates.

If �̂v is light-like vector field also �̂v 0 defines a solution of DC�S . This solution corresponds
to a zero mode for DC�S and does not contribute to the Dirac determinant. Note that the
dependence of these solutions on transversal coordinates of X3

l is arbitrary.

4. For internal lines pk�k does not annihilate the spinor although four-momentum can be still
on mass shell if the spinor has unphysical helicity. In this case the equation is modified.
Again the modes can be localized to 1-D curves.

5. The formal solution associated with a general eigenvalue can be constructed by integrating
the eigenvalue equation separately along all coordinate curves. This makes sense if r indeed
assigned to light-like curves indeed defines a global coordinate.

The localization is of utmost importance since and is consistent with the localization of the
modes (other than right-handed neutrino) of Kähler Dirac equation at string world sheets discussed
in chapter [K69]. String ends would thus define braid strands. The absence of correlation between
the behaviors with respect longitudinal coordinate and transversal coordinates looked very strange
at first glance. System looked like a collection of totally uncorrelated point like particles reflecting
the flow of the current along flux lines.

5.4.3 A connection with quantum measurement theory

It is encouraging that isometry charges and also other charges could make themselves visible in the
geometry of space-time surface as they should by quantum classical correspondence. This suggests
an interpretation in terms of quantum measurement theory.

1. The interpretation resolves the problem caused by the fact that the choice of the commut-
ing isometry charges is not unique. Cartan algebra corresponds naturally to the measured
observables. For instance, one could choose the Cartan algebra of Poincare group to consist
of energy and momentum, angular momentum and boost (velocity) in particular direction
as generators of the Cartan algebra of Poincare group. In fact, the choices of a preferred
plane M2 ⇢ M4 and geodesic sphere S2 ⇢ CP2 allowing to fix the measurement sub-algebra
to a high degree are implied by the replacement of the imbedding space with a book like
structure forced by the hierarchy of Planck constants. Therefore the hierarchy of Planck
constants seems to be required by quantum measurement theory. One cannot overemphasize
the importance of this connection.

2. One can add similar couplings of the net values of the measured observables to the cur-
rents whose existence and conservation is guaranteed by quantum criticality. It is essential
that one maps the observables to Cartan algebra coupled to critical current characterizing
the observable in question. The coupling should have interpretation as a replacement of
the induced Kähler gauge potential with its gauge transform. Quantum classical correspon-
dence encourages the identification of the classical charges associated with Kähler action with
quantal Cartan charges. This would support the interpretation in terms of a measurement
interaction feeding information to classical space-time physics about the eigenvalues of the
observables of the measured system. The resulting field equations remain second order par-
tial di↵erential equations since the second order partial derivatives appear only linearly in
the added terms.

3. What about the space-time correlates of electro-weak charges? The earlier proposal explains
this correlation in terms of the properties of quantum states: the coupling of electro-weak
charges to Chern-Simons term could give the correlation in stationary phase approximation.
It would be however very strange if the coupling of electro-weak charges with the geometry
of the space-time sheet would not have the same universal description based on quantum
measurement theory as isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-
answered question motivated by the fact that electro-weak gauge group identifiable as
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the holonomy group of CP2 can be identified as U(2) subgroup of color group. Could
the electro-weak charges be identified as classical color charges? This might make sense
since the color charges have also identification as fermionic charges implied by quantum
criticality. Or could electro-weak charges be only represented as classical color charges
by mapping them to classical color currents in the measurement interaction term in the
modified Dirac action? At least this question might make sense.

(b) It does not make sense to couple both electro-weak and color charges to the same fermion
current. There are also other fundamental fermion currents which are conserved. All
the following currents are conserved.

J↵ =  O�̂↵ 

O 2 {1 , J ⌘ Jkl⌃
kl , ⌃AB , ⌃ABJ} . (5.4.14)

Here Jkl is the covariantly constant CP2 Kähler form and ⌃AB is the (also covariantly)
constant sigma matrix of M4 (flatness is absolutely essential).

(c) Electromagnetic charge can be expressed as a linear combination of currents correspond-
ing to O = 1 and O = J and vectorial isospin current corresponds to J . It is natural
to couple of electromagnetic charge to the the projection of Killing vector field of color
hyper charge and coupling it to the current defined by Oem = a + bJ . This allows to
interpret the puzzling finding that electromagnetic charge can be identified as anoma-
lous color hyper-charge for induced spinor fields made already during the first years
of TGD. There exist no conserved axial isospin currents in accordance with CVC and
PCAC hypothesis which belong to the basic stu↵ of the hadron physics of old days.

(d) Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple
of the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = ±1
color partial waves). If electro-weak resp. couplings to H-chirality are proportional to
1 resp. �9, the fermionic currents assigned to color and electro-weak charges can be
regarded as independent. This explains why the possibility of both vectorial and axial
couplings in 8-D sense does not imply the doubling of gauge bosons.

(e) There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in principle
to couple an arbitrary number of observables to the geometry of the space-time sheet by
mapping them to Cartan algebras of Poincare and color group for a particular conserved
quantum critical current. Quantum criticality would therefore make possible classical
space-time correlates of observables necessary for quantum measurement theory.

(f) The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K ! K + f + f condition) should predict the spectrum of these
couplings. In the case of momentum the coupling would be proportional to

p
G/~0=

kR/~0 and k ⇠ 211 should follow from quantum criticality. p-Adic coupling constant
evolution should follow from the dependence on the scale of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surpris-
ing that quantum criticality is needed to produce a correlation between quantal degrees of
freedom and macroscopic degrees of freedom. Note that quantum classical correspondence
can be regarded as an abstract form of entanglement induced by the entanglement between
quantum charges QA and fermion number type charges assignable to zero modes.

5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpre-
tation in terms of measurement theory coupling short and long length scales suggests that
the measurement interaction terms are localizable at the wormhole throats. This would fa-
vor Chern-Simons term or possibly instanton term if reducible to Chern-Simons terms. The
breaking of CP and T might relate to the fact that state function reductions performed in
quantum measurements indeed induce dissipation and breaking of time reversal invariance.
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The formulation of quantum TGD in terms of the modified Dirac action requires the ad-
dition of CP and T breaking Chern-Simons term and corresponding Chern-Simons Dirac
term to partonic orbits such that it cancels the similar contribution coming from Kähler ac-
tion. Chern-Simons Dirac term fixed by superconformal symmetry and gives rise to massless
fermionic propagators at the boundaries of string world sheets. This seems to be a natural
first principle explanation for the CP breaking as it manifests at the level of CKM matrix
and perhaps also in breaking of matter antimatter asymmetry.

6. The experimental arrangement quite concretely splits the quantum state to a quantum su-
perposition of space-time sheets such that each eigenstate of the measured observables in
the superposition corresponds to di↵erent space-time sheet already before the realization of
state function reduction. This relates interestingly to the question whether state function
reduction really occurs or whether only a branching of wave function defined by WCW spinor
field takes place as in multiverse interpretation in which di↵erent branches correspond to dif-
ferent observers. TGD inspired theory consciousness requires that state function reduction
takes place. Maybe multiversalist might be able to find from this picture support for his own
beliefs.

7. One can argue that ”free will” appears not only at the level of quantum jumps but also as the
possibility to select the observables appearing in the modified Dirac action dictating in turn
the Kähler function defining the Kähler metric of WCW representing the ”laws of physics”.
This need not to be the case. The choice of CD fixesM2 and the geodesic sphere S2: this does
not fix completely the choice of the quantization axis but by isometry invariance rotations
and color rotations do not a↵ect Kähler function for given CD and for a given type of Cartan
algebra. In M4 degrees of freedom the possibility to select the observables in two manners
corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting
Kähler functions are di↵erent. The corresponding Kähler metrics do not di↵er if the real
parts of the Kähler functions associated with the two choices di↵er by a term f(Z) + f(Z),
where Z denotes complex coordinates of WCW, the Kähler metric remains the same. The
function f can depend also on zero modes. If this is the case then one can allow in given CD
superpositions of WCW spinor fields for which the measurement interactions are di↵erent.
This condition is expected to pose non-trivial constraints on the measurement action and
quantize coupling parameters appearing in it.

5.4.4 How to calculate Dirac determinant?

If the modes of the modified Dirac equation (or Kähler-Dirac equation) are localized to 2-D string
world sheets as the well-definedness of em charge eigenvalue for the modes of induced spinor field
strongly suggests, the definition of Dirac determinant could be rather simple as following argument
shows.

The modes of Kähler-Dirac operator (modified Dirac operator) are localized at string world
sheets and are holomorphic spinors. K-D operator annihilates these modes so that Dirac determi-
nant must be assigned with the Chern-Simons Dirac term associated with the light-like partonic
orbits with vanishing metric determinant g4. Spinor modes at partonic orbits are assumed to be
generalized eigen modes of C-S-D operator with eigenvalues ipk�k, with pk interpreted as virtual
momentum of the fermion propagating along lined defined by the string world sheet boundary.
Therefore C-S-D term acts e↵ectively as massless Dirac action in perturbation theory.

The spectrum of pk is determined by the boundary conditions for C-S-D operator at the ends
of CD and periodic boundary conditions is one natural possibility. As in massless QFTs Dirac
determinant could be identified as a square root of the product of mass squared eigenvalues p2. If
the spectrum is unbounded, a regularization must be used. Finite measurement resolution means
UV and IR cuto↵s and would make Dirac determinant finite. Finite IR resolution would be due to
the fact that only space-time surfaces within CD and thus having finite size scale are considered.
UV resolution would be due to the lower limit on the size of sub-CDs.

One can however define Dirac determinant directly as the product of the generalized eigenvalues
pk�k or as product of hyper-quaternions defined by pk. By symmetry arguments the outcome must
be real.
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The full Dirac determinant would be product of Dirac determinants associated with various
string world sheets. Needless to say that this is an enormous calculational advantage. If Dirac
determinant identified in this manner reduces to exponent of Kähler action for preferred extremal
this definition of Dirac determinant should give exponent of Kähler function reducing by weak form
of electric-magnetic duality to exponent of Chern-Simons terms associated with the space-like ends
of the space-time surface. Euclidian and Minkowskian regions would give contributions di↵erent
by a phase factor

p
�1. The reduction of determinant to exponent of Chern-Simons terms would

guarantee its finiteness.
Before trying to calculate Dirac determinant it is good to try to guess what the reduction to

Chern Simons action could give as a result. This kind of guesses are of course highly speculative
but nothing prevents from trying.

1. Chern Simons action to which Kähler action is expected to reduce for the preferred extremals
should be expressible in terms of invariants associated with string world sheets. The only
invariant, which comes in mind is Kähler magnetic flux, which is zero mode and by general vi-
sion quantized as integer, rational or even algebraic number for surfaces for which parameters
in their defining representations correspond to finite algebraic extensions of rationals. For
instance, fluxes could belong to rationals with p-adic norm not larger than pn and allowing
realization as flux.

2. Finite measurement resolution suggests that the Kähler magnetic fluxes defined by J
p
g2,

which is constant in preferred coordinates by the internal consistency of quantization of in-
duced spinors, are quantized as integer multiplies or rationals or even algebraic numbers
corresponding to the hierarchy of algebraic extensions assignable to the parameters char-
acterizing space-time surfaces (say the coe�cients of polynomials defining the space-time
sheet). Therefore space-time surface itself would realize the finite measurement resolution
in their dynamics as the finiteness for the number of string world sheets and natural cuto↵s
for the generalized eigenvalue spectrum of C-S-D operator, and the calculation of Dirac de-
terminant using finite number of string world sheets would not be an approximation. Finite
measurement resolution would be also a property of state.

3. The value of k could depend on string world sheet so that one would obtain K(X3) /
P

i ki,
where the sum is sum over fluxes associated with string world sheets. Kähler function would
be equal to Chern-Simons term in turn equal to the sum of Kähler fluxes over all alowed
string world sheets: this looks indeed geometrically attractive.

4. The reduction of Chern-Simons action to a sum of terms proportional to Kähler fluxes takes
place if Chern-Simons action is apart from a vanishing integral of divergence proportional to
the sum

P
i

H
C

i

Aµdx⌫ around the string world sheet. This form would have interpretation in
terms of a coupling of charged particles at braid strands to Kähler potential so that particle
picture would emerge.

5. Since magnetic flux is conserved, one can argue that Chern-Simons term reduces to an integral
of constant magnetic flux J over transverse degrees of freedom multiplied by integral over
the boundary of string world sheet given by

H
C
Aµ(dxµ/ds)ds so that one indeed obtains

the desired result. The result is non-vanishing only for monopole flux. Elementary particles
indeed correspond to throats carrying monopole flux.

6. The arguent about finite measurement resolution can be of course criticized. An alternative
argument relies on idea that the sum over logariths of eigenvalues reduces to integral using as
measure the transversal induced Kähler form JT and the magnetic flux J over string world
sheet. This conforms with the existence of slicing by string world sheets labelled by points
of partonic 2-surface.

The formula would be

K /
I

J(x, y)JT dx
1 ^ dx2 . (5.4.15)
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This would be non-local analog for the local quadratic dependence of Kähler action on Kähler
form. This decomposition might have interpretation in terms of intersections of 2-D surfaces
in relative homology.

5.5 Quantum criticality and modified Dirac action

The precise mathematical formulation of quantum criticality has remained one of the basic chal-
lenges of quantum TGD. The belief has been that the existence of conserved current for modified
Dirac equation are possible if Kähler action is critical for the 3-surface in question in the sense
that the deformation in question corresponds to vanishing of second variation of Kähler action.
The vanishing of the second variation states that the deformation of the modified gamma matrix
is divergence free just like the modified gamma matrix itself and is therefore very natural.

2-D conformal invariance accompanies 2-D criticality and allows to satisfy these conditions for
spinor modes localized at 2-D surfaces - string world sheets and possibly also partonic 2-surfaces.
This localization is in the generic case forced by the conditions that em charge is well-defined for
the spinor modes: this requires that classical W fields vanish and also the vanishing of classical Z0

field is natural -at least above weak scale. Only 2 modified gamma matrices can be non-vanishing
and this is possible only for Kähler-Dirac action.

5.5.1 What quantum criticality could mean?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means math-
ematically is however far from clear and one can imagine several meanings for it.

1. What is obvious is that quantum criticality implies quantization of Kähler coupling strength
as a mathematical analog of critical temperature so that the theory becomes mathematically
unique if only single critical temperature is possible. Physically this means the presence of
long range fluctuations characteristic for criticality and perhaps assignable to the e↵ective
hierarchy of Planck constants having explanation in terms of e↵ective covering spaces of the
imbedding space. This hierarchy follows from the vacuum degeneracy of Kähler action, which
in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in terms of
criticality.

2. At more technical level one would expect criticality to correspond to deformations of a given
preferred extremal defining a vanishing second variation of Kähler Khler function or Kähler
action.

(a) For Kähler function this criticality is analogous to thermodynamical criticality. The
Hessian matrix defined by the second derivatives of free energy or potential function
becomes degenerate at criticality as function of control variables which now would be
naturally zero modes not contribution to Kähler metric of WCW but appearing as
parameters in it. The bevavior variables correspond to quantum fluctuating degrees of
freedom and according to catastrophe theory a big change can in quantum fluctuating
degrees of freedom at criticality for zero modes. This would be control of quantum
state by varying classical variables. Cusp catastrophe is standard example of this. One
can imagined also a situation in which the roles of zero modes and behavior variables
change and big jump in the values of zero modes is induced by small variation in behavior
variables. This would mean quantum control of classical variables.

(b) Zero modes controlling quantum fluctuating variables in Kähler function would cor-
respond to vanishing of also second derivatives of potential function at extremum in
certain directions so that the matrix defined by second derivatives does not have max-
imum rank. Entire hierarchy of criticalities is expected and a good finite-dimensional
model is provided by the catastrophe theory of Thom [?]. Cusp catastrophe [A2] is the
simplest catastrophe one can think of, and here the folds of cusp where discontinuous
jump occurs correspond to criticality with respect to one control variable and the tip to
criticality with respect to both control variables.

http://en.wikipedia.org/wiki/Catastrophe_theory#Cusp_catastrophe
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3. Quantum criticality makes sense also for Kähler action.

(a) Now one considers space-time surface connecting which 3-surfaces at the boundaries of
CD. The non-determinism of Kähler action allows the possibility of having several space-
time sheets connecting the ends of space-time surface but the conditions that classical
charges are same for them reduces this number so that it could be finite. Quantum
criticality in this sense implies non-determinism analogous to that of critical systems
since preferred extremals can co-incide and su↵er this kind of bifurcation in the interior
of CD. This quantum criticality can be assigned to the hierarchy of Planck constants and
the integer n in heff = n⇥h [K17] corresponds to the number of degenerate space-time
sheets with same Kähler action and conserved classical charges.

(b) Also now one expects a hierarchy of criticalities and and since criticality and confor-
mal invariance are closely related, a natural conjecture is that the fractal hierarchy of
sub-algebras of conformal algebra isomorphic to conformal algebra itself and having
conformal weights coming as multiples of n corresponds to the hierarchy of Planck con-
stants. This hierarchy would define a hierarchy of symmetry breakings in the sense that
only the sub-algebra would act as gauge symmetries.

(c) The assignment of this hierarchy with super-symplectic algebra having conformal struc-
ture with respect to the light-like radial coordinate of light-cone boundary looks very
attractive. An interesting question is what is the role of the super-conformal alge-
bra associated with the isometries of light-cone boundary R+ ⇥ S2 which are confor-
mal transformations of sphere S2 with a scaling of radial coordinate compensating the
scaling induced by the conformal transformation. Does it act as dynamical or gauge
symmetries?

4. I have discussed what criticality could mean for modified Dirac action [K18] .

(a) I have conjectured that it leads to the existence of additional conserved currents defined
by the variations which do not a↵ect the value of Kähler action. These arguments are
far from being mathematically rigorous and the recent view about the solutions of the
modified Dirac equation predicting that the spinor modes are restricted to 2-D string
world sheets requires a modification of these arguments.

(b) The basic challenge is to understand the mechanism making this kind of currents con-
served: the same challenge is met already in the case of isometries since imbedding space
coordinates appear as parameters in modified Dirac action. Modified Dirac equation is
satisfied if the first variation of the canonical momentum densities contracted with the
imbedding space gamma matrices annihilates the spinor mode. Situation is analogous
to massless Dirac equation: it does not imply the vanishing of four-momentum, only
the vanishing of mass. One obtains conserved fermion current associated with deforma-
tions only if the deformation of the modified Gamma matrix is divergenceless just like
the modified gamma matrix itself. This conditions requires the vanishing of the second
variation of Kähler action.

(c) It is far from obvious that these conditions can be satisfied. The localization of the
spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the generic
case that em charge is well-defined for spinor modes implies holomorphy allowing to
formulate current conservation for the deformations of the space-time surface for second
quantized induced spinor field. The crux is that the deformation respects the holomor-
phy properties of the modified gamma matrices at string world sheet and thus does not
mix �z with �z. The deformation of �z has only z-component and also annihilates the
holomorphic spinor.

This mechanism is possible only for Kähler-Dirac action since the Kähler-Dirac gamma
matrices in directions orthogonal to the 2-surface must vanish and this is not possible
for other actions. This also means that energy momentum tensor has rank 2 as a matrix.
Cosmic string solutions are an exception since in this case CP2 projection of space-time
surface is 2-D and conditions guaranteing vanishing of classical W fields can be satisfied
without the restriction to 2-surface.
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The vacuum degeneracy of Kähler action strongly suggests that the number of critical de-
formations is always infinite and that these deformations define an infinite inclusion hierarchy
of super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of
breakings of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge
theories. These super-conformal inclusion hierarchies would realize the inclusion hierarchies for
hyper-finite factors of type II1.

5.5.2 Quantum criticality and fermionic representation of conserved charges
associated with second variations of Kähler action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The devel-
opment of the understanding of conservation laws has been however slow. Modified Dirac action
provides excellent candidates for quantum counterparts of Noether charges. The problem is that
the imbedding space coordinates are in the role of classical external fields and induces spinor fields
are second quantized so that it is not at all clear whether one obtains conserved charges.

What does the conservation of the fermionic Noether current require?

The obvious anser to the question of the title is that the conservation of the fermionic current
requires the vanishing of the first variation of Kähler-Dirac action with respect to imbedding space
coordinates. This is certainly true but need not mean vanishing of the second variation of Kähler
action as thought first. Hence fermionic conserved currents might be obtained for much more
general variations than critical ones.

1. The modified Dirac action assigns to a deformation of the space-time surface a conserved
charge expressible as bilinears of fermionic oscillator operators only if the first variation of
the modified Dirac action under this deformation vanishes.

The vanishing of the first variation for the modified Dirac action is equivalent with the
vanishing of the second variation for the Kähler action. This can be seen by the explicit
calculation of the second variation of the modified Dirac action and by performing partial
integration for the terms containing derivatives of  and  to give a total divergence rep-
resenting the di↵erence of the charge at upper and lower boundaries of the causal diamond
plus a four-dimensional integral of the divergence term defined as the integral of the quantity

�SD =  �kD↵J
↵
k  ,

J↵
k =

@2LK

@hk
↵@h

l
�

�hk
� +

@2LK

@hk
↵@h

l
�hl . (5.5.1)

Here hk
� denote partial derivative of the imbedding space coordinates with respect to space-

time coordinates. �SD vanishes if this term vanishes:

D↵J
↵
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of course
occur only for preferred deformations of X4. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that J↵

k does not define conserved classical charge in the general
case.

2. This condition is however un-necessarily strong. It is enough that that the deformation of
Dirac operator anihilates the spinor mode, which can also change in the deformation. It
must be possible to compensate the change of the covariant derivative in the deformation
by a gauge transformation which requires that deformations act as gauge transformations on
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induce gauge potentials. This gives additional constraint and strongly suggests Kac-Moody
type algebra for the deformations. Conformal transformations would satisfy this constraint
and are suggested by quantum criticality.

3. It is essential that the modified Dirac equation holds true so that the modified Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from
the determinant of the induced metric. The condition that the modified Dirac equation is
satisfied for the deformed space-time surface requires that also  su↵ers a transformation
determined by the deformation. This gives

� = � 1

D
⇥ �kJ↵

k  . (5.5.2)

Here 1/D is the inverse of the modified Dirac operator defining the counterpart of the
fermionic propagator.

4. The fermionic conserved currents associated with the deformations are obtained from the
standard conserved fermion current

J↵ =  �↵ . (5.5.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler action:
this is also needed to guarantee Hermiticity and same form for the modified Dirac equation for
 and its conjugate as well as absence of mass term essential for super-conformal invariance.
Note also that ordinary divergence rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing modified gamma matrices with their increments in the deformation keeping  and
its conjugate constant. Second term is obtained by replacing  with its increment � . The
third term is obtained by performing same operation for � .

J↵ =  �kJ↵
k  + �̂↵� + � �̂↵ . (5.5.4)

These currents provide a representation for the algebra defined by the conserved charges
analogous to a fermionic representation of Kac-Moody algebra.

5. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing  or  right handed neutrino spinor or
its conjugate in the expression for the conserved fermion current and performing the above
procedure giving two terms since nothing happens to the covariantly constant right handed-
neutrino spinor. Second class of conserved currents is defined by the solutions of the modified
Dirac equation interpreted as c-number fields replacing  or  and the same procedure gives
three terms appearing in the super current.

6. The existence of vanishing of second variations is analogous to criticality in systems defined
by a potential function for which the rank of the matrix defined by second derivatives of
the potential function vanishes at criticality. Quantum criticality becomes the prerequisite
for the existence of quantum theory since fermionic anti-commutation relations in principle
can be fixed from the condition that the algebra in question is equivalent with the algebra
formed by the vector fields defining the deformations of the space-time surface defining second
variations. Quantum criticality in this sense would also select preferred extremals of Kähler
action as analogs of Bohr orbits and the the spectrum of preferred extremals would be more
or less equivalent with the expected existence of infinite-dimensional symmetry algebras.
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It is far from obvious that the criticality conditions or even the weaker conditions guaranteing
the existence of (say) isometry charges can be satisfied. It seems that the restriction of spinor
modes to 2-D surfaces - string world sheets and possibly also partonic 2-surfaces - implied by
the condition that em charge is well-define for them, is the manner to achieve this. The reason
is that conformal invariance allows complexification of the modified gamma matrices and allows
to construct spinor modes as holomorphic modes and their conjugates. Holomorphy reduces K-
D equation to algebraic condition that �z annihilates the spinor mode. If this is true also the
deformation of �z then the existince of conserved current follows. It is essential that only two
modified gamma matrices are non-vanishing and this is possible only for Kähler-Dirac action.

About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P ⇥ SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding second
order charges for Kähler action are conserved but vanish since the corresponding conjugate
coordinates are cyclic for the Kähler metric and Kähler form so that the conserved current is
proportional to the gradient of a Killing vector field which is constant in these coordinates.

2. Contrary to the original conclusion, the corresponding fermionic charges expressible as fermionic
bilinears are first order in deformation and do not vanish! Four-momentum and color quan-
tum numbers are defined for Kähler action as classical conserved quantities and for Kähler-
Dirac action as quantal charges.

Critical manifold is infinite-dimensional for Kähler action

Some examples might help to understand what is involved.

1. The action defined by four-volume gives a first glimpse about what one can expect. In this
case modified gamma matrices reduce to the induced gamma matrices. Second variations
satisfy d’Alembert type equation in the induced metric so that the analogs of massless fields
are in question. Mass term is present only if some dimensions are compact. The vanishing
of excitations at light-like boundaries is a natural boundary condition and might well imply
that the solution spectrum could be empty. Hence it is quite possible that four-volume action
leads to a trivial theory.

2. For the vacuum extremals of Kähler action the situation is di↵erent. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations
vanishing at the light-like boundaries exist. For the canonical imbedding of M4 the equation
for second variations is trivially satisfied. If the CP2 projection of the vacuum extremal is one-
dimensional, the second variation contains a non-vanishing term and an equation analogous
to massless d’Alembert equation for the increments of CP2 coordinates is obtained. Also
for the vacuum extremals of Kähler action with 2-D CP2 projection all terms involving
induced Kähler form vanish and the field equations reduce to d’Alembert type equations for
CP2 coordinates. A possible interpretation is as the classical analog of Higgs field. For the
deformations of non-vacuum extremals this would suggest the presence of terms analogous
to mass terms: these kind of terms indeed appear and are proportional to �sk. M4 degrees
of freedom decouple completely and one obtains QFT type situation.

3. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies
of inclusions of hyper-finite factors of type II1 possibly having interpretation in terms of
inclusions of the super conformal algebras defined by the critical deformations.

4. The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would
correspond to maximal criticality analogous to that encountered at the tip of the cusp catas-
trophe. The natural guess would be that as one deforms the vacuum extremal the previously
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critical degrees of freedom are transformed to non-critical ones. The dimension of the critical
manifold could remain infinite for all preferred extremals of the Kähler action. For instance,
for cosmic string like objects any complex manifold of CP2 defines cosmic string like objects
so that there is a huge degeneracy is expected also now. For CP2 type vacuum extremals
M4 projection is arbitrary light-like curve so that also now infinite degeneracy is expected
for the deformations.

This leads to the conjecture that the critical deformations correspond to sub-algebras of super-
conformal algebras with conformal weights coming as integer multiples of fixed integer m. One
would have infinite hierarchy of breakings of conformal symmetry labelled by m. The super-
conformal algebras would be e↵ectively m-dimensional. Since all commutators with the critical
sub-algebra would create zero energy states. In ordinary conformal field theory one have maximal
criticality corresponding to m = 1.

Critical super-algebra and zero modes

The relationship of the critical super-algebra to WCW geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler
action for preferred extremals means that the critical variations are orthogonal to all defor-
mations of the space-time surface with respect to the WCW metric.

The original expectation was that critical deformations correspond to zero modes but this
interpretation need not be correct since critical deformations can leave 3-surface invariant
but a↵ect corresponding preferred extremal: this would conform with the non-deterministic
character of the dynamics which is indeed the basic signature of criticality. Rather, criti-
cal deformations are limiting cases of ordinary deformations acting in quantum fluctuating
degrees of freedom.

This conforms with the fact that WCW metric vanishes identically for canonically imbedded
M4 and that Kähler action has fourth order terms as first non-vanishing terms in perturbative
expansion (for modified Dirac the expansion is quadratic in deformation).

Therefore the super-conformal algebra associated with the critical deformations has genuine
physical content.

2. Since the action of X4 local Hamiltonians of �M4
⇥CP2 corresponds to the action in quan-

tum fluctuating degrees of freedom, critical deformations cannot correspond to this kind of
Hamiltonians.

3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond
to this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give
WCW metric as their anti-commutator. This would also lead to a conflict with the e↵ective
2-dimensionality stating that WCW line-element is expressible as sum of contribution coming
from partonic 2-surfaces as also with fermionic anti-commutation relations.

Connection with quantum criticality

The notion of quantum criticality of TGD Universe was originally inspired by the question how
to make TGD unique if Kähler function for WCW is defined by the Kähler action for a preferred
extremal assignable to a given 3-surface. Vacuum functional defined by the exponent of Kähler
function is analogous to thermodynamical weight and the obviou idea with Kähler coupling strength
taking the role of temperature. The obvious idea was that the value of Kähler coupling strength
is analogous to critical temperature so that TGD would be more or less uniquely defined.

To understand the delicacies it is convenient to consider various variations of Kähler action
first.



212
Chapter 5. Does the Modified Dirac Equation Define the Fundamental Action

Principle?

1. The variation can leave 3-surface invariant but modify space-time surface such that Kähler
action remains invariant. In this case infinitesimal deformation reduces to a di↵eomorphism
at space-like 3-surface and perhaps also at light-like 3-surfaces. In this case the correspon-
dence between X3 and X4(X3) would not be unique and one would have non-deterministic
dynamics characteristic for critical systems. This criticality would correspond to criticality of
Kähler action at X3. Note that the original working hypothesis was that X4(X3) is unique.
The failure of the strict classical determinism implying spin glass type vacuum degeneracy
indeed suggets that this is the case.

2. The variation could act on zero modes which do not a↵ect Kähler metric which corresponds
to (1,1) part of Hessian in complex coordinates for WCW. Only the zero modes characterizing
3-surface appearing as parameters in the metric WCW would be a↵ected and the result would
be a generalization of conformal transformation. Kähler function would change but only due
to the change in zero modes. These transformations do not seem to correspond to critical
transformations since Kähler function changes.

3. The variation could act on 3-surface both in zero modes and dynamical degrees of freedom
represented by complex coordinates. It would of course a↵ect also the space-time surface.
Criticality for Kähler function would mean that Kähler metric has zero modes at X3 meaning
that (1,1) part of Hessian is degenerate. This could mean that in the vicinity ofX3 the Kähler
form has non-definite signature: physically this is unacceptable since inner product in Hilbert
space would not be positive definite.

Critical transformations might relate closely to the coset space decomposition of WCW to a
union of coset spaces G/H labelled by zero modes.

1. The critical deformations leave 3-surface X3 invariant as do also the transformations of H
associated with X3. If H a↵ects X4(X3) and corresponds to critical transformations then
critical transformation would extend WCW to a bundle for which 3-surfaces would be base
points and preferred extremals X4(X3) would define the fiber. Gauge invariance with respect
to H would generalize the assumption that X4(X3) is unique.

2. Critical deformations could correspond to H or sub-group of H (which dependes on X3).
For other 3-surfaces than X3 the action of H is non-trivial as the case of CP2 = SU(3)/U(2)
makes easy to understand.

3. A possible identification of Lie-algebra of H is as a sub-algebra of Virasoro algebra associated
with the symplectic transformations of �M4 ⇥ CP2 and acting as di↵eomorphisms for the
light-like radial coordinate of �M4

+. The sub-algebras of Virasoro algebra have conformal
weights coming as integer multiplies of a given conformal weight m and form inclusion hier-
archies suggesting a direct connection with finite measurement resolution realized in terms of
inclusions of hyperfinite factors of type II1. For m > 1 one would have breaking of maximal
conformal symmetry. The action of these Virasoro algebra on symplectic algebra would make
the corresponding sub-algebras gauge degrees of freedom so that the number of symplectic
generators generating non-gauge transformations would be finite. This result is not surpris-
ing since also for 2-D critical systems criticality corresponds to conformal invariance acting
as local scalings.

The vanishing of the second variation for some deformations means that the system is critical,
in the recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp
catastrophe. Quantum criticality realized as the vanishing of the second variation gives hopes about
a more or less unique identification of preferred extremals and considered alternative identifications
such as absolute minimization of Kähler action which is just the opposite of criticality.

One must be very cautious here: there are two criticalities: one for the extremals of Kähler
action with respect to deformations of four-surface and second for the Kähler function itself with
respect to deformations of 3-surface: these criticalities are not equivalent since in the latter case
variation respects preferred extremal property unlike in the first case.

1. The criticality for preferred extremals would make 4-D criticality a property of all physical
systems.
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2. The criticality for Kähler function would be 3-D and might hold only for very special systems.
In fact, the criticality means that some eigenvalues for the Hessian of Kähler function vanish
and for nearby 3-surfaces some eigenvalues are negative. On the other hand the Kähler
metric defined by (1,1) part of Hessian in complex coordinates must be positive definite.
Thus criticality might imply problems.

This allows and suggests non-criticality of Kähler function coming from Kähler action for
Euclidian space-time regions: this is mathematically the simplest situation since in this case
there are no zero modes causing troubles in Gaussian approximation to functional integral.
The Morse function coming from Kähler action in Minkowskian as imaginary contribution
analogous to that appearing in path integral could be critical and allow non-definite signature
in principle. In fact this is expected by the defining properties of Morse function.

3. The almost 2-dimensionality implied by strong form of holography suggests that the interior
degrees of freedom of 3-surface can be regarded almost gauge degrees of freedom and that this
relates directly to generalised conformal symmetries associated with symplectic isometries of
WCW. These degrees of freedom are not critical in the sense inspired by G/H decomposition.
The only plausible interaction seems to be that these degrees of freedom correspond to
deformations in zero modes.

Both the super-symmetry of DK and conservation Dirac Noether currents for modified Dirac
action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are character-
ized by the matrix defined by the second derivatives of the potential function and the rank of
system classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to
the complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies,
when the numbers of behavior and control variables are small (smaller than 5). In the recent
case the situation is infinite-dimensional and the criticality conditions give additional field
equations as existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy
of criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection
the matrix defined by the second variation vanishes because J↵� = 0 vanishes and also the

matrix (J↵
k + J ↵

k )(J�
l + J �

l ) vanishes by the antisymmetry J↵
k = �J ↵

k .

The formulation of quantal version of Equivalence Principle (EP) in string picture demon-
strates that the conservation of of fermionic Noether currents defining gravitational four-
momentum and other Poincare quantum numbers requires that the deformation of the
Kähler-Dirac equation obtained by replacing Kähler-Dirac gamma matrices with their defor-
mations is also satisfied. Holomorphy can guarantee this. The original wrong conclusion was
that this condition is equivalent with much stronger condition stating the vanishing of the
second variation of Kähler action, which it is not. There is analogy for this: massless Dirac
equation does not imply the vanishing of four-momentum.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality.
In particular, the isometries of the imbedding space define conserved currents represented in
terms of the fermionic oscillator operators if the second variations defined by the infinitesimal
isometries vanish for the modified Dirac action. For vacuum extremals the dimension of
the critical manifold is infinite: maybe there is hierarchy of quantum criticalities for which
this dimension decreases step by step but remains always infinite. This hierarchy could
closely relate to the hierarchy of inclusions of hyper-finite factors of type II1. Also the
conserved charges associated with super-symplectic and Super Kac-Moody algebras would
require infinite-dimensional critical manifold defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the
hierarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [K17] with degrees of freedom
below the measurement resolution identified as gauge degrees of freedom.
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5. Does this criticality have anything to do with the criticality against the phase transitions
changing the value of Planck constant? If the geodesic sphere S2

I for which induced Kähler
form vanishes corresponds to the back of the CP2 book (as one expects), this could be the
case. The homologically non-trivial geodesic sphere S12II is as far as possible from vacuum
extremals. If it corresponds to the back of CP2 book, cosmic strings would be quantum
critical with respect to phase transition changing Planck constant. They cannot however
correspond to preferred extremals.

5.5.3 Preferred extremal property as classical correlate for quantum
criticality, holography, and quantum classical correspondence

The Noether currents assignable to the modified Dirac equation are conserved only if the first
variation of the modified Dirac operator DK defined by Kähler action vanishes. This is equivalent
with the vanishing of the second variation of Kähler action -at least for the variations corresponding
to dynamical symmetries having interpretation as dynamical degrees of freedom which are below
measurement resolution and therefore e↵ectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to

quantum criticality so that the basic vision about quantum dynamics of quantum TGD would
lead directly to a precise identification of the preferred extremals. Something which I should have
noticed for more than decade ago! The question whether these extremals correspond to absolute
minima remains however open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of Kähler action would represent extremals for which the second variation vanishes
identically (the ”tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By e↵ective 2-dimensionality
(or holography or quantum classical correspondence) meaning that the configuration space
metric is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l

with boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the
Kähler metric of WCW represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to su�cient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical
correspondence requires 1-1 correspondence between zero modes and these variables. This
would be essentially holography stating that the 2-D ”causal boundary” X2 of X3(X2) codes
for the interior. Preferred extremal property identified as criticality condition would realize
the holography by fixing the values of zero modes once X2 is known and give rise to the
holographic correspondence X2 ! X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very cautious
since the boundary conditions at X3

l involve normal derivative and might bring in delicacies
forcing to modify the simplest heuristic picture.
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5. There is a possible connection with the notion of self-organized criticality [B4] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to
lead ”to the edge”. The challenge is to understand how system ends up to a critical state,
which by definition is unstable. Mechanisms for this have been discovered and based on
phase transitions occurring in a wide range of parameters so that critical point extends to
a critical manifold. In TGD Universe quantum criticality suggests a universal mechanism
of this kind. The criticality for the preferred extremals of Kähler action would mean that
classically all systems are critical in well-defined sense and the question is only about the
degree of criticality. Evolution could be seen as a process leading gradually to increasingly
critical systems. One must however distinguish between the criticality associated with the
preferred extremals of Kähler action and the criticality caused by the spin glass like energy
landscape like structure for the space of the maxima of Kähler function.





Chapter 6

The recent vision about preferred
extremals and solutions of the
modified Dirac equation

6.1 Introduction

During years several approaches to what preferred extremals of Kähler action and solutions of the
modified Dirac equation could be have been proposed and the challenge is to see whether at least
some of these approaches are consistent with each other.

The notion of preferred extremal emerged when I still lived in positive energy ontology. In
zero energy ontology (ZEO) situation changes since 3-surfaces are now unions of space-like 3-
surfaces at the opposite boundaries of causal diamond (CD). If Kähler action were deterministic,
the attribute ”preferred” would become obsolete. One of the most important outcomes of non-
determinism is quantum criticality realized as a conformal invariance acting as gauge symmetries.
The transformations in question are Kac-Moody type symmetries respecting the light-likeness of
partonic orbits identified as surfaces at which the signature of the induced metric changes from
Minkowskian to Euclidian. The orbits can be grouped to conformal equivalence classes and their
number n would define in a natural manner the value of the e↵ective Planck constant heff = n⇥h.

One might hope that in finite measurement resolution the attribute ”preferred” would not be
needed. Bohr orbitology in ZEO would mean that one has Bohr orbits connecting 3-surfaces at
boundaries of CD and this would give strong correlations between these 3-surfaces. Not all of
them could be connected. Despite these uncertainties, I will talk in the following about preferred
extremals. This means no loss since what is known recently is known for extremals.

It is good to list various approaches first.

6.1.1 Construction of preferred extremals

There has been considerable progress in the understanding of both preferred extremals and Kähler-
Dirac equation.

1. For preferred extremals the generalization of conformal invariance to 4-D situation is very
attractive idea and leads to concrete conditions formally similar to those encountered in
string model [K5]. In particular, Einstein’s equations with cosmological constant would solve
consistency conditions and field equations would reduce to a purely algebraic statements
analogous to those appearing in equations for minimal surfaces if one assumes that space-
time surface has Hermitian structure or its Minkowskian variant Hamilton-Jacobi structure
(Appendix). The older approach based on basic heuristics for massless equations, on e↵ective
3-dimensionality, weak form of electric magnetic duality, and Beltrami flows is also promising.
An alternative approach is inspired by number theoretical considerations and identifies space-
time surfaces as associative or co-associative sub-manifolds of octonionic imbedding space
[K52].
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The basic step of progress was the realization that the known extremals of Kähler action -
certainly limiting cases of more general extremals - can be deformed to more general extremals
having interpretation as preferred extremals.

(a) The generalization boils down to the condition that field equations reduce to the condi-
tion that the traces Tr(THk) for the product of energy momentum tensor and second
fundamental form vanish. In string models energy momentum tensor corresponds to
metric and one obtains minimal surface equations. The equations reduce to purely
algebraic conditions stating that T and Hk have no common components. Complex
structure of string world sheet makes this possible.

Stringy conditions for metric stating gzz = gzz = 0 generalize. The condition that
field equations reduce to Tr(THk) = 0 requires that the terms involving Kähler gauge
current in field equations vanish. This is achieved if Einstein’s equations hold true
(one can consider also more general manners to satisfy the conditions). The conditions
guaranteeing the vanishing of the trace in turn boil down to the existence of Hermitian
structure in the case of Euclidian signature and to the existence of its analog - Hamilton-
Jacobi structure - for Minkowskian signature (Appendix). These conditions state that
certain components of the induced metric vanish in complex coordinates or Hamilton-
Jacobi coordinates.

In string model the replacement of the imbedding space coordinate variables with quan-
tized ones allows to interpret the conditions on metric as Virasoro conditions. In the
recent case a generalization of classical Virasoro conditions to four-dimensional ones
would be in question. An interesting question is whether quantization of these con-
ditions could make sense also in TGD framework at least as a useful trick to deduce
information about quantum states in WCW degrees of freedom.

The interpretation of the extended algebra as Yangian [A27] [B18] suggested previ-
ously [K61] to act as a generalization of conformal algebra in TGD Universe is at-
tractive. There is also the conjecture that preferred extremals could be interpreted as
quaternionic of co-quaternionic 4-surface of the octonionic imbedding space with oc-
tonionic representation of the gamma matrices defining the notion of tangent space
quanternionicity.

6.1.2 Understanding Kähler-Dirac equation

There are several approaches for solving the modified Dirac (or Kähler-Dirac) equation.

(a) The most promising approach is discussed in this chapter. It assumes that the solu-
tions are restricted on 2-D stringy world sheets and/or partonic 2-surfaces. This strange
looking view is a rather natural consequence of both strong form of holography and of
number theoretic vision, and also follows from the notion of finite measurement resolu-
tion having discretization at partonic 2-surfaces as a geometric correlate. Furthermore,
the conditions stating that electric charge is well-defined for preferred extremals forces
the localization of the modes to 2-D surfaces in the generic case. This also resolves the
interpretational problems related to possibility of strong parity breaking e↵ects since
induce W fields and possibly also Z0 field above weak scale, vahish at these surfaces.

(b) One expects that stringy approach based on 4-D generalization of conformal invari-
ance or its 2-D variant at 2-D preferred surfaces should also allow to understand the
modified Dirac equation. Conformal invariance indeed allows to write the solutions
explicitly using formulas similar to encountered in string models. In accordance with
the earlier conjecture, all modes of the modified Dirac operator generate badly broken
super-symmetries.

(c) Covariantly constant right-handed neutrino certainly defines solutions de-localized in-
side entire space-time sheet. This need not be the case if right-handed neutrino is not
covarianty constant since the non-vanishing CP2 part for the induced gamma matri-
ces mixes it with left-handed neutrino. For massless extremals (at least) the CP2 part
however vanishes and right-handed neutrino allows also massless holomorphic modes
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de-localized at entire space-time surface and the de-localization inside Euclidian re-
gion defining the line of generalized Feynman diagram is a good candidate for the
right-handed neutrino generating the least broken super-symmetry.This super-symmetry
seems however to di↵er from the ordinary one in that ⌫R is expected to behave like a
passive spectator in the scattering. Also for the left-handed neutrino solutions localized
inside string world sheet the condition that coupling to right-handed neutrino vanishes
is guaranteed if gamma matrices are either purely Minkowskian or CP2 like inside the
world sheet.

6.1.3 Measurement interaction term and boundary conditions

Quantum classical correspondence (QCC) requires a coupling between quantum and classical
and this coupling should also give rise to a generalization of quantum measurement theory.
The big question is how to realize this coupling.

(a) The proposal discussed in previous chapter was that the addition of a measurement
interaction term to the modified Dirac action could do the job and solve a handful of
problems of quantum TGD and unify various visions about the physics predicted by
quantum TGD. This proposal implies QCC at the level of modified Dirac action and
Kähler action. The simplest form of this term is completely analogous to algebraic form
of Dirac action in M4 but with integration measure det(g4)1/2d3x restricted to the 3-D
surface in question.

(b) Another possibility consistent with the considerations of this chapter is that QCC is
realized at the level of WCW Dirac operator and modified Dirac operator contains only
interior term. I have indeed proposed that WCW spinor fields with given quantum
charges in Cartan algebra are superpositions of space-time surfaces with same classical
charges. A stronger form of QCC at the level of WCW would be that classical corre-
lation functions for various geometric observables are identical with quantal correlation
functions.

The boundary conditions for modified Dirac equation at space-like 3-surfaces are determined
by the sum the analog of algebraic massless Dirac operator pk�k in M4 coupled to the formal
analog of Higgs field defined by the normal component �n of the Kähler-Dirac gamma matrix.
Higgs field is not in question. Rather the equation allows to formulate space-time correlate
for stringy mass formula and also to understand how the ground state conformal weight can
be negative half-integer as required by the p-adic mass calculations. At lightlike 3-surfaces
�n must vanish and the measurement interaction involving pk�k vanishes identically.

6.1.4 Progress in the understanding of super-conformal symmetries

The considerations in the sequel lead to a considerable progress in the understanding of super
Virasoro representations for super-symplectic and super-Kac-Moody algebra. In particular,
the proposal is that super-Kac-Moody currents assignable to string world sheets define duals
of gauge potentials and their generalization for gravitons: in the approximation that gauge
group is Abelian - motivated by the notion of finite measurement resolution - the exponents
for the sum of KM charges would define non-integrable phase factors. One can also identify
Yangian as the algebra generated by these charges. The approach allows also to understand
the special role of the right handed neutrino in SUSY according to TGD. It must be however
emphasized that also a weaker form of Einstein’s equations can be considered solving the
condition that the energy momentum tensor for Kähler action has vanishing divergence [K78]
implying Einstein’s equations with cosmological constant in general relativity. The weaker
form involves several non-constant parameters analogous to cosmological constant.

The appendix of the book gives a summary about basic concepts of TGD with illustra-
tions. There are concept maps about topics related to the contents of the chapter pre-
pared using CMAP realized as html files. Links to all CMAP files can be found at http:

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/cmaphtml.html
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//www.tgdtheory.fi/cmaphtml.html [L13]. Pdf representation of same files serving as a
kind of glossary can be found at http://www.tgdtheory.fi/tgdglossary.pdf [L14]. The
topics relevant to this chapter are given by the following list.

• TGD as infinite-dimensional geometry [L37]

• WCW spinor fields [L42]

• KD equation [L25]

• Kaehler-Dirac action [L24]

6.2 About deformations of known extremals of Kähler
action

I have done a considerable amount of speculative guesswork to identify what I have used to
call preferred extremals of Kähler action. The di�culty is that the mathematical problem at
hand is extremely non-linear and that I do not know about existing mathematical literature
relevant to the situation. One must proceed by trying to guess the general constraints on
the preferred extremals which look physically and mathematically plausible. The hope is
that this net of constraints could eventually chrystallize to Eureka! Certainly the recent
speculative picture involves also wrong guesses. The need to find explicit ansatz for the
deformations of known extremals based on some common principles has become pressing.
The following considerations represent an attempt to combine the existing information to
achieve this.

6.2.1 What might be the common features of the deformations of
known extremals

The dream is to discover the deformations of all known extremals by guessing what is common
to all of them. One might hope that the following list summarizes at least some common
features.

E↵ective three-dimensionality at the level of action

(a) Holography realized as e↵ective 3-dimensionality also at the level of action requires that
it reduces to 3-dimensional e↵ective boundary terms. This is achieved if the contraction
j↵A↵ vanishes. This is true if j↵ vanishes or is light-like, or if it is proportional to
instanton current in which case current conservation requires that CP2 projection of
the space-time surface is 3-dimensional. The first two options for j have a realization
for known extremals. The status of the third option - proportionality to instanton
current - has remained unclear.

(b) As I started to work again with the problem, I realized that instanton current could
be replaced with a more general current j = ⇤B ^ J or concretely: j↵ = ✏↵���B�J��,
where B is vector field and CP2 projection is 3-dimensional, which it must be in any
case. The contractions of j appearing in field equations vanish automatically with this
ansatz.

(c) Almost topological QFT property in turn requires the reduction of e↵ective boundary
terms to Chern-Simons terms: this is achieved by boundary conditions expressing weak
form of electric magnetic duality. If one generalizes the weak form of electric-magnetic
duality to J = � ⇤ J one has B = d� and j has a vanishing divergence for 3-D CP2

projection. This is clearly a more general solution ansatz than the one based on pro-
portionality of j with instanton current and would reduce the field equations in concise
notation to Tr(THk) = 0.

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
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(d) Any of the alternative properties of the Kähler current implies that the field equations
reduce to Tr(THk) = 0, where T and Hk are shorthands for Maxwellian energy mo-
mentum tensor and second fundamental form and the product of tensors is obvious
generalization of matrix product involving index contraction.

Could Einstein’s equations emerge dynamically?

For j↵ satisfying one of the three conditions, the field equations have the same form as the
equations for minimal surfaces except that the metric g is replaced with Maxwell energy
momentum tensor T .

(a) This raises the question about dynamical generation of small cosmological constant ⇤:
T = ⇤g would reduce equations to those for minimal surfaces. For T = ⇤g modified
gamma matrices would reduce to induced gamma matrices and the modified Dirac op-
erator would be proportional to ordinary Dirac operator defined by the induced gamma
matrices. One can also consider weak form for T = ⇤g obtained by restricting the con-
sideration to a sub-space of tangent space so that space-time surface is only ”partially”
minimal surface but this option is not so elegant although necessary for other than CP2

type vacuum extremals.

(b) What is remarkable is that T = ⇤g implies that the divergence of T which in the
general case equals to j�J↵

� vanishes. This is guaranteed by one of the conditions for
the Kähler current. Since also Einstein tensor has a vanishing divergence, one can ask
whether the condition to T = G + ⇤g could the general condition. This would give
Einstein’s equations with cosmological term besides the generalization of the minimal
surface equations. GRT would emerge dynamically from the non-linear Maxwell’s theory
although in slightly di↵erent sense as conjectured [K56]! Note that the expression for G
involves also second derivatives of the imbedding space coordinates so that actually a
partial di↵erential equation is in question. If field equations reduce to purely algebraic
ones, as the basic conjecture states, it is possible to have Tr(GHk) = 0 and Tr(gHk) = 0
separately so that also minimal surface equations would hold true.

What is amusing that the first guess for the action of TGD was curvature scalar. It gave
analogs of Einstein’s equations as a definition of conserved four-momentum currents.
The recent proposal would give the analog of ordinary Einstein equations as a dynamical
constraint relating Maxwellian energy momentum tensor to Einstein tensor and metric.

(c) Minimal surface property is physically extremely nice since field equations can be inter-
preted as a non-linear generalization of massless wave equation: something very natural
for non-linear variant of Maxwell action. The theory would be also very ”stringy” al-
though the fundamental action would not be space-time volume. This can however hold
true only for Euclidian signature. Note that for CP2 type vacuum extremals Einstein
tensor is proportional to metric so that for them the two options are equivalent. For
their small deformations situation changes and it might happen that the presence of G
is necessary. The GRT limit of TGD discussed in [K56] [L12] indeed suggests that CP2

type solutions satisfy Einstein’s equations with large cosmological constant and that the
small observed value of the cosmological constant is due to averaging and small volume
fraction of regions of Euclidian signature (lines of generalized Feynman diagrams).

(d) For massless extremals and their deformations T = ⇤g cannot hold true. The reason is
that for massless extremals energy momentum tensor has component T vv which actually
quite essential for field equations since one has Hk

vv = 0. Hence for massless extremals
and their deformations T = ⇤g cannot hold true if the induced metric has Hamilton-
Jacobi structure meaning that guu and gvv vanish. A more general relationship of
form T = G+⇤G can however be consistent with non-vanishing T vv but require that
deformation has at most 3-D CP2 projection (CP2 coordinates do not depend on v).

(e) The non-determinism of vacuum extremals suggest for their non-vacuum deformations
a conflict with the conservation laws. In, also massless extremals are characterized by
a non-determinism with respect to the light-like coordinate but like-likeness saves the
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situation. This suggests that the transformation of a properly chosen time coordinate
of vacuum extremal to a light-like coordinate in the induced metric combined with
Einstein’s equations in the induced metric of the deformation could allow to handle the
non-determinism.

Are complex structure of CP2 and Hamilton-Jacobi structure of M4 respected by
the deformations?

The complex structure of CP2 and Hamilton-Jacobi structure of M4 could be central for the
understanding of the preferred extremal property algebraically.

(a) There are reasons to believe that the Hermitian structure of the induced metric ((1,1)
structure in complex coordinates) for the deformations of CP2 type vacuum extremals
could be crucial property of the preferred extremals. Also the presence of light-like
direction is also an essential elements and 3-dimensionality of M4 projection could
be essential. Hence a good guess is that allowed deformations of CP2 type vacuum
extremals are such that (2,0) and (0,2) components the induced metric and/or of the
energy momentum tensor vanish. This gives rise to the conditions implying Virasoro
conditions in string models in quantization:

g⇠i⇠j = 0 , g
⇠
i

⇠
j = 0 , i, j = 1, 2 . (6.2.1)

Holomorphisms of CP2 preserve the complex structure and Virasoro conditions are
expected to generalize to 4-dimensional conditions involving two complex coordinates.
This means that the generators have two integer valued indices but otherwise obey an
algebra very similar to the Virasoro algebra. Also the super-conformal variant of this
algebra is expected to make sense.

These Virasoro conditions apply in the coordinate space for CP2 type vacuum extremals.
One expects similar conditions hold true also in field space, that is for M4 coordinates.

(b) The integrable decompositionM4(m) = M2(m)+E2(m) ofM4 tangent space to longitu-
dinal and transversal parts (non-physical and physical polarizations) - Hamilton-Jacobi
structure- could be a very general property of preferred extremals and very natural since
non-linear Maxwellian electrodynamics is in question. This decomposition led rather
early to the introduction of the analog of complex structure in terms of what I called
Hamilton-Jacobi coordinates (u, v, w, w) for M4. (u, v) defines a pair of light-like co-
ordinates for the local longitudinal space M2(m) and (w,w) complex coordinates for
E2(m). The metric would not contain any cross terms between M2(m) and E2(m):
guw = gvw = guw = gvw = 0.

A good guess is that the deformations of massless extremals respect this structure.
This condition gives rise to the analog of the constraints leading to Virasoro conditions
stating the vanishing of the non-allowed components of the induced metric. guu = gvv =
gww = gww = guw = gvw = guw = gvw = 0. Again the generators of the algebra would
involve two integers and the structure is that of Virasoro algebra and also generalization
to super algebra is expected to make sense. The moduli space of Hamilton-Jacobi
structures would be part of the moduli space of the preferred extremals and analogous
to the space of all possible choices of complex coordinates. The analogs of infinitesimal
holomorphic transformations would preserve the modular parameters and give rise to a
4-dimensional Minkowskian analog of Virasoro algebra. The conformal algebra acting
on CP2 coordinates acts in field degrees of freedom for Minkowskian signature.

Field equations as purely algebraic conditions

If the proposed picture is correct, field equations would reduce basically to purely algebraically
conditions stating that the Maxwellian energy momentum tensor has no common index pairs
with the second fundamental form. For the deformations of CP2 type vacuum extremals T is a
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complex tensor of type (1,1) and second fundamental form Hk a tensor of type (2,0) and (0,2)
so that Tr(THk) = is true. This requires that second light-like coordinate of M4 is constant
so that the M4 projection is 3-dimensional. For Minkowskian signature of the induced
metric Hamilton-Jacobi structure replaces conformal structure. Here the dependence of CP2

coordinates on second light-like coordinate of M2(m) only plays a fundamental role. Note
that now T vv is non-vanishing (and light-like). This picture generalizes to the deformations
of cosmic strings and even to the case of vacuum extremals.

6.2.2 What small deformations of CP
2

type vacuum extremals could
be?

I was led to these arguments when I tried find preferred extremals of Kähler action, which
would have 4-D CP2 and M4 projections - the Maxwell phase analogous to the solutions
of Maxwell’s equations that I conjectured long time ago. It however turned out that the
dimensions of the projections can be (DM4  3, DCP2 = 4) or (DM4 = 4, DCP2  3).
What happens is essentially breakdown of linear superposition so that locally one can have
superposition of modes which have 4-D wave vectors in the same direction. This is actually
very much like quantization of radiation field to photons now represented as separate space-
time sheets and one can say that Maxwellian superposition corresponds to union of separate
photonic space-time sheets in TGD.

Approximate linear superposition of fields is fundamental in standard physics framework and
is replaced in TGD with a linear superposition of e↵ects of classical fields on a test particle
topologically condensed simultaneously to several space-time sheets. One can say that linear
superposition is replaced with a disjoint union of space-time sheets. In the following I shall
restrict the consideration to the deformations of CP2 type vacuum extremals.

Solution ansatz

I proceed by the following arguments to the ansatz.

(a) E↵ective 3-dimensionality for action (holography) requires that action decomposes to
vanishing j↵A↵ term + total divergence giving 3-D ”boundary” terms. The first term
certainly vanishes (giving e↵ective 3-dimensionality) for

D�J
↵� = j↵ = 0 .

Empty space Maxwell equations, something extremely natural. Also for the proposed
GRT limit these equations are true.

(b) How to obtain empty space Maxwell equations j↵ = 0? The answer is simple: assume
self duality or its slight modification:

J = ⇤J

holding for CP2 type vacuum extremals or a more general condition

J = k ⇤ J ,

In the simplest situation k is some constant not far from unity. * is Hodge dual involving
4-D permutation symbol. k = constant requires that the determinant of the induced
metric is apart from constant equal to that of CP2 metric. It does not require that
the induced metric is proportional to the CP2 metric, which is not possible since M4

contribution to metric has Minkowskian signature and cannot be therefore proportional
to CP2 metric.

One can consider also a more general situation in which k is scalar function as a gen-
eralization of the weak electric-magnetic duality. In this case the Kähler current is
non-vanishing but divergenceless. This also guarantees the reduction to Tr(THk) = 0.
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In this case however the proportionality of the metric determinant to that for CP2

metric is not needed. This solution ansatz becomes therefore more general.

(c) Field equations reduce with these assumptions to equations di↵ering from minimal sur-
faces equations only in that metric g is replaced by Maxwellian energy momentum tensor
T . Schematically:

Tr(THk) = 0 ,

where T is the Maxwellian energy momentum tensor and Hk is the second fundamental
form - asymmetric 2-tensor defined by covariant derivative of gradients of imbedding
space coordinates.

How to satisfy the condition Tr(THk) = 0?

It would be nice to have minimal surface equations since they are the non-linear generalization
of massless wave equations. It would be also nice to have the vanishing of the terms involving
Kähler current in field equations as a consequence of this condition. Indeed, T = G + ⇤g
implies this. In the case of CP2 vacuum extremals one cannot distinguish between these
options since CP2 itself is constant curvature space with G / g. Furthermore, if G and g
have similar tensor structure the algebraic field equations for G and g are satisfied separately
so that one obtains minimal surface property also now. In the following minimal surface
option is considered.

(a) The first opton is achieved if one has

T = ⇤g .

Maxwell energy momentum tensor would be proportional to the metric! One would have
dynamically generated cosmological constant! This begins to look really interesting since
it appeared also at the proposed GRT limit of TGD [L12]. Note that here also non-
constant value of ⇤ can be considered and would correspond to a situation in which k
is scalar function: in this case the the determinant condition can be dropped and one
obtains just the minimal surface equations.

(b) Very schematically and forgetting indices and being sloppy with signs, the expression
for T reads as

T = JJ � g/4Tr(JJ) .

Note that the product of tensors is obtained by generalizing matrix product. This should
be proportional to metric.

Self duality implies that Tr(JJ) is just the instanton density and does not depend on
metric and is constant.

For CP2 type vacuum extremals one obtains

T = �g + g = 0 .

Cosmological constant would vanish in this case.

(c) Could it happen that for deformations a small value of cosmological constant is gener-
ated?

The condition would reduce to

JJ = (⇤� 1)g .

⇤ must relate to the value of parameter k appearing in the generalized self-duality
condition. For the most general ansatz ⇤ would not be constant anymore.

This would generalize the defining condition for Kähler form

http://tgdtheory.com/public_html/articles/egtgd.pdf
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JJ = �g (i2 = �1 geometrically)

stating that the square of Kähler form is the negative of metric. The only modification
would be that index raising is carried out by using the induced metric containing also
M4 contribution rather than CP2 metric.

(d) Explicitly:

J↵µJ
µ
� = (⇤� 1)g↵� .

Cosmological constant would measure the breaking of Kähler structure. By writing
g = s + m and defining index raising of tensors using CP2 metric and their product
accordingly, this condition can be also written as

Jm = (⇤� 1)mJ .

If the parameter k is constant, the determinant of the induced metric must be proportional
to the CP2 metric. If k is scalar function, this condition can be dropped. Cosmological
constant would not be constant anymore but the dependence on k would drop out from
the field equations and one would hope of obtaining minimal surface equations also now. It
however seems that the dimension of M4 projection cannot be four. For 4-D M4 projection
the contribution of the M2 part of the M4 metric gives a non-holomorphic contribution to
CP2 metric and this spoils the field equations.

For T = G+ ⇤g option the value of the cosmological constant is large - just as it is for the
proposed GRT limit of TGD [K56] [L12]. The interpretation in this case is that the average
value of cosmological constant is small since the portion of space-time volume containing
generalized Feynman diagrams is very small.

More detailed ansatz for the deformations of CP2 type vacuum extremals

One can develop the ansatz to a more detailed form. The most obvious guess is that the
induced metric is apart from constant conformal factor the metric of CP2. This would guar-
antee self-duality apart from constant factor and j↵ = 0. Metric would be in complex CP2

coordinates tensor of type (1,1) whereas CP2 Riemann connection would have only purely
holomorphic or anti-holomorphic indices. Therefore CP2 contributions in Tr(THk) would
vanish identically. M4 degrees of freedom however bring in di�culty. The M4 contribution
to the induced metric should be proportional to CP2 metric and this is impossible due to the
di↵erent signatures. The M4 contribution to the induced metric breaks its Kähler property
but would preserve Hermitian structure.

A more realistic guess based on the attempt to construct deformations of CP2 type vacuum
extremals is following.

(a) Physical intuition suggests that M4 coordinates can be chosen so that one has inte-
grable decomposition to longitudinal degrees of freedom parametrized by two light-like
coordinates u and v and to transversal polarization degrees of freedom parametrized by
complex coordinate w and its conjugate. M4 metric would reduce in these coordinates
to a direct sum of longitudinal and transverse parts. I have called these coordinates
Hamilton-Jacobi coordinates.

(b) w would be holomorphic function of CP2 coordinates and therefore satisfy the analog
of massless wave equation. This would give hopes about rather general solution ansatz.
u and v cannot be holomorphic functions of CP2 coordinates. Unless wither u or
v is constant, the induced metric would receive contributions of type (2,0) and (0,2)
coming from u and v which would break Kähler structure and complex structure. These
contributions would give no-vanishing contribution to all minimal surface equations.
Therefore either u or v is constant: the coordinate line for non-constant coordinate -say
u- would be analogous to the M4 projection of CP2 type vacuum extremal.
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(c) With these assumptions the induced metric would remain (1, 1) tensor and one might
hope that Tr(THk) contractions vanishes for all variables except u because the there
are no common index pairs (this if non-vanishing Christo↵el symbols for H involve only
holomorphic or anti-holomorphic indices in CP2 coordinates). For u one would obtain
massless wave equation expressing the minimal surface property.

(d) If the value of k is constant the determinant of the induced metric must be proportional
to the determinant of CP2 metric. The induced metric would contain only the contri-
bution from the transversal degrees of freedom besides CP2 contribution. Minkowski
contribution has however rank 2 as CP2 tensor and cannot be proportional to CP2

metric. It is however enough that its determinant is proportional to the determinant of
CP2 metric with constant proportionality coe�cient. This condition gives an additional
non-linear condition to the solution. One would have wave equation for u (also w and its
conjugate satisfy massless wave equation) and determinant condition as an additional
condition.

The determinant condition reduces by the linearity of determinant with respect to its
rows to sum of conditions involved 0,1,2 rows replaced by the transversal M4 con-
tribution to metric given if M4 metric decomposes to direct sum of longitudinal and
transversal parts. Derivatives with respect to derivative with respect to particular CP2

complex coordinate appear linearly in this expression they can depend on u via the
dependence of transversal metric components on u. The challenge is to show that this
equation has (or does not have) non-trivial solutions.

(e) If the value of k is scalar function the situation changes and one has only the minimal
surface equations and Virasoro conditions.

What makes the ansatz attractive is that special solutions of Maxwell empty space equations
are in question, equations reduces to non-linear generalizations of Euclidian massless wave
equations, and possibly space-time dependent cosmological constant pops up dynamically.
These properties are true also for the GRT limit of TGD [L12].

6.2.3 Hamilton-Jacobi conditions in Minkowskian signature

The maximally optimistic guess is that the basic properties of the deformations of CP2

type vacuum extremals generalize to the deformations of other known extremals such as
massless extremals, vacuum extremals with 2-D CP2 projection which is Lagrangian manifold,
and cosmic strings characterized by Minkowskian signature of the induced metric. These
properties would be following.

(a) The recomposition of M4 tangent space to longitudinal and transversal parts giving
Hamilton-Jacobi structure. The longitudinal part has hypercomplex structure but the
second light-like coordinate is constant: this plays a crucial role in guaranteeing the
vanishing of contractions in Tr(THk). It is the algebraic properties of g and T which
are crucial. T can however have light-like component T vv. For the deformations of CP2

type vacuum extremals (1, 1) structure is enough and is guaranteed if second light-like
coordinate of M4 is constant whereas w is holomorphic function of CP2 coordinates.

(b) What could happen in the case of massless extremals? Now one has 2-D CP2 projection
in the initial situation and CP2 coordinates depend on light-like coordinate u and single
real transversal coordinate. The generalization would be obvious: dependence on single
light-like coordinate u and holomorphic dependence on w for complex CP2 coordinates.
The constraint is T = ⇤g cannot hold true since T vv is non-vanishing (and light-like).
This property restricted to transversal degrees of freedom could reduce the field equa-
tions to minimal surface equations in transversal degrees of freedom. The transversal
part of energy momentum tensor would be proportional to metric and hence covariantly
constant. Gauge current would remain light-like but would not be given by j = ⇤d�^J .
T = G+ ⇤g seems to define the attractive option.

http://tgdtheory.com/public_html/articles/egtgd.pdf
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It therefore seems that the essential ingredient could be the condition

T = G+ �g ,

which has structure (1,1) in both M2(m) and E2(m) degrees of freedom apart from the
presence of T vv component with deformations having no dependence on v. If the second
fundamental form has (2,0)+(0,2) structure, the minimal surface equations are satisfied pro-
vided Kähler current satisfies on of the proposed three conditions and if G and g have similar
tensor structure.

One can actually pose the conditions of metric as complete analogs of stringy constraints
leading to Virasoro conditions in quantization to give

guu = 0 , gvv = 0 , gww = 0 , gww = 0 . (6.2.2)

This brings in mind the generalization of Virasoro algebra to four-dimensional algebra for
which an identification in terms of non-local Yangian symmetry has been proposed [K61].
The number of conditions is four and the same as the number of independent field equations.
One can consider similar conditions also for the energy momentum tensor T but allowing non-
vanishing component T vv if deformations has no v-dependence. This would solve the field
equations if the gauge current vanishes or is light-like. On this case the number of equations
is 8. First order di↵erential equations are in question and they can be also interpreted as
conditions fixing the coordinates used since there is infinite number of manners to choose the
Hamilton-Jacobi coordinates.

One can can try to apply the physical intuition about general solutions of field equations
in the linear case by writing the solution as a superposition of left and right propagating
solutions:

⇠k = fk
+(u,w) + fk

+(v, w) . (6.2.3)

This could guarantee that second fundamental form is of form (2,0)+(0,2) in both M2 and E2

part of the tangent space and these terms if Tr(THk) vanish identically. The remaining terms
involve contractions of Tuw, Tuw and T vw, T vw with second fundamental form. Also these
terms should sum up to zero or vanish separately. Second fundamental form has components
coming from fk

+ and fk
�

Second fundamental form Hk has as basic building bricks terms Ĥk given by

Ĥk
↵� = @↵@�h

k +
�

k
l m

�
@↵h

l@�h
m . (6.2.4)

For the proposed ansatz the first terms give vanishing contribution to Hk
uv. The terms

containing Christo↵el symbols however give a non-vanishing contribution and one can allow
only fk

+ or fk
� as in the case of massless extremals. This reduces the dimension of CP2

projection to D = 3.

What about the condition for Kähler current? Kähler form has components of type Jww

whose contravariant counterpart gives rise to space-like current component. Juw and Juw give
rise to light-like currents components. The condition would state that the Jww is covariantly
constant. Solutions would be characterized by a constant Kähler magnetic field. Also electric
field is represent. The interpretation both radiation and magnetic flux tube makes sense.
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6.2.4 Deformations of cosmic strings

In the physical applications it has been assumed that the thickening of cosmic strings to
Kähler magnetic flux tubes takes place. One indeed expects that the proposed construction
generalizes also to the case of cosmic strings having the decomposition X4 = X2 ⇥ Y 2 ⇢
M4 ⇥ CP2, where X2 is minimal surface and Y 2 a complex homologically non-trivial sub-
manifold of CP2. Now the starting point structure is Hamilton-Jacobi structure for M2

m⇥Y 2

defining the coordinate space.

(a) The deformation should increase the dimension of either CP2 or M4 projection or both.
How this thickening could take place? What comes in mind that the string orbitsX2 can
be interpreted as a distribution of longitudinal spaces M2(x) so that for the deformation
w coordinate becomes a holomorphic function of the natural Y 2 complex coordinate so
that M4 projection becomes 4-D but CP2 projection remains 2-D. The new contribution
to the X2 part of the induced metric is vanishing and the contribution to the Y 2 part
is of type (1, 1) and the the ansatz T = G+⇤g might be needed as a generalization of
the minimal surface equations The ratio of  and G would be determined from the form
of the Maxwellian energy momentum tensor and be fixed at the limit of undeformed
cosmic strong to T = (ag(Y 2) � bg(Y 2). The value of cosmological constant is now
large, and overall consistency suggests that T = G+ ⇤g is the correct option also for
the CP2 type vacuum extremals.

(b) One could also imagine that remaining CP2 coordinates could depend on the complex
coordinate of Y 2 so that also CP2 projection would become 4-dimensional. The induced
metric would receive holomorphic contributions in Y 2 part. As a matter fact, this option
is already implied by the assumption that Y 2 is a complex surface of CP2.

6.2.5 Deformations of vacuum extremals?

What about the deformations of vacuum extremals representable as maps from M4 to CP2?

(a) The basic challenge is the non-determinism of the vacuum extremals. One should per-
form the deformation so that conservation laws are satisfied. For massless extremals
there is also non-determinism but it is associated with the light-like coordinate so that
there are no problems with the conservation laws. This would suggest that a properly
chosen time coordinate consistent with Hamilton-Jacobi decomposition becomes light-
like coordinate in the induced metric. This poses a conditions on the induced metric.

(b) Physical intuition suggests that one cannot require T = ⇤g since this would mean that
the rank of T is maximal whereas the original situation corresponds to the vanishing of
T . For small deformations rank two for T looks more natural and one could think that
T is proportional to a projection of metric to a 2-D subspace. The vision about the
long length scale limit of TGD is that Einstein’s equations are satisfied and this would
suggest T = kG or T = G + ⇤g. The rank of T could be smaller than four for this
ansatz and this conditions binds together the values of  and G.

(c) These extremals have CP2 projection which in the generic case is 2-D Lagrangian sub-
manifold Y 2. Again one could assume Hamilton-Jacobi coordinates for X4. For CP2

one could assume Darboux coordinates (Pi, Qi), i = 1, 2, in which one has A = PidQi,
and that Y 2 ⇢ CP2 corresponds to Qi = constant. In principle Pi would depend on
arbitrary manner on M4 coordinates. It might be more convenient to use as coordinates
(u, v) for M2 and (P1, P2) for Y 2. This covers also the situation when M4 projection
is not 4-D. By its 2-dimensionality Y 2 allows always a complex structure defined by its
induced metric: this complex structure is not consistent with the complex structure of
CP2 (Y 2 is not complex sub-manifold).

Using Hamilton-Jacobi coordinates the pre-image of a given point of Y 2 is a 2-dimensional
sub-manifold X2 of X4 and defines also 2-D sub-manifold of M4. The following pic-
ture suggests itself. The projection of X2 to M4 can be seen for a suitable choice of
Hamilton-Jacobi coordinates as an analog of Lagrangian sub-manifold in M4 that is as
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surface for which v and Im(w) vary and u and Re(w) are constant. X2 would be ob-
tained by allowing u and Re(w) to vary: as a matter fact, (P1, P2) and (u,Re(w)) would
be related to each other. The induced metric should be consistent with this picture.
This would requires guRe(w) = 0.

For the deformations Q1 and Q2 would become non-constant and they should depend
on the second light-like coordinate v only so that only guu and guw and guw gw,w and
gw,w receive contributions which vanish. This would give rise to the analogs of Virasoro
conditions guaranteeing that T is a tensor of form (1, 1) in both M2 and E2 indices and
that there are no cross components in the induced metric. A more general formulation
states that energy momentum tensor satisfies these conditions. The conditions on T
might be equivalent with the conditions for g and G separately.

(d) Einstein’s equations provide an attractive manner to achieve the vanishing of e↵ective
3-dimensionality of the action. Einstein equations would be second order di↵erential
equations and the idea that a deformation of vacuum extremal is in question suggests
that the dynamics associated with them is in directions transversal to Y 2 so that only
the deformation is dictated partially by Einstein’s equations.

(e) Lagrangian manifolds do not involve complex structure in any obvious manner. One
could however ask whether the deformations could involve complex structure in a natural
manner in CP2 degrees of freedom so that the vanishing of gww would be guaranteed
by holomorphy of CP2 complex coordinate as function of w.

One should get the complex structure in some natural manner: in other words, the
complex structure should relate to the geometry of CP2 somehow. The complex co-
ordinate defined by say z = P1 + iQ1 for the deformation suggests itself. This would
suggest that at the limit when one puts Q1 = 0 one obtains P1 = P1(Re(w)) for the
vacuum extremals and the deformation could be seen as an analytic continuation of
real function to region of complex plane. This is in spirit with the algebraic approach.
The vanishing of Kähler current requires that the Kähler magnetic field is covariantly
constant: DzJzz = 0 and DzJzz = 0 .

(f) One could consider the possibility that the resulting 3-D sub-manifold of CP2 can be
regarded as contact manifold with induced Kähler form non-vanishing in 2-D section
with natural complex coordinates. The third coordinate variable- call it s- of the contact
manifold and second coordinate of its transversal section would depend on time space-
time coordinates for vacuum extremals. The coordinate associated with the transversal
section would be continued to a complex coordinate which is holomorphic function of w
and u.

(g) The resulting thickened magnetic flux tubes could be seen as another representation of
Kähler magnetic flux tubes: at this time as deformations of vacuum flux tubes rather
than cosmic strings. For this ansatz it is however di�cult to imagine deformations
carrying Kähler electric field.

6.2.6 About the interpretation of the generalized conformal alge-
bras

The long-standing challenge has been finding of the direct connection between the super-
conformal symmetries assumed in the construction of the geometry of the ”world of classical
worlds” (WCW) and possible conformal symmetries of field equations. 4-dimensionality and
Minkowskian signature have been the basic problems. The recent construction provides new
insights to this problem.

(a) In the case of string models the quantization of the Fourier coe�cients of coordinate
variables of the target space gives rise to Kac-Moody type algebra and Virasoro algebra
generators are quadratic in these. Also now Kac-Moody type algebra is expected. If one
were to perform a quantization of the coe�cients in Laurents series for complex CP2

coordinates, one would obtain interpretation in terms of su(3) = u(2)+t decomposition,
where t corresponds to CP3: the oscillator operators would correspond to generators in t



230
Chapter 6. The recent vision about preferred extremals and solutions of the

modified Dirac equation

and their commutator would give generators in u(2). SU(3)/SU(2) coset representation
for Kac-Moody algebra would be in question. Kac-Moody algebra would be associated
with the generators in both M4 and CP2 degrees of freedom. This kind of Kac-Moody
algebra appears in quantum TGD.

(b) The constraints on induced metric imply a very close resemblance with string models
and a generalization of Virasoro algebra emerges. An interesting question is how the two
algebras acting on coordinate and field degrees of freedom relate to the super-conformal
algebras defined by the symplectic group of �M4

+ ⇥CP2 acting on space-like 3-surfaces
at boundaries of CD and to the Kac-Moody algebras acting on light-like 3-surfaces. It
has been conjectured that these algebras allow a continuation to the interior of space-
time surface made possible by its slicing by 2-surfaces parametrized by 2-surfaces. The
proposed construction indeed provides this kind of slicings in both M4 and CP2 factor.

(c) In the recent case, the algebras defined by the Fourier coe�cients of field variables
would be Kac-Moody algebras. Virasoro algebra acting on preferred coordinates would
be expressed in terms of the Kac-Moody algebra in the standard Sugawara construction
applied in string models. The algebra acting on field space would be analogous to the
conformal algebra assignable to the symplectic algebra so that also symplectic algebra
is present. Stringy pragmatist could imagine quantization of symplectic algebra by
replacing CP2 coordinates in the expressions of Hamiltonians with oscillator operators.
This description would be counterpart for the construction of spinor harmonics in WCW
and might provide some useful insights.

(d) For given type of space-time surface either CP2 or M4 corresponds to Kac-Moody
algebra but not both. From the point of view of quantum TGD it looks as that something
were missing. An analogous problem was encountered at GRT limit of TGD [L12].
When Euclidian space-time regions are allowed Einstein-Maxwell action is able to mimic
standard model with a surprising accuracy but there is a problem: one obtains either
color charges or M4 charges but not both. Perhaps it is not enough to consider either
CP2 type vacuum extremal or its exterior but both to describe particle: this would give
the direct product of the Minkowskian and Euclidian algebras acting on tensor product.
This does not however seem to be consistent with the idea that the two descriptions are
duality related (the analog of T-duality).

6.3 Under what conditions electric charge is conserved
for the modified Dirac equation?

One might think that talking about the conservation of electric charge at 21st century is a
waste of time. In TGD framework this is certainly not the case.

(a) In quantum field theories there are two manners to define em charge: as electric flux
over 2-D surface su�ciently far from the source region or in the case of spinor field
quantum mechanically as combination of fermion number and vectorial isospin. The
latter definition is quantum mechanically more appropriate.

(b) There is however a problem. In standard approach to gauge theory Dirac equation in
presence of charged classical gauge fields does not conserve electric charge as quantum
number: electron is transformed to neutrino and vice versa. Quantization solves the
problem since the non-conservation can be interpreted in terms of emission of gauge
bosons. In TGD framework this does not work since one does not have path integral
quantization anymore. Preferred extremals carry classical gauge fields and the question
whether em charge is conserved arises. Heuristic picture suggests that em charge must
be conserved.

It seems that one should pose the well-definedness of spinorial em charge as an additional
condition. Well-definedness of em charge is not the only problem. How to avoid large parity
breaking e↵ects due to classical Z0 fields? How to avoid the problems due to the fact that
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color rotations induced vielbein rotation of weak fields? Does this require that classical weak
fields vanish in the regions where the modes of induced spinor fields are non-vanishing?

This condition might be one of the conditions defining what it is to be a preferred ex-
tremal/solution of Kähler Dirac equation. It is not however trivial whether this kind of
additional condition can be posed unless it follows automatically from the recent formula-
tion for Kähler action and Kähler Dirac action. The common answer to these questions
is restriction of the modes of induced spinor field to 2-D string world sheets (and possibly
also partonic 2-surfaces) such that the induced weak fields vanish. This makes string/parton
picture part of TGD. The vanishing of classical weak fields has also number theoretic inter-
pretation: space-time surfaces would have quaternionic (hyper-complex) tangent space and
the 2-surfaces carrying spinor fields complex (hyper-complex) tangent space.

6.3.1 Conservation of em charge for Kähler Dirac equation

What does the conservation of em charge imply in the case of the modified Dirac equation?
The obvious guess that the em charged part of the modified Dirac operator must annihilate
the solutions, turns out to be correct as the following argument demonstrates.

(a) Em charge as coupling matrix can be defined as a linear combination Q = aI + bI3,
I3 = Jkl⌃kl, where I is unit matrix and I3 vectorial isospin matrix, Jkl is the Kähler form
of CP2, ⌃kl denotes sigma matrices, and a and b are numerical constants di↵erent for
quarks and leptons. Q is covariantly constant in M4⇥CP2 and its covariant derivatives
at space-time surface are also well-defined and vanish.

(b) The modes of the modified Dirac equation should be eigen modes of Q. This is the case
if the modified Dirac operator D commutes with Q. The covariant constancy of Q can
be used to derive the condition

[D,Q] = D1 = 0 ,

D = �̂µDµ , D1 = [D,Q] = �̂µ1Dµ , �̂µ1 =
h
�̂µ, Q

i
. (6.3.1)

Covariant constancy of J is absolutely essential: without it the resulting conditions
would not be so simple.

It is easy to find that also [D1, Q] = 0 and its higher iterates [Dn, Q] = 0, Dn =
[Dn�1, Q] must be true. The solutions of the modified Dirac equation would have an
additional symmetry.

(c) The commutator D1 = [D,Q] reduces to a sum of terms involving the commutators of
the vectorial isospin I3 = Jkl⌃kl with the CP2 part of the gamma matrices:

D1 = [Q,D] = [I3,�r]@µs
rT↵µD↵ . (6.3.2)

In standard complex coordinates in which U(2) acts linearly the complexified gamma
matrices can be chosen to be eigenstates of vectorial isospin. Only the charged flat space
complexified gamma matrices �A denoted by �+ and �� possessing charges +1 and -1
contribute to the right hand side. Therefore the additional Dirac equation D1 = 0
states

D1 = [Q,D] = I3(A)eAr�
A@µs

rT↵µD↵ 

= (e+r�
+ � e�r�

�)@µs
rT↵µD↵ = 0 . (6.3.3)

The next condition is

D2 = [Q,D] = (e+r�
+ + e�r�

�)@µs
rT↵µD↵ = 0 . (6.3.4)
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Only the relative sign of the two terms has changed. The remaining conditions give
nothing new.

(d) These equations imply two separate equations for the two charged gamma matrices

D+ = T↵
+�

+D↵ = 0 ,

D� = T↵
��

�D↵ = 0 ,

T↵
± = e±r@µs

rT↵µ . (6.3.5)

These conditions state what one might have expected: the charged part of the modified
Dirac operator annihilates separately the solutions. The reason is that the classical W
fields are proportional to er±.

The above equations can be generalized to define a decomposition of the energy mo-
mentum tensor to charged and neutral components in terms of vierbein projections.
The equations state that the analogs of the modified Dirac equation defined by charged
components of the energy momentum tensor are satisfied separately.

(e) In complex coordinates one expects that the two equations are complex conjugates of
each other for Euclidian signature. For the Minkowskian signature an analogous condi-
tion should hold true. The dynamics enters the game in an essential manner: whether
the equations can be satisfied depends on the coe�cients a and b in the expression
T = aG + bg implied by Einstein’s equations in turn guaranteeing that the solution
ansatz generalizing minimal surface solutions holds true [K5].

(f) As a result one obtains three separate Dirac equations corresponding to the the neutral
part D0 = 0 and charged parts D± = 0 of the modified Dirac equation. By acting
on the equations with these Dirac operators one obtains also that the commutators
[D+, D�], [D0, D±] and also higher commutators obtained from these annihilate the in-
duced spinor field model. Therefore entire -possibly- infinite-dimensional algebra would
annihilate the induced spinor fields. In string model the counterpart of Dirac equation
when quantized gives rise to Super-Virasoro conditions. This analogy would suggest
that modified Dirac equation gives rise to the analog of Super-Virasoro conditions in
4-D case. But what the higher conditions mean? Could they relate to the proposed
generalization to Yangian algebra? Obviously these conditions resemble structurally
Virasoro conditions Ln|physi = 0 and their supersymmetric generalizations, and might
indeed correspond to a generalization of these conditions just as the field equations for
preferred extremals could correspond to the Virasoro conditions if one takes seriously
the analogy with the quantized string.

What could this additional symmetry mean from the point of view of the solutions of the
modified Dirac equation? The field equations for the preferred extremals of Kähler action
reduce to purely algebraic conditions in the same manner as the field equations for the
minimal surfaces in string model. Could this happen also for the modified Dirac equation
and could the condition on charged part of the Dirac operator help to achieve this?

This argument was very general and one can ask for simple manners to realize these condi-
tions. Obviously the vanishing of classical W fields in the region where the spinor mode is
non-vanishing defines this kind of condition.

6.3.2 About the solutions of Kähler Dirac equation for known ex-
tremals

To gain perpective consider first Dirac equation in in H. Quite generally, one can construct
the solutions of the ordinary Dirac equation in H from covariantly constant right-handed
neutrino spinor playing the role of fermionic vacuum annihilated by the second half of com-
plexified gamma matrices. Dirac equation reduces to Laplace equation for a scalar function
and solution can be constructed from this ”vacuum” by multiplying with the spherical har-
monics of CP2 and applying Dirac operator [K26]. Similar construction works quite generally
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thanks to the existence of covariantly constant right handed neutrino spinor. Spinor har-
monics of CP2 are only replaced with those of space-time surface possessing either hermitian
structure of Hamilton-Jacobi structure (corresponding to Euclidian and Minkowskian signa-
tures of the induced metric [K5, K69]). What is remarkable is that these solutions possess
well-defined em charge although classical W boson fields are present.

This in sense that H d’Alembertian commutes with em charge matrix defined as a linear
combination of unit matrix and the covariantly constant matrix Jkl⌃kl since the commutators
of the covariant derivatives give constant Ricci scalar and Jkl⌃kl term to the d’Alembertian
besides scalar d’Alembertian commuting with em charge. Dirac operator itself does not
commute with em charge matrix since gamma matrices not commute with em charge matrix.

Consider now Kähler Dirac operator. The square of Kähler Dirac operator contains commu-
tator of covariant derivatives which contains contraction [�µ,�⌫ ]Fweak

µ⌫ which is quadratic
in sigma matrices of M4 ⇥ CP2 and does not reduce to a constant term commuting which
em charge matrix. Therefore additional condition is required even if one is satisfies with the
commutativity of d’Alembertian with em charge. Stronger condition would be commutativity
with the Kähler Dirac operator and this will be considered in the following.

To see what happens one must consider space-time regions with Minkowskian and Euclid-
ian signature. What will be assumed is the existence of Hamilton-Jacobi structure [K5]
meaning complex structure in Euclidian signature and hyper-complex plus complex struc-
ture in Minkowskian signature. The goal is to get insights about what the condition that
spinor modes have a well-defined em charge eigenvalue requires. Or more concretely: is the
localization at string world sheets guaranteeing well-defined value of em charge predicted
by Kähler Dirac operator or must one introduce this condition separately? One can also
ask whether this condition reduces to commutativity/co-commutativity in number theoretic
vision.

(a) CP2 type vacuum extremals serve as a convenient test case for the Euclidian signature.
In this case the modified Dirac equation reduces to the massless ordinary Dirac equation
in CP2 allowing only covariantly constant right-handed neutrino as solution. Only part
of CP2 so that one give up the constraint that the solution is defined in the entire CP2.
In this case holomorphic solution ansatz obtained by assuming that solutions depend on
the coordinates ⇠i, i = 1, 2 but not on their conjugates and that the gamma matrices �i,
i = 1, 2, annihilate the solutions, works. The solutions ansatz and its conjugate are of
exactly the same form as in case string models where one considers string world sheets
instead of CP2 region.
The solutions are not restricted to 2-D string world sheets and it is not clear whether
one can assign to them a well-defined em charge in any sense. Note that for massless
Dirac equation in H one obtains all CP2 harmonics as solutions, and it is possible to
talk about em charge of the solution although solution itself is not restricted to 2-D
surface of CP2.

(b) For massless extremals and a very wide class of solutions produced by Hamilton-Jacobi
structure - perhaps all solutions representable locally as graphs for map M4 ! CP2 -
canonical momentum densities are light-like and solutions are hyper-holomorphic in the
coordinates associated with with string world sheet and annihilated by the conjugate
gamma and arbitrary functions in transversal coordinates. This allows localization to
string world sheets. The localization is now strictly dynamical and implied by the
properties of Kähler Dirac operator.

(c) For string like objects one obtains massless Dirac equation in X2 ⇥ Y 2 ⇢ M4 ⇥ Y 2,
Y 2 a complex 2-surface in CP2. Homologically trivial geodesic sphere corresponds to
the simplest choice for Y 2. Modified Dirac operator reduces to a sum of massless
Dirac operators associated with X2 and Y 2. The most general solutions would have Y 2

mass. Holomorphic solutions reduces to product of hyper-holomorphic and holomorphic
solutions and massless 2-D Dirac equation is satisfied in both factors.
For instance, for S2 a geodesic sphere and X2 = M2 one obtains M2 massivation
with mass squared spectrum given by Laplace operator for S2. Conformal and hyper-
conformal symmetries are lost, and one might argue that this is quite not what one
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wants. One must be however resist the temptation to make too hasty conclusions since
the massivation of string like objects is expected to take place. The question is whether
it takes place already at the level of fundamental spinor fields or only at the level of
elementary particles constructed as many-fermion states of them as twistor Grassmann
approach assuming massless M4 propagators for the fundamental fermions strongly
suggests [K44].

(d) For vacuum extremals the Kähler Dirac operator vanishes identically so that it does not
make sense to speak about solutions.

What can one conclude from these observations?

(a) The localization of solutions to 2-D string world sheets follows from Kähler Dirac equa-
tion only for the Minkowskian regions representable as graphs of map M4 ! CP2

locally. For string like objects and deformations of CP2 type vacuum extremals this is
not expected to take place.

(b) It is not clear whether one can speak about well-defined em charge for the holomorphic
spinors annihilated by the conjugate gamma matrices or their conjugates. As noticed,
for imbedding space spinor harmonics this is however possible.

(c) Strong form of conformal symmetry and the condition that em charge is well-defined
for the nodes suggests that the localization at 2-D surfaces at which the charged parts
of induced electroweak gauge fields vanish must be assumed as an additional condition.
Number theoretic vision would suggest that these surfaces correspond to 2-D commu-
tative or co-commutative surfaces. The string world sheets inside space-time surfaces
would not emerge from theory but would be defined as basic geometric objects.

This kind of condition would also allow duals of string worlds sheets as partonic 2-
surfaces identified number theoretically as co-commutative surfaces. Commutativity
and co-commutativity would become essential elemenents of the number theoretical
vision.

(d) The localization of solutions of the modified Dirac action at string world sheets and
partonic 2-surfaces as a constraint would mean induction procedure for Kähler-Dirac
matrices from SX4 to X2 - that is projection. The resulting em neutral gamma matrices
would correspond to tangent vectors of the string world sheet. The vanishing of the
projections of charged parts of energy momentum currents would define these surfaces.
The conditions would apply both in Minkowskian and Euclidian regions. An alternative
interpretation would be number theoretical: these surface would be commutative or co-
commutative.

6.3.3 Concrete realization of the conditions guaranteeing well-defined
em charge

Well-definedness of the em charge is the fundamental condiiton on spinor modes. Physical
intuition suggests that also classical Z0 field should vanish - at least in scales longer than
weak scale. Above the condition guaranteeing vanishing of em charge has been discussed at
very general level. It has however turned out that one can understand situation by simply
posing the simplest condition that one can imagine: the vanishing of classical W and possibly
also Z0 fields inducing mixing of di↵erent charge states.

(a) Induced W fields mean that the modes of Kähler-Dirac equation do not in general have
well-defined em charge. The problem disappears if the induced W gauge fields vanish.
This does not yet guarantee that couplings to classical gauge fields are physical in long
scales. Also classical Z0 field should vanish so that the couplings would be purely
vectorial. Vectoriality might be true in long enough scales only. If W and Z0 fields
vanish in all scales then electroweak forces are due to the exchanges of corresponding
gauge bosons described as string like objects in TGD and represent non-trivial space-
time geometry and topology at microscopic scale.
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(b) The conditions solve also another long-standing interpretational problem. Color ro-
tations induce rotations in electroweak-holonomy group so that the vanishing of all
induced weak fields also guarantees that color rotations do not spoil the property of
spinor modes to be eigenstates of em charge.

One can study the conditions quite concretely by using the formulas for the components of
spinor curvature [L1] (http://www.tgdtheory.fi/public_html/pdfpool/append.pdf).

(a) The representation of the covariantly constant curvature tensor is given by

R01 = e0 ^ e1 � e2 ^ e3 , R23 = e0 ^ e1 � e2 ^ e3 ,
R02 = e0 ^ e2 � e3 ^ e1 , R31 = �e0 ^ e2 + e3 ^ e1 ,
R03 = 4e0 ^ e3 + 2e1 ^ e2 , R12 = 2e0 ^ e3 + 4e1 ^ e2 .

(6.3.6)

R01 = R23 and R03 = �R31 combine to form purely left handed classical W boson fields
and Z0 field corresponds to Z0 = 2R03.

Kähler form is given by

J = 2(e0 ^ e3 + e1 ^ e2) . (6.3.7)

(b) The vanishing of classical weak fields is guaranteed by the conditions

e0 ^ e1 � e2 ^ e3 = 0 ,

e0 ^ e2 � e3 ^ e1 ,

4e0 ^ e3 + 2e1 ^ e2 .

(6.3.8)

(c) There are many manners to satisfy these conditions. For instance, the condition e1 =
a⇥ e0 and e2 = �a⇥ e3 with arbitrary a which can depend on position guarantees the
vanishing of classical W fields. The CP2 projection of the tangent space of the region
carrying the spinor mode must be 2-D.

Also classical Z0 vanishes if a2 = 2 holds true. This guarantees that the couplings
of induced gauge potential are purely vectorial. One can consider other alternaties.
For instance, one could require that only classical Z0 field or induced Kähler form is
non-vanishing and deduce similar condition.

(d) The vanishing of the weak part of induced gauge field implies that the CP2 projection
of the region carrying spinor mode is 2-D. Therefore the condition that the modes of
induced spinor field are restricted to 2-surfaces carrying no weak fields sheets guarantees
well-definedness of em charge and vanishing of classical weak couplings. This condition
does not imply string world sheets in the general case since the CP2 projection of the
space-time sheet can be 2-D.

How string world sheets could emerge?

(a) Additional consistency condition to neutrality of string world sheets is that Kähler-Dirac
gamma matrices have no components orthogonal to the 2-surface in question. Hence
various fermionic would flow along string world sheet.

(b) If the Kähler-Dirac gamma matrices at string world sheet are expressible in terms of
two non-vanishing gamma matrices parallel to string world sheet and sheet and thus
define an integrable distribution of tangent vectors, this is achieved. What is important
that modified gamma matrices can indeed span lower than 4-D space and often do so
as already described. Induced gamma matrices defined always 4-D space so that the
restriction of the modes to string world sheets is not possible.

http://www.tgdtheory.fi/public_html/pdfpool/append.pdf
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(c) String models suggest that string world sheets are minimal surfaces of space-time surface
or of imbedding space but it might not be necessary to pose this condition separately.

In the proposed scenario string world sheets emerge rather than being postulated from be-
ginning.

(a) The vanishing conditions for induced weak fields allow also 4-D spinor modes if they are
true for entire spatime surface. This is true if the space-time surface has 2-D projection.
One can expect that the space-time surface has foliation by string world sheets and the
general solution of K-D equation is continuous superposition of the 2-D modes in this
case and discrete one in the generic case.

(b) If the CP2 projection of space-time surface is homologically non-trivial geodesic sphere
S2, the field equations reduce to those in M4 ⇥ S2 since the second fundamental form
for S2 is vanishing. It is possible to have geodesic sphere for which induced gauge field
has only em component?

(c) If the CP2 projection is complex manifold as it is for string like objects, the vanishing
of weak fields might be also achieved.

(d) Does the phase of cosmic strings assumed to dominate primordial cosmology correspond
to this phase with no classical weak fields? During radiation dominated phase 4-D string
like objects would transform to string world sheets.Kind of dimensional transmutation
would occur.

Right-handed neutrino has exceptional role in K-D action.

(a) Electroweak gauge potentials do not couple to ⌫R at all. Therefore the vanishing of W
fields is un-necessary if the induced gamma matrices do not mix right handed neutrino
with left-handed one. This is guaranteed if M4 and CP2 parts of Kähler-Dirac oper-
ator annihilate separately right-handed neutrino spinor mode. Also ⌫R modes can be
interpreted as continuous superpositions of 2-D modes and this allows to define overlap
integrals for them and induced spinor fields needed to define WCW gamma matrices
and super-generators.

(b) For covariantly constant right-handed neutrino mode defining a generator of super-
symmetries is certainly a solution of K-D. Whether more general solutions of K-D exist
remains to be checked out.

6.3.4 Connection with number theoretic vision?

The interesting potential connection of the Hamilton-Jacobi vision to the number theoretic
vision about field equations has been already mentioned.

(a) The vision that associativity/co-associativity defines the dynamics of space-time surfaces
boils down to M8 � H duality stating that space-time surfaces can be regarded as
associative/co-associative surfaces either in M8 or H [K77]. Associativity reduces to
hyper-quaternionicity implying that that the tangent/normal space of space-time surface
at each point contains preferred sub-space M2(x) ⇢ M8 and these sub-spaces forma
an integrable distribution. An analogous condition is involved with the definition of
Hamilton-Jacobi structure.

(b) The octonionic representation of the tangent space of M8 and H e↵ectively replaces
SO(7, 1) as tangent space group with its octonionic analog obtained by the replacement
of sigma matrices with their octonionic counterparts defined by anti-commutators of
gamma matrices. By non-associativity the resulting algebra is not ordinary Lie-algebra
and exponentiates to a non-associative analog of Lie group. The original wrong belief
was that the reduction takes place to the group G2 of octonionic automorphisms acting
as a subgroup of SO(7). One can ask whether the conditions on the charged part of
energy momentum tensor could relate to the reduction of SO(7, 1)



6.4. Preferred extremals and solutions of the modified Dirac equation and
super-conformal symmetries 237

(c) What puts bells ringing is that the modified Dirac equation for the octonionic repre-
sentation of gamma matrices allows the conservation of electromagnetic charge in the
proposed sense. The reason is that the left handed sigma matrices (W charges are left-
handed) in the octonionic representation of gamma matrices vanish identically! What
remains are vectorial=right-handed em and Z0 charge which becomes proportional to
em charge since its left-handed part vanishes. All spinor modes have a well-defined em
charge in the octonionic sense defined by replacing imbedding space spinor locally by its
octonionic variant? Maybe this could explain why H spinor modes can have well-defined
em charge contrary to the naive expectations.

(d) The non-associativity of the octonionic spinors is however a problem. Even non-commutativity
poses problems - also at space-time level if one assumes quaternion-real analyticity for
the spinor modes. Could one assume commutativity or co-commutativity for the induced
spinor modes? This would mean restriction to associative or co-associative 2-surfaces
and (hyper-)holomorphic depends on its (hyper-)complex coordinate. The outcome
would be a localization to a hyper-commutative of commutative 2-surface, string world
sheet or partonic 2-surface.

(e) These conditions could also be interpreted by saying that for the Kähler Dirac operator
the octonionic induced spinors assumed to be commutative/co-commutative are equiv-
alent with ordinary induced spinors. The well-definedness of em charge for ordinary
spinors would correspond to commutativity/co-commutativity for octonionic spinors.
Even the Dirac equations based on induced and modified gamma matrices could be
equivalent since it is essentially holomorphy which matters.

To sum up, these considerations inspire to ask whether the associativity/co-associativity of
the space-time surface is equivalent with the reduction of the field equations to stringy field
equations stating that certain components of the induced metric in complex/Hamilton-Jacobi
coordinates vanish in turn guaranteeing that field equations reduce to algebraic identifies fol-
lowing from the fact that energy momentum tensor and second fundamental form have no
common components? Commutativity/co-commutativity would characterize fermionic dy-
namics and would have physical representation as possibility to have em charge eigenspinors.
This should be the case if one requires that the two solution ansätze are equivalent.

6.4 Preferred extremals and solutions of the modified
Dirac equation and super-conformal symmetries

The previous considerations concerning super-conformal symmetries and space-time SUSY
have been based on general arguments. The new vision about preferred extremals and mod-
ified Dirac equation [K69] however leads to a detailed understanding of super-conformal
symmetries at the level of field equations and is bound to modify the existing vision about
super-conformal symmetries. One important discovery is that Einstein’s equations imply the
vanishing of terms proportional to Kähler current in field equations for preferred extremals
and Equivalence Principle at the classical level could be realized automatically in all scales
in contrast to the earlier belief. This obviously must have implications to the general vision
about Super-Virasoro representations and one must be ready to modify the existing picture
based on the assumption that quantum version of Equivalence Principle is realized in terms
coset representations.

The very special role of right handed neutrino is also bound to have profound implications.
A further important outcome is the identification of gauge potentials as duals of Kac-Moody
currents at the boundaries of string world sheets: quantum gauge potentials are defined only
where they are needed that is the curves defining the non-integrable phase factors. This gives
also rise to the realization of the conjecture Yangian in terms of the Kac-Moody charges and
commutators in accordance with the earlier conjecture.
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6.4.1 Super-conformal symmetries

It is good to summarize first the basic ideas about Super-Virasoro representations. TGD
allows two kinds of super-conformal symmetries.

(a) The first super-conformal symmetry is associated with �M4
± ⇥CP2 and corresponds to

symplectic symmetries of �M4
± ⇥ CP2. The reason for extension of conformal symme-

tries is metric 2-dimensionality of the light-like boundary �M4
± defining upper/lower

boundary of causal diamond (CD). This super-conformal symmetry is something new
and corresponds to replacing finite-dimensional Lie-group G for Kac-Moody symme-
try with infinite-dimensional symplectic group. The light-like radial coordinate of �M4

±
takes the role of the real part of complex coordinate z for ordinary conformal symmetry.
Together with complex coordinate of S2 it defines 3-D restriction of Hamilton-Jacobi
variant of 4-D super-conformal symmetries. One can continue the conformal symme-
tries from light-cone boundary to CD by forming a slicing by parallel copies of �M4

±.
There are two possible slicings corresponding to the choices �M4

+ and �M4
� assignable

to the upper and lower boundaries of CD. These two choices correspond to two arrows
of geometric time for the basis of zero energy states in ZEO.

(b) Super-symplectic degrees of freedom determine the electroweak and color quantum num-
bers of elementary particles. Bosonic emergence implies that ground states assignable
to partonic 2-surfaces correspond to partial waves in �M4

± and one obtains color partial
waves in particular. These partial waves correspond to the solutions for the Dirac equa-
tion in imbedding space and the correlation between color and electroweak quantum
numbers is not quite correct. Super-Kac-Moody generators give the compensating color
for massless states obtained from tachyonic ground states guaranteeing that standard
correlation is obtained. Super-symplectic degrees are therefore directly visible in par-
ticle spectrum. One can say that at the point-like limit the WCW spinors reduce to
tensor products of imbedding space spinors assignable to the center of mass degrees of
freedom for the partonic 2-surfaces defining wormhole throats.

I have proposed a physical interpretation of super-symplectic vibrational degrees of free-
dom in terms of degrees of freedom assignable to non-perturbative QCD. These degrees
of freedom would be responsible for most of the baryon masses but their theoretical
understanding is lacking in QCD framework.

(c) The second super-conformal symmetry is assigned light-like 3-surfaces and to the isome-
tries and holonomies of the imbedding space and is analogous to the super-Kac-Moody
symmetry of string models. Kac-Moody symmetries could be assigned to the light-
like deformations of light-like 3-surfaces. Isometries give tensor factor E2 ⇥ SU(3)
and holonomies factor SU(2)L ⇥ U(1). Altogether one has 5 tensor factors to super-
conformal algebra. That the number is just five is essential for the success p-adic mass
calculations [K31, K26].

The construction of solutions of the modified Dirac equation suggests strongly that the
fermionic representation of the Super-Kac-Moody algebra can be assigned as conserved
charges associated with the space-like braid strands at both the 3-D space-like ends of
space-time surfaces and with the light-like (or space-like with a small deformation) asso-
ciated with the light-like 3-surfaces. The extension to Yangian algebra involving higher
multi-linears of super-Kac Moody generators is also highly suggestive. These charges
would be non-local and assignable to several wormhole contacts simultaneously. The
ends of braids would correspond points of partonic 2-surfaces defining a discretization of
the partonic 2-surface having interpretation in terms of finite measurement resolution.

These symmetries would correspond to electroweak and strong gauge fields and to grav-
itation. The duals of the currents giving rise to Kac-Moody charges would define the
counterparts of gauge potentials and the conserved Kac-Moody charges would define
the counterparts of non-integrable phase factors in gauge theories. The higher Yangian
charges would define generalization of non-integrable phase factors. This would suggest
a rather direct connection with the twistorial program for calculating the scattering
amplitudes implies also by zero energy ontology.
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Quantization recipes have worked in the case of super-string models and one can ask whether
the application of quantization to the coe�cients of powers of complex coordinates or Hamilton-
Jacobi coordinates could lead to the understanding of the 4-D variants of the conformal sym-
metries and give detailed information about the representations of the Kac-Moody algebra
too.

6.4.2 What is the role of the right-handed neutrino?

A highly interesting aspect of Super-Kac-Moody symmetry is the special role of right handed
neutrino.

(a) Only right handed neutrino allows besides the modes restricted to 2-D surfaces also
the 4D modes de-localized to the entire space-time surface. The first ones are holo-
morphic functions of single coordinate and the latter ones holomorphic functions of
two complex/Hamilton-Jacobi coordinates. Only ⌫R has the full D = 4 counterpart of
the conformal symmetry and the localization to 2-surfaces has interpretation as super-
conformal symmetry breaking halving the number of super-conformal generators.

(b) This forces to ask for the meaning of super-partners. Are super-partners obtained
by adding ⌫R neutrino localized at partonic 2-surface or de-localized to entire space-
time surface or its Euclidian or Minkowskian region accompanying particle identified as
wormhole throat? Only the Euclidian option allows to assign right handed neutrino to
a unique partonic 2-surface. For the Minkowskian regions the assignment is to many
particle state defined by the partonic 2-surfaces associated with the 3-surface. Hence
for spartners the 4-D right-handed neutrino must be associated with the 4-D Euclidian
line of the generalized Feynman diagram.

(c) The orthogonality of the localized and de-localized right handed neutrino modes requires
that 2-D modes correspond to higher color partial waves at the level of imbedding space.
If color octet is in question, the 2-D right handed neutrino as the candidate for the
generator of standard SUSY would combine with the left handed neutrino to form a
massive neutrino. If 2-D massive neutrino acts as a generator of super-symmetries, it is
is in the same role as badly broken super-symmeries generated by other 2-D modes of
the induced spinor field (SUSY with rather large value of N ) and one can argue that the
counterpart of standard SUSY cannot correspond to this kind of super-symmetries. The
right-handed neutrinos de-localized inside the lines of generalized Feynman diagrams,
could generate N = 2 variant of the standard SUSY.

How particle and right handed neutrino are bound together?

Ordinary SUSY means that apart from kinematical spin factors sparticles and particles be-
have identically with respect to standard model interactions. These spin factors would allow
to distinguish between particles and sparticles. But is this the case now?

(a) One can argue that 2-D particle and 4-D right-handed neutrino behave like independent
entities, and because ⌫R has no standard model couplings this entire structure behaves
like a particle rather than sparticle with respect to standard model interactions: the
kinematical spin dependent factors would be absent.

(b) The question is also about the internal structure of the sparticle. How the four-
momentum is divided between the ⌫R and and 2-D fermion. If ⌫R carries a negligible
portion of four-momentum, the four-momentum carried by the particle part of sparticle
is same as that carried by particle for given four-momentum so that the distinctions are
only kinematical for the ordinary view about sparticle and trivial for the view suggested
by the 4-D character of ⌫R.

Could sparticle character become manifest in the ordinary scattering of sparticle?
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(a) If ⌫R behaves as an independent unit not bound to the particle, it would continue in the
original direction as particle scatters: sparticle would decay to particle and right-handed
neutrino. If ⌫R carries a non-negligible energy the scattering could be detected via a
missing energy. If not, then the decay could be detected by the interactions revealing the
presence of ⌫R. ⌫R can have only gravitational interactions. What these gravitational
interactions are is not however quite clear since the proposed identification of gravita-
tional gauge potentials is as duals of Kac-Moody currents analogous to gauge potentials
located at the boundaries of string world sheets. Does this mean that 4-D right-handed
neutrino has no quantal gravitational interactions? Does internal consistency require
⌫R to have a vanishing gravitational and inertial masses and does this mean that this
particle carries only spin?

(b) The cautious conclusion would be following: if de-localized ⌫R and parton are un-
correlated particle and sparticle cannot be distinguished experimentally and one might
perhaps understand the failure to detect standard SUSY at LHC. Note however that
the 2-D fermionic oscillator algebra defines badly broken large N SUSY containing also
massive (longitudinal momentum square is non-vanishing) neutrino modes as generators.

Taking a closer look on sparticles

It is good to take a closer look at the de-localized right handed neutrino modes.

(a) At imbedding space level that is in cm mass degrees of freedom they correspond to
covariantly constant CP2 spinors carrying light-like momentum which for causal dia-
mond could be discretized. For non-vanishing momentum one can speak about helicity
having opposite sign for ⌫R and ⌫R. For vanishing four-momentum the situation is del-
icate since only spin remains and Majorana like behavior is suggestive. Unless one has
momentum continuum, this mode might be important and generate additional SUSY
resembling standard N = 1 SUSY.

(b) At space-time level the solutions of modified Dirac equation are holomorphic or anti-
holomorphic.

i. For non-constant holomorphic modes these characteristics correlate naturally with
fermion number and helicity of ⌫R . One can assign creation/annihilation operator
to these two kinds of modes and the sign of fermion number correlates with the sign
of helicity.

ii. The covariantly constant mode is naturally assignable to the covariantly constant
neutrino spinor of imbedding space. To the two helicities one can assign also os-
cillator operators {a±, a†±}. The e↵ective Majorana property is expressed in terms
of non-orthogonality of ⌫R and and ⌫R translated to the the non-vanishing of the
anti-commutator {a†+, a�} = {a†�, a+} = 1. The reduction of the rank of the 4⇥ 4
matrix defined by anti-commutators to two expresses the fact that the number of
degrees of freedom has halved. a†+ = a� realizes the conditions and implies that
one has only N = 1 SUSY multiplet since the state containing both ⌫R and ⌫R is
same as that containing no right handed neutrinos.

iii. One can wonder whether this SUSY is masked totally by the fact that sparticles
with all possible conformal weights n for induced spinor field are possible and the
branching ratio to n = 0 channel is small. If momentum continuum is present, the
zero momentum mode might be equivalent to nothing.

What can happen in spin degrees of freedom in super-symmetric interaction vertices if one
accepts this interpretation? As already noticed, this depends solely on what one assumes
about the correlation of the four-momenta of particle and ⌫R.

(a) For SUSY generated by covariantly constant ⌫R and ⌫R there is no neutrino four-
momentum involved so that only spin matters. One cannot speak about the change
of direction for ⌫R. In the scattering of sparticle the direction of particle changes and
introduces di↵erent spin quantization axes. ⌫R retains its spin and in new system it is
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superposition of two spin projections. The presence of both helicities requires that the
transformation ⌫R ! ⌫R happens with an amplitude determined purely kinematically
by spin rotation matrices. This is consistent with fermion number conservation modulo
2. N = 1 SUSY based on Majorana spinors is highly suggestive.

(b) For SUSY generated by non-constant holomorphic and anti-holomorphic modes carrying
fermion number the behavior in the scattering is di↵erent. Suppose that the sparticle
does not split to particle moving in the new direction and ⌫R moving in the original
direction so that also ⌫R or ⌫R carrying some massless fraction of four-momentum
changes its direction of motion. One can form the spin projections with respect to the
new spin axis but must drop the projection which does not conserve fermion number.
Therefore the kinematics at the vertices is di↵erent. Hence N = 2 SUSY with fermion
number conservation is suggestive when the momentum directions of particle and ⌫R
are completely correlated.

(c) Since right-handed neutrino has no standard model couplings, p-adic thermodynam-
ics for 4-D right-handed neutrino must correspond to a very low p-adic temperature
T = 1/n. This implies that the excitations with non-vanishing conformal weights are
e↵ectively absent and one would have N = 1 SUSY e↵ectively.

The simplest assumption is that particle and sparticle correspond to the same p-adic
mass scale and have degenerate masses: it is di�cult to imagine any good reason for
why the p-adic mass scales should di↵er. This should have been observed -say in decay
widths of weak bosons - unless the spartners correspond to large ~ phase and therefore
to dark matter. Note that for the badly broken 2-D N=2 SUSY in fermionic sector this
kind of almost degeneracy cannot be excluded and I have considered an explanation for
the mysterious X and Y mesons in terms of this degeneracy [K29].

Why space-time SUSY is not possible in TGD framework?

LHC suggests that one does not have N = 1 SUSY in standard sense. Why one cannot
have standard space-time SUSY in TGD framework. Let us begin by listing all arguments
popping in mind.

(a) Could covariantly constant ⌫R represents a gauge degree of freedom? This is plausible
since the corresponding fermion current is non-vanishing.

(b) The original argument for absence of space-time SUSY years ago was indirect: M4⇥CP2

does not allow Majorana spinors so that N = 1 SUSY is excluded.

(c) One can however consider N = 2 SUSY by including both helicities possible for covari-
antly constant ⌫R. For ⌫R the four-momentum vanishes so that one cannot distinguish
the modes assigned to the creation operator and its conjugate via complex conjugation
of the spinor. Rather, one oscillator operator and its conjugate correspond to the two
di↵erent helicities of right-handed neutrino with respect to the direction determined
by the momentum of the particle. The spinors can be chosen to be real in this basis.
This indeed gives rise to an irreducible representation of spin 1/2 SUSY algebra with
right-handed neutrino creation operator acting as a ladder operator. This is however
N = 1 algebra and right-handed neutrino in this particular basis behaves e↵ectively like
Majorana spinor. One can argue that the system is mathematically inconsistent. By
choosing the spin projection axis di↵erently the spinor basis becomes complex. In the
new basis one would have N = 2 , which however reduces to N = 1 in the real basis.

(d) Or could it be that fermion and sfermion do exist but cannot be related by SUSY?
In standard SUSY fermions and sfermions forming irreducible representations of su-
per Poincare algebra are combined to components of superfield very much like finite-
dimensional representations of Lorentz group are combined to those of Poincare. In TGD
framework ⌫R generates in space-time interior generalization of 2-D super-conformal
symmetry but covarianlty constant ⌫R cannot give rise to space-time SUSY.

This would be very natural since right-handed neutrinos do not have any electroweak
interactions and are are de-localized into the interior of the space-time surface unlike
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other particles localized at 2-surfaces. It is di�cult to imagine how fermion and ⌫R
could behave as a single coherent unit reflecting itself in the characteristic spin and
momentum dependence of vertices implied by SUSY. Rather, it would seem that fermion
and sfermion should behave identically with respect to electroweak interactions.

The third argument looks rather convincing and can be developed to a precise argument.

(a) If sfermion is to represent elementary bosons, the products of fermionic oscillator oper-
ators with the oscillator operators assignable to the covariantly constant right handed
neutrinos must define might-be bosonic oscillator operators as bn = ana and b†n = a†na

†

One can calculate the commutator for the product of operators. If fermionic oscillator
operators commute, so do the corresponding bosonic operators. The commutator [bn, b†n]
is however proportional to occupation number for ⌫R in N = 1 SUSY representation
and vanishes for the second state of the representation. Therefore N = 1 SUSY is a
pure gauge symmetry.

(b) One can however have both irreducible representations of SUSY: for them either fermion
or sfermion has a non-vanishing norm. One would have both fermions and sfermions
but they would not belong to the same SUSY multiplet, and one cannot expect SUSY
symmetries of 3-particle vertices.

(c) For instance, �FF vertex is closely related to �F̃ F̃ in standard SUSY. Now one expects
this vertex to decompose to a product of �FF vertex and amplitude for the creation
of ⌫R⌫̃R from vacuum so that the characteristic momentum and spin dependent factors
distinguishing between the couplings of photon to scalar and and fermion are absent.
Both states behave like fermions. The amplitude for the creation of ⌫R⌫̃R from vacuum
is naturally equal to unity as an occupation number operator by crossing symmetry. The
presence of right-handed neutrinos would be invisible if this picture is correct. Whether
this invisible label can have some consequences is not quite clear: one could argue that
the decay rates of weak bosons to fermion pairs are doubled unless one introduces 1/

p
2

factors to couplings.

Where the sfermions might make themselves visible are loops. What loops are? Consider
boson line first. Boson line is replaced with a sum of two contributions corresponding
to ordinary contribution with fermion and anti-fermion at opposite throats and second
contribution with fermion and anti-fermion accompanied by right-handed neutrino ⌫R
and its antiparticle which now has opposite helicity to ⌫R. The loop for ⌫R decomposes
to four pieces since also the propagation from wormhole throat to the opposite wormhole
throat must be taken into account. Each of the four propagators equals to a†1/2a

†
�1/2

or its hermitian conjugate. The product of these is slashed between vacuum states
and anti-commutations give imaginary unit per propagator giving i4 = 1. The two
contributions are therefore identical and the scaling g ! g/

p
2 for coupling constants

guarantees that sfermions do not a↵ect the scattering amplitudes at all. The argument
is identical for the internal fermion lines.

6.4.3 WCW geometry and super-conformal symmetries

The vision about the geometry of WCW has been roughly the following and the recent steps
of progress induce to it only small modifications if any.

(a) Kähler geometry is forced by the condition that hermitian conjugation allows geometriza-
tion. Kähler function is given by the Kähler action coming from space-time regions with
Euclidian signature of the induced metric identifiable as lines of generalized Feynman
diagrams. Minkowskian regions give imaginary contribution identifiable as the analog
of Morse function and implying interference e↵ects and stationary phase approximation.
The vision about quantum TGD as almost topological QFT inspires the proposal that
Kähler action reduces to 3-D terms reducing to Chern-Simons terms by the weak form
of electric-magnetic duality. The recent proposal for preferred extremals is consistent
with this property realizing also holography implied by general coordinate invariance.



6.4. Preferred extremals and solutions of the modified Dirac equation and
super-conformal symmetries 243

Strong form of general coordinate invariance implying e↵ective 2-dimensionality in turn
suggests that Kähler action is expressible in terms of areas of partonic 2-surfaces and
string world sheets.

(b) The complexified gamma matrices of WCW come as hermitian conjugate pairs and
anti-commute to the Kähler metric of WCW. Also bosonic generators of symplectic
transformations of �M4

± ⇥ CP2 a assumed to act as isometries of WCW geometry can
be complexified and appear as similar pairs. The action of isometry generators co-
incides with that of symplectic generators at partonic 2-surfaces and string world sheets
but elsewhere inside the space-time surface it is expected to be deformed from the
symplectic action. The super-conformal transformations of �M4

± ⇥ CP2 acting on the
light-like radial coordinate of �M4

± act as gauge symmetries of the geometry meaning
that the corresponding WCW vector fields have zero norm.

(c) WCW geometry has also zero modes which by definition do not contribute to WCW
metric expect possibly by the dependence of the elements of WCW metric on zero
modes through a conformal factor. In particular, induced CP2 Kähler form and its
analog for sphere rM = constant of light cone boundary are symplectic invariants, and
one can define an infinite number of zero modes as invariants defined by Kähler fluxes
over partonic 2-surfaces and string world sheets. This requires however the slicing of
CD parallel copies of �M4

+ or �M4
�. The physical interpretation of these non-quantum

fluctuating degrees of freedom is as classical variables necessary for the interpretation
of quantum measurement theory. Classical variable would metaphorically correspond
the position of the pointer of the measurement instrument.

(d) The construction receives a strong philosophical inspiration from the geometry of loop
spaces. Loop spaces allow a unique Kähler geometry with maximal isometry group
identifiable as Kac-Moody group. The reason is that otherwise Riemann connection
does not exist. The only problem is that curvature scalar diverges since the Riemann
tensor is by constant curvature property proportional to the metric. In 3-D case one
would have union of constant curvature spaces labelled by zero modes and the situation
is expected to be even more restrictive. The conjecture indeed is that WCW geometry
exists only for H = M4 ⇥ CP2: infinite-D Kähler geometric existence and therefore
physics would be unique. One can also hope that Ricci scalar is finite and therefore zero
by the constant curvature property so that Einstein’s equations are satisfied.

(e) WCW Hamiltonians determined the isometry currents and WCW metric is given in
terms of the anti-commutators of the Killing vector fields associated with symplectic
isometry currents. The WCW Hamiltonians generating symplectic isometries corre-
spond to the Hamiltonians spanning the symplectic group of �M4

± ⇥CP2. One can say
that the space of quantum fluctuating degrees of freedom is this symplectic group of
�M4

± ⇥ CP2 or its subgroup or coset space: this must have very deep implications for
the structure of the quantum TGD.

(f) Zero energy ontology brings in additional delicacies. Basic objects are now unions of par-
tonic 2-surfaces at the ends of CD. Also string world sheets would naturally contribute.
One can generalize the expressions for the isometry generators in a straightforward man-
ner by requiring that given isometry restricts to a symplectic transformation at partonic
2-surfaces and string world sheets.

(g) One could criticize the e↵ective metric 2-dimensionality forced by general consistency
arguments as something non-physical. The Hamiltonians are expressed using only the
data at partonic 2-surfaces: this includes also 4-D tangent space data via the weak form
of electric-magnetic duality so that one has only e↵ective 2-dimensionality. Obviously
WCW geometry must have large gauge symmetries besides zero modes. The super-
conformal symmetries indeed represent gauge symmetries of this kind. E↵ective 2-
dimensionality realizing strong form of holography in turn is induced by the strong
form of general coordinate invariance. Light-like 3-surfaces at which the signature of
the induced metric changes must be equivalent with the 3-D space-like ends of space-
time surfaces at the light-boundaries of space-time surfaces as far as WCW geometry is
considered. This requires that the data from their 2-D intersections defining partonic
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2-surfaces should dictate the WCW geometry. Note however that Super-Kac-Moody
charges giving information about the interiors of 3-surfaces appear in the construction
of the physical states.

What is the role of the right handed neutrino in this construction?

(a) In the construction of components of WCW metric as anti-commutators of super-
generators only the covariantly constant right-handed neutrino appears in the super-
generators analogous to super-Kac-Moody generators. All holomorphic modes of right
handed neutrino characterized by two integers could in principle contribute to the WCW
gamma matrices identified as fermionic super-symplectic generators anti-commuting to
the metric. At the space-like ends of space-time surface the holomorphic generators
would restrict to symplectic generators since the radial light-like coordinate rM identi-
fied and complex coordinate of CP2 allowing identification as restrictions of two complex
coordinates or Hamilton-Jacobi coordinates to light-like boundary.

(b) The non-covariantly constant modes could also correspond to purely super-conformal
gauge degrees of freedom. Originally the restriction to right-handed neutrino looked
somewhat un-satisfactory but the recent view about Super-Kac-Moody symmetries
makes its special role rather natural. One could say that WCW geometry possesses
the maximal D = 4 supersymmetry.

(c) One can of course ask whether the Super-Kac-Moody generators assignable to the isome-
tries of H and expressible as conserved charges associated with the boundaries of string
world sheets could contribute to the WCW geometry via the anti-commutators. This
option cannot be excluded but in this case the interpretation in terms of Hamiltonians
is not obvious.

6.4.4 The relationship between inertial gravitational masses

The relationship between inertial and gravitational masses and Equivalence Principle have
been on of the longstanding problems in TGD. Not surprisingly, the realization how GRT
space-time relates to the many-sheeted space-time of TGD finally allowed to solve the prob-
lem.

ZEO and non-conservation of Poincare charges in Poincare invariant theory of
gravitation

In positive energy ontology the Poincare invarance of TGD is in sharpt contrast with the fact
that GRT based cosmology predicts non-conservation of Poincare charges (as a matter fact,
the definition of Poincare charges is very questionable for general solutions of field equations).

In zero energy ontology (ZEO) all conserved (that is Noether-) charges of the Universe vanish
identically and their densities should vanish in scales below the scale defining the scale for
observations and assignable to causal diamond (CD). This observation allows to imagine a
ways out of what seems to be a conflict of Poincare invariance with cosmological facts.

ZEO would explain the local non-conservation of average energies and other conserved quan-
tum numbers in terms of the contributions of sub-CDs analogous to quantum fluctuations.
Classical gravitation should have a thermodynamical description if this interpretation is cor-
rect. The average values of the quantum numbers assignable to a space-time sheet would
depend on the size of CD and possibly also its location in M4. If the temporal distance be-
tween the tips of CD is interpreted as a quantized variant of cosmic time, the non-conservation
of energy-momentum defined in this manner follows. One can say that conservation laws hold
only true in given scale defined by the largest CD involved.
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Equivalence Principle at quantum level

The interpretation of EP at quantum level has developed slowly and the recent view is that
it reduces to quantum classical correspondence meaning that the classical charges of Kähler
action can be identified with eigen values of quantal charges associated with Kähler-Dirac
action.

(a) At quantum level I have proposed coset representations for the pair of super-symplectic
algebras assignable to the light-like boundaries of CD and the Super Kac-Moody alge-
bra assignable to the light-like 3-surfaces defining the orbits of partonic 2-surfaces as
realization of EP. For coset representation the di↵erences of super-conformal generators
would annihilate the physical states so that one can argue that the corresponding four-
momenta are identical. One could even say that one obtains coset representation for
the ”vibrational” parts of the super-conformal algebras in question. It is now clear that
this idea does not work. Note however that coset representations occur naturally for
the subalgebras of symplectic algebra and Super Kac-Moody algebra and are naturally
induced by finite measurement resolution.

(b) The most recent view (2014) about understanding how EP emerges in TGD is de-
scribed in [K56] and relies heavily on superconformal invariance and a detailed reali-
sation of ZEO at quantum level. In this approach EP corresponds to quantum clas-
sical correspondence (QCC): four-momentum identified as classical conserved Noether
charge for space-time sheets associated with Käbler action is identical with quantal four-
momentum assignable to the representations of super-symplectic and super Kac-Moody
algebras as in string models and having a realisation in ZEO in terms of wave functions
in the space of causal diamonds (CDs).

(c) The latest realization is that the eigenvalues of quantal four-momentum can be identified
as eigenvalues of the four-momentum operator assignable to the modified Dirac equation.
This realisation seems to be consistent with the p-adic mass calculations requiring that
the super-conformal algebra acts in the tensor product of 5 tensor factors.

Equivalence Principle at classical level

How Einstein’s equations and General Relativity in long length scales emerges from TGD
has been a long-standing interpretational problem of TGD.

The first proposal making sense even when one does not assume ZEO is that vacuum ex-
tremals are only approximate representations of the physical situation and that small fluc-
tuations around them give rise to an inertial four-momentum identifiable as gravitational
four-momentum identifiable in terms of Einstein tensor. EP would hold true in the sense
that the average gravitational four-momentum would be determined by the Einstein tensor
assignable to the vacuum extremal. This interpretation does not however take into account
the many-sheeted character of TGD spacetime and is therefore questionable.

The resolution of the problem came from the realization that GRT is only an e↵ective theory
obtained by endowing M4 with e↵ective metric.

(a) The replacement of superposition of fields with superposition of their e↵ects means
replacing superposition of fields with the set-theoretic union of space-time surfaces.
Particle experiences sum of the e↵ects caused by the classical fields at the space-time
sheets (see fig. http://www.tgdtheory.fi/appfigures/fieldsuperpose.jpg or fig.
11 in the appendix of this book).

(b) This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
e↵ective metric as sum of M4 metric and deviations. This e↵ective metric would corre-
spond to that of General Relativity. This resolves long standing issues relating to the
interpretation of TGD.

http://www.tgdtheory.fi/appfigures/fieldsuperpose.jpg
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(c) Einstein’s equations could hold true for the e↵ective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for
the e↵ective metric. The conjecture vanishing of divergence of Khler energy momentum
tensor can be seen as the microscopic justification for the claim that Einstein’s equations
hold true for the e↵ective space-time.

(d) The breaking of Poincare invariance could have interpretation as e↵ective breaking in
zero energy ontology (ZEO), in which various conserved charges are length dependent
and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of
QCC rather than realise QCC interpreted as EP. The condition that the energy momentum
tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if
Einstein’s equations with cosmological term hold true. This is the case also now but one can
consider also more general solutions in which one has two cosmological constants which are
not genuine constants anymore [K78].

An interesting question is whether inertial-gravitational duality generalizes to the case of
color gauge charges so that color gauge fluxes would correspond to ”gravitational” color
charges and the charges defined by the conserved currents associated with color isometries
would define ”inertial” color charges. Since the induced color fields are proportional to color
Hamiltonians multiplied by Kähler form they vanish identically for vacuum extremals in
accordance with ”gravitational” color confinement.

6.4.5 Constraints from p-adic mass calculations and ZEO

A further important physical input comes from p-adic thermodynamics forming a core ele-
ment of p-adic mass calculations.

(a) The first thing that one can get worried about relates to the extension of conformal
symmetries. If the conformal symmetries generalize toD = 4, how can one take seriously
the results of p-adic mass calculations based on 2-D conformal invariance? There is
no reason to worry. The reduction of the conformal invariance to 2-D one for the
preferred extremals takes care of this problem. This however requires that the fermionic
contributions assignable to string world sheets and/or partonic 2-surfaces - Super- Kac-
Moody contributions - should dictate the elementary particle masses. For hadrons also
symplectic contributions should be present. This is a valuable hint in attempts to
identify the mathematical structure in more detail.

(b) ZEO suggests that all particles, even virtual ones correspond to massless wormhole
throats carrying fermions. As a consequence, twistor approach would work and the
kinematical constraints to vertices would allow the cancellation of divergences. This
would suggest that the p-adic thermal expectation value is for the longitudinal M2

momentum squared (the definition of CD selects M1 ⇢ M2 ⇢ M4 as also does number
theoretic vision). Also propagator would be determined by M2 momentum. Lorentz
invariance would be obtained by integration of the moduli for CD including also Lorentz
boosts of CD.

(c) In the original approach one allows states with arbitrary large values of L0 as physical
states. Usually one would require that L0 annihilates the states. In the calculations how-
ever mass squared was assumed to be proportional L0 apart from vacuum contribution.
This is a questionable assumption. ZEO suggests that total mass squared vanishes
and that one can decompose mass squared to a sum of longitudinal and transversal
parts. If one can do the same decomposition to longitudinal and transverse parts also
for the Super Virasoro algebra then one can calculate longitudinal mass squared as a
p-adic thermal expectation in the transversal super-Virasoro algebra and only states
with L0 = 0 would contribute and one would have conformal invariance in the standard
sense.
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(d) In the original approach the assumption motivated by Lorentz invariance has been that
mass squared is replaced with conformal weight in thermodynamics, and that one first
calculates the thermal average of the conformal weight and then equates it with mass
squared. This assumption is somewhat ad hoc. ZEO however suggests an alternative
interpretation in which one has zero energy states for which longitudinal mass squared of
positive energy state derive from p-adic thermodynamics. Thermodynamics - or rather,
its square root - would become part of quantum theory in ZEO. M -matrix is indeed
product of hermitian square root of density matrix multiplied by unitary S-matrix and
defines the entanglement coe�cients between positive and negative energy parts of zero
energy state.

(e) The crucial constraint is that the number of super-conformal tensor factors is N = 5:
this suggests that thermodynamics applied in Super-Kac-Moody degrees of freedom
assignable to string world sheets is enough, when one is interested in the masses of
fermions and gauge bosons. Super-symplectic degrees of freedom can also contribute and
determine the dominant contribution to baryon masses. Should also this contribution
obey p-adic thermodynamics in the case when it is present? Or does the very fact
that this contribution need not be present mean that it is not thermal? The symplectic
contribution should correspond to hadronic p-adic length prime rather the one assignable
to (say ) u quark. Hadronic p-adic mass squared and partonic p-adic mass squared
cannot be summed since primes are di↵erent. If one accepts the basic rules [K32],
longitudinal energy and momentum are additive as indeed assumed in perturbative
QCD.

(f) Calculations work if the vacuum expectation value of the mass squared must be assumed
to be tachyonic. There are two options depending on whether one whether p-adic
thermodynamics gives total mass squared or longitudinal mass squared.

i. One could argue that the total mass squared has naturally tachyonic ground state
expectation since for massless extremals longitudinal momentum is light-like and
transversal momentum squared is necessary present and non-vanishing by the lo-
calization to topological light ray of finite thickness of order p-adic length scale.
Transversal degrees of freedom would be modeled with a particle in a box.

ii. If longitudinal mass squared is what is calculated, the condition would require
that transversal momentum squared is negative so that instead of plane wave like
behavior exponential damping would be required. This would conform with the
localization in transversal degrees of freedom.

6.4.6 The emergence of Yangian symmetry and gauge potentials as
duals of Kac-Moody currents

Yangian symmetry plays a key role in N = 4 super-symmetric gauge theories. What is
special in Yangian symmetry is that the algebra contains also multi-local generators. In
TGD framework multi-locality would naturally correspond to that with respect to partonic
2-surfaces and string world sheets and the proposal has been that the Super-Kac-Moody
algebras assignable to string worlds sheets could generalize to Yangian.

Witten has written a beautiful exposition of Yangian algebras [B18]. Yangian is generated by
two kinds of generators JA and QA by a repeated formation of commutators. The number
of commutations tells the integer characterizing the multi-locality and provides the Yan-
gian algebra with grading by natural numbers. Witten describes a 2-dimensional QFT like
situation in which one has 2-D situation and Kac-Moody currents assignable to real axis
define the Kac-Moody charges as integrals in the usual manner. It is also assumed that the
gauge potentials defined by the 1-form associated with the Kac-Moody current define a flat
connection:

@µj
A
⌫ � @⌫j

A
⌫ + [jAµ , j

A
⌫ ] = 0 . (6.4.1)
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This condition guarantees that the generators of Yangian are conserved charges. One can
however consider alternative manners to obtain the conservation.

(a) The generators of first kind - call them JA - are just the conserved Kac-Moody charges.
The formula is given by

JA =

Z 1

�1
dxjA0(x, t) . (6.4.2)

(b) The generators of second kind contain bi-local part. They are convolutions of generators
of first kind associated with di↵erent points of string described as real axis. In the basic
formula one has integration over the point of real axis.

QA = fA
BC

Z 1

�1
dx

Z 1

x

dyjB0(x, t)jC0(y, t)� 2

Z 1

�1
jAx dx . (6.4.3)

These charges are indeed conserved if the curvature form is vanishing as a little calcu-
lation shows.

How to generalize this to the recent context?

(a) The Kac-Moody charges would be associated with the braid strands connecting two
partonic 2-surfaces - Strands would be located either at the space-like 3-surfaces at the
ends of the space-time surface or at light-like 3-surfaces connecting the ends. Modified
Dirac equation would define Super-Kac-Moody charges as standard Noether charges.
Super charges would be obtained by replacing the second quantized spinor field or its
conjugate in the fermionic bilinear by particular mode of the spinor field. By replacing
both spinor field and its conjugate by its mode one would obtain a conserved c-number
charge corresponding to an anti-commutator of two fermionic super-charges. The convo-
lution involving double integral is however not number theoretically attractive whereas
single 1-D integrals might make sense.

(b) An encouraging observation is that the Hodge dual of the Kac-Moody current defines
the analog of gauge potential and exponents of the conserved Kac-Moody charges could
be identified as analogs for the non-integrable phase factors for the components of this
gauge potential. This identification is precise only in the approximation that genera-
tors commute since only in this case the ordered integral P (exp(i

R
Adx)) reduces to

P (exp(i
R
Adx)).Partonic 2-surfaces connected by braid strand would be analogous to

nearby points of space-time in its discretization implying that Abelian approximation
works. This conforms with the vision about finite measurement resolution as discretiza-
tion in terms partonic 2-surfaces and braids.

This would make possible a direct identification of Kac-Moody symmetries in terms
of gauge symmetries. For isometries one would obtain color gauge potentials and the
analogs of gauge potentials for graviton field (in TGD framework the contraction with
M4 vierbein would transform tensor field to 4 vector fields). For Kac-Moody generators
corresponding to holonomies one would obtain electroweak gauge potentials. Note that
super-charges would give rise to a collection of spartners of gauge potentials automat-
ically. One would obtain a badly broken SUSY with very large value of N defined by
the number of spinor modes as indeed speculated earlier [K19].

(c) The condition that the gauge field defined by 1-forms associated with the Kac-Moody
currents are trivial looks unphysical since it would give rise to the analog of topological
QFT with gauge potentials defined by the Kac-Moody charges. For the duals of Kac-
Moody currents defining gauge potentials only covariant divergence vanishes implying
that curvature form is

F↵� = ✏↵� [jµ, j
µ] , (6.4.4)
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so that the situation does not reduce to topological QFT unless the induced metric is
diagonal. This is not the case in general for string world sheets.

(d) It seems however that there is no need to assume that jµ defines a flat connection.
Witten mentions that although the discretization in the definition of JA does not seem
to be possible, it makes sense for QA in the case of G = SU(N) for any representation
of G. For general G and its general representation there exists no satisfactory definition
of Q. For certain representations, such as the fundamental representation of SU(N),
the definition of QA is especially simple. One just takes the bi-local part of the previous
formula:

QA = fA
BC

X
i<j

JB
i JC

j . (6.4.5)

What is remarkable that in this formula the summation need not refer to a discretized
point of braid but to braid strands ordered by the label i by requiring that they form a
connected polygon. Therefore the definition of JA could be just as above.

(e) This brings strongly in mind the interpretation in terms of twistor diagrams. Yangian
would be identified as the algebra generated by the logarithms of non-integrable phase
factors in Abelian approximation assigned with pairs of partonic 2-surfaces defined in
terms of Kac-Moody currents assigned with the modified Dirac action. Partonic 2-
surfaces connected by braid strand would be analogous to nearby points of space-time
in its discretization. This would fit nicely with the vision about finite measurement
resolution as discretization in terms partonic 2-surfaces and braids.

The resulting algebra satisfies the basic commutation relations

⇥
JA, JB

⇤
= fAB

C JC ,
⇥
JA, QB

⇤
= fAB

C QC . (6.4.6)

plus the rather complex Serre relations described in [B18].

6.4.7 Quantum criticality and electroweak symmetries

In the following quantum criticali and electroweak symmetries are discussed for Kähler-Dirac
action.

What does one mean with quantum criticality?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means
mathematically is however far from clear and one can imagine several meanings for it.

(a) What is obvious is that quantum criticality implies quantization of Kähler coupling
strength as a mathematical analog of critical temperature so that the theory becomes
mathematically unique if only single critical temperature is possible. Physically this
means the presence of long range fluctuations characteristic for criticality and perhaps
assignable to the e↵ective hierarchy of Planck constants having explanation in terms
of e↵ective covering spaces of the imbedding space. This hierarchy follows from the
vacuum degeneracy of Kähler action, which in turn implies 4-D spin-glass degeneracy.
It is easy to interpret the degeneracy in terms of criticality.

(b) At more technical level one would expect criticality to corresponds to deformations of a
given preferred extremal defining a vanishing second variation of Kähler Khler function
or Kähler action.
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i. For Kähler function this criticality is analogous to thermodynamical criticality. The
Hessian matrix defined by the second derivatives of free energy or potential function
becomes degenerate at criticality as function of control variables which now would
be naturally zero modes not contribution to Kähler metric of WCW but appearing
as parameters in it. The bevavior variables correspond to quantum fluctuating
degrees of freedom and according to catastrophe theory a big change can in quantum
fluctuating degrees of freedom at criticality for zero modes. This would be control of
quantum state by varying classical variables. Cusp catastrophe is standard example
of this. One can imagined also a situation in which the roles of zero modes and
behavior variables change and big jump in the values of zero modes is induced by
small variation in behavior variables. This would mean quantum control of classical
variables.

ii. Zero modes controlling quantum fluctuating variables in Kähler function would
correspond to vanishing of also second derivatives of potential function at extremum
in certain directions so that the matrix defined by second derivatives does not have
maximum rank. Entire hierarchy of criticalities is expected and a good finite-
dimensional model is provided by the catastrophe theory of Thom [?]. Cusp
catastrophe [A2] is the simplest catastrophe one can think of, and here the folds of
cusp where discontinuous jump occurs correspond to criticality with respect to one
control variable and the tip to criticality with respect to both control variables.

(c) Quantum criticality makes sense also for Kähler action.

i. Now one considers space-time surface connecting which 3-surfaces at the boundaries
of CD. The non-determinism of Kähler action allows the possibility of having sev-
eral space-time sheets connecting the ends of space-time surface but the conditions
that classical charges are same for them reduces this number so that it could be
finite. Quantum criticality in this sense implies non-determinism analogous to that
of critical systems since preferred extremals can co-incide and su↵er this kind of
bifurcation in the interior of CD. This quantum criticality can be assigned to the
hierarchy of Planck constants and the integer n in heff = n⇥h [K17] corresponds to
the number of degenerate space-time sheets with same Kähler action and conserved
classical charges.

ii. Also now one expects a hierarchy of criticalities and and since criticality and confor-
mal invariance are closely related, a natural conjecture is that the fractal hierarchy
of sub-algebras of conformal algebra isomorphic to conformal algebra itself and
having conformal weights coming as multiples of n corresponds to the hierarchy of
Planck constants. This hierarchy would define a hierarchy of symmetry breakings
in the sense that only the sub-algebra would act as gauge symmetries.

iii. The assignment of this hierarchy with super-symplectic algebra having conformal
structure with respect to the light-like radial coordinate of light-cone boundary
looks very attractive. An interesting question is what is the role of the super-
conformal algebra associated with the isometries of light-cone boundary R+ ⇥ S2

which are conformal transformations of sphere S2 with a scaling of radial coordinate
compensating the scaling induced by the conformal transformation. Does it act as
dynamical or gauge symmetries?

(d) I have discussed what criticality could mean for modified Dirac action [K18] .

i. I have conjectured that it leads to the existence of additional conserved currents
defined by the variations which do not a↵ect the value of Kähler action. These
arguments are far from being mathematically rigorous and the recent view about
the solutions of the modified Dirac equation predicting that the spinor modes are
restricted to 2-D string world sheets requires a modification of these arguments.

ii. The basic challenge is to understand the mechanism making this kind of currents
conserved: the same challenge is met already in the case of isometries since imbed-
ding space coordinates appear as parameters in modified Dirac action. The exis-
tence of conserved currents does not actually require the vanishing of the second
variation of Kähler action as claimed earlier. It is enough that the first variation

http://en.wikipedia.org/wiki/Catastrophe_theory#Cusp_catastrophe
http://en.wikipedia.org/wiki/Catastrophe_theory#Cusp_catastrophe
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of the canonical momentum densities contracted with the imbedding space gamma
matrices annihilates the spinor mode. Situation is analogous to massless Dirac
equation:it does not imply the vanishing of four-momentum, only the vanishing of
mass. Hence conserved currents are obtained also outside the quantum criticality.

iii. It is far from obvious that these conditions can be satisfied. The localization of
the spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the
generaic case that em charge is well-defined for spinor modes implies holomorphy
allowing to formulate current conservation for currents associated with the deforma-
tions of the space-time surface for second quantized induced spinor field. The crux
is that the deformation respects the holomorphy properties of the modified gamma
matrices at string world sheet and thus does not mix �z with �z. The deforma-
tion of �z has only z-component and also annihilates the holomorphic spinor. This
mechanism is possible only for Kähler-Dirac action since the Kähler-Dirac gamma
matrices in directions orthogonal to the 2-surface must vanish and this is not possi-
ble for other actions. This also means that energy momentum tensor has rank 2 as
matrix. Cosmic string solutions are an exception since in this case CP2 projection
of space-time surface is 2-D and conditions guaranteing vanishing of classical W
fields can be satisfied.

In the following these arguments are formulated more precisely. The unexpected result is
that critical deformations induce conformal scalings of the modified metric and electro-weak
gauge transformations of the induced spinor connection at X2. Therefore holomorphy brings
in the Kac-Moody symmetries associated with isometries of H (gravitation and color gauge
group) and quantum criticality those associated with the holonomies of H (electro-weak-
gauge group) as additional symmetries.

The variation of modes of the induced spinor field in a variation of space-time
surface respecting the preferred extremal property

Consider first the variation of the induced spinor field in a variation of space-time surface
respecting the preferred extremal property. The deformation must be such that the deformed
modified Dirac operator D annihilates the modified mode. By writing explicitly the variation
of the modified Dirac action (the action vanishes by modified Dirac equation) one obtains
deformations and requiring its vanishing one obtains

� = D�1(�D) . (6.4.7)

D�1 is the inverse of the modified Dirac operator defining the analog of Dirac propagator and
�D defines vertex completely analogous to �k�Ak in gauge theory context. The functional
integral over preferred extremals can be carried out perturbatively by expressing �D in terms
of �hk and one obtains stringy perturbation theory around X2 associated with the preferred
extremal defining maximum of Kähler function in Euclidian region and extremum of Kähler
action in Minkowskian region (stationary phase approximation).

What one obtains is stringy perturbation theory for calculating n-points functions for fermions
at the ends of braid strands located at partonic 2-surfaces and representing intersections of
string world sheets and partonic 2-surfaces at the light-like boundaries of CDs. �D- or more
precisely, its partial derivatives with respect to functional integration variables - appear atthe
vertices located anywhere in the interior of X2 with outgoing fermions at braid ends. Bosonic
propagators are replaced with correlation functions for �hk. Fermionic propagator is defined
by D�1.

After 35 years or hard work this provides for the first time a reasonably explicit formula for
the N-point functions of fermions. This is enough since by bosonic emergence [K36] these
N-point functions define the basic building blocks of the scattering amplitudes. Note that
bosonic emergence states that bosons corresponds to wormhole contacts with fermion and
anti-fermion at the opposite wormhole throats.
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What critical modes could mean for the induced spinor fields?

What critical modes could mean for the induced spinor fields at string world sheets and
partonic 2-surfaces. The problematic part seems to be the variation of the modified Dirac
operator since it involves gradient. One cannot require that covariant derivative remains
invariant since this would require that the components of the induced spinor connection
remain invariant and this is quite too restrictive condition. Right handed neutrino solutions
de-localized into entire X2 are however an exception since they have no electro-weak gauge
couplings and in this case the condition is obvious: modified gamma matrices su↵er a local
scaling for critical deformations:

��µ = ⇤(x)�µ . (6.4.8)

This guarantees that the modified Dirac operator D is mapped to ⇤D and still annihilates
the modes of ⌫R labelled by conformal weight, which thus remain unchanged.

What is the situation for the 2-D modes located at string world sheets? The condition is
obvious.  su↵ers an electro-weak gauge transformation as does also the induced spinor
connection so that Dµ is not a↵ected at all. Criticality condition states that the deformation
of the space-time surfaces induces a conformal scaling of �µ at X2. It might be possible to
continue this conformal scaling of the entire space-time sheet but this might be not necessary
and this would mean that all critical deformations induced conformal transformations of the
e↵ective metric of the space-time surface defined by {�µ,�⌫} = 2Gµ⌫ . Thus it seems that
e↵ective metric is indeed central concept (recall that if the conjectured quaternionic structure
is associated with the e↵ective metric, it might be possible to avoid problem related to the
Minkowskian signature in an elegant manner).

In fact, one can consider even more general action of critical deformation: the modes of
the induced spinor field would be mixed together in the infinitesimal deformation besides in-
finitesimal electroweak gauge transformation, which is same for all modes. This would extend
electroweak gauge symmetry. Modified Dirac equation holds true also for these deforma-
tions. One might wonder whether the conjectured dynamically generated gauge symmetries
assignable to finite measurement resolution could be generated in this manner.

The infinitesimal generator of a critical deformation JM can be expressed as tensor product of
matrix AM acting in the space of zero modes and of a generator of infinitesimal electro-weak
gauge transformation TM (x) acting in the same manner on all modes: JM = AM ⌦ TM (x).
AM is a spatially constant matrix and TM (x) decomposes to a direct sum of left- and right-
handed SU(2) ⇥ U(1) Lie-algebra generators. Left-handed Lie-algebra generator can be
regarded as a quaternion and right handed as a complex number. One can speak of a direct
sum of left-handed local quaternion qM,L and right-handed local complex number cM,R. The
commutator [JM , JN ] is given by [JM , JN ] = [AM , AN ] ⌦ {TM (x), TN (x)} + {AM , AN} ⌦
[TM (x), TN (x)]. One has {TM (x), TN (x)} = {qM,L(x), qN,L(x)} � {cM,R(x), cN,R(x)} and
[TM (x), TN (x)] = [qM,L(x), qN,L(x)]. The commutators make sense also for more general
gauge group but quaternion/complex number property might have some deeper role.

Thus the critical deformations would induce conformal scalings of the e↵ective metric and
dynamical electro-weak gauge transformations. Electro-weak gauge symmetry would be a
dynamical symmetry restricted to string world sheets and partonic 2-surfaces rather than
acting at the entire space-time surface. For 4-D de-localized right-handed neutrino modes
the conformal scalings of the e↵ective metric are analogous to the conformal transformations
of M4 for N = 4 SYMs. Also ordinary conformal symmetries of M4 could be present for
string world sheets and could act as symmetries of generalized Feynman graphs since even
virtual wormhole throats are massless. An interesting question is whether the conformal
invariance associated with the e↵ective metric is the analog of dual conformal invariance in
N = 4 theories.

Critical deformations of space-time surface are accompanied by conserved fermionic currents.
By using standard Noetherian formulas one can write
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Jµ
i =  �µ�i + �i �

µ . (6.4.9)

Here � i denotes derivative of the variation with respect to a group parameter labeled by
i. Since � i reduces to an infinitesimal gauge transformation of  induced by deformation,
these currents are the analogs of gauge currents. The integrals of these currents along the
braid strands at the ends of string world sheets define the analogs of gauge charges. The
interpretation as Kac-Moody charges is also very attractive and I have proposed that the
2-D Hodge duals of gauge potentials could be identified as Kac-Moody currents. If so, the
2-D Hodge duals of J would define the quantum analogs of dynamical electro-weak gauge
fields and Kac-Moody charge could be also seen as non-integral phase factor associated with
the braid strand in Abelian approximation (the interpretation in terms of finite measurement
resolution is discussed earlier).

One can also define super currents by replacing  or  by a particular mode of the induced
spinor field as well as c-number valued currents by performing the replacement for both  
or  . As expected, one obtains a super-conformal algebra with all modes of induced spinor
fields acting as generators of super-symmetries restricted to 2-D surfaces. The number of
the charges which do not annihilate physical states as also the e↵ective number of fermionic
modes could be finite and this would suggest that the integer N for the supersymmetry
in question is finite. This would conform with the earlier proposal inspired by the notion
of finite measurement resolution implying the replacement of the partonic 2-surfaces with
collections of braid ends.

Note that Kac-Moody charges might be associated with ”long” braid strands connecting
di↵erent wormhole throats as well as short braid strands connecting opposite throats of
wormhole contacts. Both kinds of charges would appear in the theory.

What is the interpretation of the critical deformations?

Critical deformations bring in an additional gauge symmetry. Certainly not all possible gauge
transformations are induced by the deformations of preferred extremals and a good guess is
that they correspond to holomorphic gauge group elements as in theories with Kac-Moody
symmetry. What is the physical character of this dynamical gauge symmetry?

(a) Do the gauge charges vanish? Do they annihilate the physical states? Do only their
positive energy parts annihilate the states so that one has a situation characteristic for
the representation of Kac-Moody algebras. Or could some of these charges be analo-
gous to the gauge charges associated with the constant gauge transformations in gauge
theories and be therefore non-vanishing in the absence of confinement. Now one has
electro-weak gauge charges and these should be non-vanishing. Can one assign them
to deformations with a vanishing conformal weight and the remaining deformations to
those with non-vanishing conformal weight and acting like Kac-Moody generators on
the physical states?

(b) The simplest option is that the critical Kac-Moody charges/gauge charges with non-
vanishing positive conformal weight annihilate the physical states. Critical degrees of
freedom would not disappear but make their presence known via the states labelled
by di↵erent gauge charges assignable to critical deformations with vanishing conformal
weight. Note that constant gauge transformations can be said to break the gauge
symmetry also in the ordinary gauge theories unless one has confinement.

(c) The hierarchy of quantum criticalities suggests however entire hierarchy of electro-weak
Kac-Moody algebras. Does this mean a hierarchy of electro-weak symmetries breakings
in which the number of Kac-Moody generators not annihilating the physical states
gradually increases as also modes with a higher value of positive conformal weight fail
to annihilate the physical state?
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The only manner to have a hierarchy of algebras is by assuming that only the generators
satisfying n mod N = 0 define the sub-Kac-Moody algebra annihilating the physical
states so that the generators with n mod N 6= 0 would define the analogs of gauge
charges. I have suggested for long time ago the relevance of kind of fractal hierarchy of
Kac-Moody and Super-Virasoro algebras for TGD but failed to imagine any concrete
realization.

A stronger condition would be that the algebra reduces to a finite dimensional algebra in
the sense that the actions of generators Qn and Qn+kN are identical. This would corre-
spond to periodic boundary conditions in the space of conformal weights. The notion of
finite measurement resolution suggests that the number of independent fermionic oscil-
lator operators is proportional to the number of braid ends so that an e↵ective reduction
to a finite algebra is expected.

Whatever the correct interpretation is, this would obviously refine the usual view about
electro-weak symmetry breaking.

These arguments suggests the following overall view. The holomorphy of spinor modes gives
rise to Kac-Moody algebra defined by isometries and includes besides Minkowskian gener-
ators associated with gravitation also SU(3) generators associated with color symmetries.
Vanishing second variations in turn define electro-weak Kac-Moody type algebra.

Note that criticality suggests that one must perform functional integral over WCW by de-
composing it to an integral over zero modes for which deformations of X4 induce only an
electro-weak gauge transformation of the induced spinor field and to an integral over moduli
corresponding to the remaining degrees of freedom.

6.4.8 The importance of being light-like

The singular geometric objects associated with the space-time surface have become increas-
ingly important in TGD framework. In particular, the recent progress has made clear that
these objects might be crucial for the understanding of quantum TGD. The singular objects
are associated not only with the induced metric but also with the e↵ective metric defined
by the anti-commutators of the modified gamma matrices appearing in the modified Dirac
equation and determined by the Kähler action.

The singular objects associated with the induced metric

Consider first the singular objects associated with the induced metric.

(a) At light-like 3-surfaces defined by wormhole throats the signature of the induced metric
changes from Euclidian to Minkowskian so that 4-metric is degenerate. These surfaces
are carriers of elementary particle quantum numbers and the 4-D induced metric de-
generates locally to 3-D one at these surfaces.

(b) Braid strands at light-like 3-surfaces are most naturally light-like curves: this correspond
to the boundary condition for open strings. One can assign fermion number to the
braid strands. Braid strands allow an identification as curves along which the Euclidian
signature of the string world sheet in Euclidian region transforms to Minkowskian one.
Number theoretic interpretation would be as a transformation of complex regions to
hyper-complex regions meaning that imaginary unit i satisfying i2 = �1 becomes hyper-
complex unit e satisfying e2 = 1. The complex coordinates (z, z) become hyper-complex
coordinates (u = t+ ex, v = t� ex) giving the standard light-like coordinates when one
puts e = 1.

The singular objects associated with the e↵ective metric

There are also singular objects assignable to the e↵ective metric. According to the simple
arguments already developed, string world sheets and possibly also partonic 2-surfaces are
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singular objects with respect to the e↵ective metric defined by the anti-commutators of the
modified gamma matrices rather than induced gamma matrices. Therefore the e↵ective
metric seems to be much more than a mere formal structure.

(a) For instance, quaternionicity of the space-time surface could allow an elegant formu-
lation in terms of the e↵ective metric avoiding the problems due to the Minkowski
signature. This is achieved if the e↵ective metric has Euclidian signature ✏⇥ (1, 1, 1, 1),
✏ = ±1 or a complex counterpart of the Minkowskian signature ✏(1, 1,�1,�1).

(b) String word sheets and perhaps also partonic 2-surfaces could be understood as singu-
larities of the e↵ective metric. What happens that the e↵ective metric with Euclidian
signature ✏⇥ (1, 1, 1, 1) transforms to the signature ✏(1, 1,�1,�1) (say) at string world
sheet so that one would have the degenerate signature ✏⇥ (1, 1, 0, 0) at the string world
sheet.

What is amazing is that this works also number theoretically. It came as a total surprise
to me that the notion of hyper-quaternions as a closed algebraic structure indeed exists.
The hyper-quaternionic units would be given by (1, I, iJ, iK), where i is a commuting
imaginary unit satisfying i2 = �1. Hyper-quaternionic numbers defined as combinations
of these units with real coe�cients do form a closed algebraic structure which however
fails to be a number field just like hyper-complex numbers do. Note that the hyper-
quaternions obtained with real coe�cients from the basis (1, iI, iJ, iK) fail to form
an algebra since the product is not hyper-quaternion in this sense but belongs to the
algebra of complexified quaternions. The same problem is encountered in the case of
hyper-octonions defined in this manner. This has been a stone in my shoe since I feel
strong disrelish towards Wick rotation as a trick for moving between di↵erent signatures.

(c) Could also partonic 2-surfaces correspond to this kind of singular 2-surfaces? In princi-
ple, 2-D surfaces of 4-D space intersect at discrete points just as string world sheets and
partonic 2-surfaces do so that this might make sense. By complex structure the situa-
tion is algebraically equivalent to the analog of plane with non-flat metric allowing all
possible signatures (✏1, ✏2) in various regions. At light-like curve either ✏1 or ✏2 changes
sign and light-like curves for these two kinds of changes can intersect as one can easily
verify by drawing what happens. At the intersection point the metric is completely
degenerate and simply vanishes.

(d) Replacing real 2-dimensionality with complex 2-dimensionality, one obtains by the uni-
versality of algebraic dimension the same result for partonic 2-surfaces and string world
sheets. The braid ends at partonic 2-surfaces representing the intersection points of
2-surfaces of this kind would have completely degenerate e↵ective metric so that the
modified gamma matrices would vanish implying that energy momentum tensor van-
ishes as does also the induced Kähler field.

(e) The e↵ective metric su↵ers a local conformal scaling in the critical deformations identi-
fied in the proposed manner. Since ordinary conformal group acts on Minkowski space
and leaves the boundary of light-cone invariant, one has two conformal groups. It is
not however clear whether the M4 conformal transformations can act as symmetries
in TGD, where the presence of the induced metric in Kähler action breaks M4 confor-
mal symmetry. As found, also in TGD framework the Kac-Moody currents assigned to
the braid strands generate Yangian: this is expected to be true also for the Kac-Moody
counterparts of the conformal algebra associated with quantum criticality. On the other
hand, in twistor program one encounters also two conformal groups and the space in
which the second conformal group acts remains somewhat mysterious object. The Lie
algebras for the two conformal groups generate the conformal Yangian and the inte-
grands of the scattering amplitudes are Yangian invariants. Twistor approach should
apply in TGD if zero energy ontology is right. Does this mean a deep connection?

What is also intriguing that twistor approach in principle works in strict mathematical
sense only at signatures ✏ ⇥ (1, 1,�1 � 1) and the scattering amplitudes in Minkowski
signature are obtained by analytic continuation. Could the e↵ective metric give rise to
the desired signature? Note that the notion of massless particle does not make sense in
the signature ✏⇥ (1, 1, 1, 1).
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These arguments provide genuine a support for the notion of quaternionicity and suggest a
connection with the twistor approach.

6.4.9 Realization of large N SUSY in TGD

The generators large N SUSY algebras are obtained by taking fermionic currents for second
quantized fermions and replacing either fermion field or its conjugate with its particular
mode. The resulting super currents are conserved and define super charges. By replacing
both fermion and its conjugate with modes one obtains c number valued currents. Therefore
N = 1 SUSY - presumably equivalent with super-conformal invariance - or its finite N
cuto↵ is realized in TGD framework and the challenge is to understand the realization in
more detail.

Super-space viz. Grassmann algebra valued fields

Standard SUSY induces super-space extending space-time by adding anti-commuting coor-
dinates as a formal tool. Many mathematicians are not enthusiastic about this approach
because of the purely formal nature of anti-commuting coordinates. Also I regard them as
a non-sense geometrically and there is actually no need to introduce them as the following
little argument shows.

Grassmann parameters (anti-commuting theta parameters) are generators of Grassmann al-
gebra and the natural object replacing super-space is this Grassmann algebra with coe�cients
of Grassmann algebra basis appearing as ordinary real or complex coordinates. This is just
an ordinary space with additional algebraic structure: the mysterious anti-commuting coor-
dinates are not needed. To me this notion is one of the conceptual monsters created by the
over-pragmatic thinking of theoreticians.

This allows allows to replace field space with super field space, which is completely well-
defined object mathematically, and leave space-time untouched. Linear field space is simply
replaced with its Grassmann algebra. For non-linear field space this replacement does not
work. This allows to formulate the notion of linear super-field just in the same manner as it
is done usually.

The generators of super-symmetries in super-space formulation reduce to super translations
, which anti-commute to translations. The super generators Q↵ and Q�̇ of super Poincare
algebra are Weyl spinors commuting with momenta and anti-commuting to momenta:

{Q↵, Q�̇} = 2�µ

↵ ˙beta
Pµ . (6.4.10)

One particular representation of super generators acting on super fields is given by

D↵ = i
@

@✓
↵

,

D↵̇ = i
@

@✓ ˙
alpha

+ ✓��µ
�↵̇@µ (6.4.11)

Here the index raising for 2-spinors is carried out using antisymmetric 2-tensor ✏↵� . Super-
space interpretation is not necessary since one can interpret this action as an action on
Grassmann algebra valued field mixing components with di↵erent fermion numbers.

Chiral superfields are defined as fields annihilated by D↵̇. Chiral fields are of form  (xµ +
i✓�µ✓, ✓). The dependence on ✓↵̇ comes only from its presence in the translated Minkowski
coordinate annihilated by D↵̇. Super-space enthusiast would say that by a translation of M4

coordinates chiral fields reduce to fields, which depend on ✓ only.
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The space of fermionic Fock states at partonic 2-surface as TGD counterpart of
chiral super field

As already noticed, another manner to realize SUSY in terms of representations the super
algebra of conserved super-charges. In TGD framework these super charges are naturally as-
sociated with the modified Dirac equation, and anti-commuting coordinates and super-fields
do not appear anywhere. One can however ask whether one could identify a mathematical
structure replacing the notion of chiral super field.

In [K19] it was proposed that generalized chiral super-fields could e↵ectively replace induced
spinor fields and that second quantized fermionic oscillator operators define the analog of
SUSY algebra. One would have N = 1 if all the conformal excitations of the induced
spinor field restricted on 2-surface are present. For right-handed neutrino the modes are
labeled by two integers and de-localized to the interior of Euclidian or Minkowskian regions
of space-time sheet.

The obvious guess is that chiral super-field generalizes to the field having as its components
many-fermions states at partonic 2-surfaces with theta parameters and their conjugates in
one-one correspondence with fermionic creation operators and their hermitian conjugates.

(a) Fermionic creation operators - in classical theory corresponding anti-commuting Grass-
mann parameters - replace theta parameters. Theta parameters and their conjugates
are not in one-one correspondence with spinor components but with the fermionic cre-
ation operators and their hermitian conjugates. One can say that the super-field in
question is defined in the ”world of classical worlds” (WCW) rather than in space-time.
Fermionic Fock state at the partonic 2-surface is the value of the chiral super field at
particular point of WCW.

(b) The matrix defined by the �µ@µ is replaced with a matrix defined by the modified Dirac
operator D between spinor modes acting in the solution space of the modified Dirac
equation. Since modified Dirac operator annihilates the modes of the induced spinor
field, super covariant derivatives reduce to ordinary derivatives with respect the theta
parameters labeling the modes. Hence the chiral super field is a field that depends on
✓m or conjugates ✓m only. In second quantization the modes of the chiral super-field
are many-fermion states assigned to partonic 2-surfaces and string world sheets. Note
that this is the only possibility since the notion of super-coordinate does not make sense
now.

(c) It would seem that the notion of super-field does not bring anything new. This is not
the case. First of all, the spinor fields are restricted to 2-surfaces. Second point is that
one cannot assign to the fermions of the many-fermion states separate non-parallel or
even parallel four-momenta. The many-fermion state behaves like elementary particle.
This has non-trivial implications for propagators and a simple argument [K19] leads
to the proposal that propagator for N-fermion partonic state is proportional to 1/pN .
This would mean that only the states with fermion number equal to 1 or 2 behave like
ordinary elementary particles.

How the fermionic anti-commutation relations are determined?

Understanding the fermionic anti-commutation relations is not trivial since all fermion fields
except right-handed neutrino are assumed to be localized at 2-surfaces. Since fermionic
conserved currents must give rise to well-defined charges as 3-D integrals the spinor modes
must be proportional to a square root of delta function in normal directions. Furthermore,
the modified Dirac operator must act only in the directions tangential to the 2-surface in
order that the modified Dirac equation can be satisfied.

The square root of delta function can be formally defined by starting from the expansion
of delta function in discrete basis for a particle in 1-D box. The product of two functions
in x-space is convolution of Fourier transforms and the coe�cients of Fourier transform of
delta function are apart from a constant multiplier equal to 1: �(x) = K

P
n exp(inx/2⇡L).
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Therefore the Fourier transform of square root of delta function is obtained by normalizing
the Fourier transform of delta function by 1/

p
N , where N ! 1 is the number of plane

waves. In other words:
p
�(x) =

q
K
N

P
n

P
exp(inx/2⇡L).

Canonical quantization defines the standard approach to the second quantization of the Dirac
equation.

(a) One restricts the consideration to time=constant slices of space-time surface. Now the
3-surfaces at the ends of CD are natural slices. The intersection of string world sheet
with these surfaces is 1-D whereas partonic 2-surfaces have 2-D Euclidian intersection
with them.

(b) The canonical momentum density is defined by

⇧↵ =
@L

@t ↵(x)
= �t ,

�t =
@LK

@(@thk)
. (6.4.12)

LK denotes Kähler action density: consistency requires Dµ�µ = 0, and this is guaran-
teed only by using the modified gamma matrices defined by Kähler action. Note that
�t contains also the

p
g4 factor. Induced gamma matrices would require action defined

by four-volume. t is time coordinate varying in direction tangential to 2-surface.

(c) The standard equal time canonical anti-commutation relations state

{⇧↵, �} = �3(x, y)�↵� . (6.4.13)

Can these conditions be applied both at string world sheets and partonic 2-surfaces.

(a) Sttring world sheets do not pose problems. The restriction of the modes to string world
sheets means that the square root of delta function in the normal direction of string world
sheet takes care of the normal dimensions and the dynamical part of anti-commutation
relations is 1-dimensional just as in the case of strings.

(b) Partonic 2-surfaces are problematic. The
p
g4 factor in �t implies that �t approaches

zero at partonic 2-surfaces since they belong to light-like wormhole throats at which
the signature of the induced metric changes. Energy momentum tensor appearing in
�t involves to index raisins by induced metric so that it can grow without limit as one
approaches partonic two-surface. Therefore it is quite possible that the limit is finite and
the boundary conditions defined by the weak form of electric magnetic duality might
imply that the limit is finite. The open question is whether one can apply canonical
quantization at partonic 2-surfaces. One can also ask whether one can define induced
spinor fields at wormhole throats only at the ends of string world sheets so that partonic
2-surface would be e↵ectively discretized. This cautious conclusion emerged in the earlier
study of the modified Dirac equation [K18].

(c) Suppose that one can assume spinor modes at partonic 2-surfaces. 2-D conformal in-
variance suggests that the situation reduces to e↵ectively one-dimensional also at the
partonic two-surfaces. If so, one should pose the anti-commutation relations at some
1-D curves of the partonic 2-surface only. This is the only sensical option. The point is
that the action of the modified Dirac operator is tangential so that also the canonical
momentum current must be tangential and one can fix anti-commutations only at some
set of curves of the partonic 2-surface.

One can of course worry what happens at the limit of vacuum extremals. The problem is
that �t vanishes for space-time surfaces reducing to vacuum extremals at the 2-surfaces car-
rying fermions so that the anti-commutations are inconsistent. Should one require - as done
earlier- that the anti-commutation relations make sense at this limit and cannot therefore
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have the standard form but involve the scalar magnetic flux formed from the induced Kähler
form by permuting it with the 2-D permutations symbol? The restriction to preferred ex-
tremals, which are always non-vacuum extremals, might allow to avoid this kind of problems
automatically.

In the case of right-handed neutrino the situation is genuinely 3-dimensional and in this case
non-vacuum extremal property must hold true in the regions where the modes of ⌫R are non-
vanishing. The same mechanism would save from problems also at the partonic 2-surfaces.
The dynamics of induced spinor fields must avoid classical vacuum. Could this relate to color
confinement? Could hadrons be surrounded by an insulating layer of Kähler vacuum?

6.4.10 Comparison of TGD and stringy views about super-conformal
symmetries

The best manner to represent TGD based view about conformal symmetries is by comparison
with the conformal symmetries of super string models.

Basic di↵erences between the realization of super conformal symmetries in TGD
and in super-string models

The realization super conformal symmetries in TGD framework di↵ers from that in string
models in several fundamental aspects.

(a) In TGD framework super-symmetry generators acting as configuration space gamma
matrices carry either lepton or quark number. Majorana condition required by the
hermiticity of super generators which is crucial for super string models would be in
conflict with the conservation of baryon and lepton numbers and is avoided. This is
made possible by the realization of bosonic generators represented as Hamiltonians of
X2-local symplectic transformations rather than vector fields generating them [K10] .
This kind of representation applies also in Kac-Moody sector since the local transver-
sal isometries localized in X3

l and respecting light-likeness condition can be regarded
as X2 local symplectic transformations, whose Hamiltonians generate also isometries.
Localization is not complete: the functions of X2 coordinates multiplying symplectic
and Kac-Moody generators are functions of the symplectic invariant J = ✏µ⌫Jµ⌫ so that
e↵ective one-dimensionality results but in di↵erent sense than in conformal field theo-
ries. This realization of super symmetries is what distinguishes between TGD and super
string models and leads to a totally di↵erent physical interpretation of super-conformal
symmetries. The fermionic representations of super-symplectic and super Kac-Moody
generators can be identified as Noether charges in standard manner.

(b) A long-standing problem of quantum TGD was that stringy propagator 1/G does not
make sense if G carries fermion number. The progress in the understanding of second
quantization of the modified Dirac operator made it however possible to identify the
counterpart of G as a c-number valued operator and interpret it as di↵erent represen-
tation of G [K12] .

(c) The notion of super-space is not needed at all since Hamiltonians rather than vector
fields represent bosonic generators, no super-variant of geometry is needed. The distinc-
tion between Ramond and N-S representations important for N = 1 super-conformal
symmetry and allowing only ground state weight 0 an 1/2 disappears. Indeed, for N = 2
super-conformal symmetry it is already possible to generate spectral flow transforming
these Ramond and N-S representations to each other (Gn is not Hermitian anymore).

(d) If Kähler action defines the modified Dirac operator, the number of spinor modes could
be finite. One must be here somewhat cautious since bound state in the Coulomb poten-
tial associated with electric part of induced electro-weak gauge field might give rise to an
infinite number of bound states which eigenvalues converging to a fixed eigenvalue (as
in the case of hydrogen atom). Finite number of generalized eigenmodes means that the
representations of super-conformal algebras reduces to finite-dimensional ones in TGD
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framework. Also the notion of number theoretic braid indeed implies this. The physical
interpretation would be in terms of finite measurement resolution. If Kähler action is
complexified to include imaginary part defined by CP breaking instanton term, the num-
ber of stringy mass square eigenvalues assignable to the spinor modes becomes infinite
since conformal excitations are possible. This means breakdown of exact holography
and e↵ective 2-dimensionality of 3-surfaces. It seems that the inclusion of instanton
term is necessary for several reasons. The notion of finite measurement resolution forces
conformal cuto↵ also now. There are arguments suggesting that only the modes with
vanishing conformal weight contribute to the Dirac determinant defining vacuum func-
tional identified as exponent of Kähler function in turn identified as Kähler action for
its preferred extremal.

(e) What makes spinor field mode a generator of gauge super-symmetry is that is c-number
and not an eigenmode ofDK(X2) and thus represents non-dynamical degrees of freedom.
If the number of eigen modes of DK(X2) is indeed finite means that most of spinor field
modes represent super gauge degrees of freedom.

The super generators G are not Hermitian in TGD!

The already noticed important di↵erence between TGD based and the usual Super Virasoro
representations is that the Super Virasoro generator G cannot Hermitian in TGD. The reason
is that WCW gamma matrices possess a well defined fermion number. The hermiticity of
the WCW gamma matrices � and of the Super Virasoro current G could be achieved by
posing Majorana conditions on the second quantized H-spinors. Majorana conditions can
be however realized only for space-time dimension D mod 8 = 2 so that super string type
approach does not work in TGD context. This kind of conditions would also lead to the
non-conservation of baryon and lepton numbers.

An analogous situation is encountered in super-symmetric quantum mechanics, where the
general situation corresponds to super symmetric operators S, S†, whose anti-commutator
is Hamiltonian: {S, S†} = H. One can define a simpler system by considering a Hermitian
operator S0 = S+S† satisfying S2

0 = H: this relation is completely analogous to the ordinary
Super Virasoro relation GG = L. On basis of this observation it is clear that one should
replace ordinary Super Virasoro structure GG = L with GG† = L in TGD context.

It took a long time to realize the trivial fact that N = 2 super-symmetry is the standard
physics counterpart for TGD super symmetry. N = 2 super-symmetry indeed involves the
doubling of super generators and super generators carry U(1) charge having an interpretation
as fermion number in recent context. The so called short representations of N = 2 super-
symmetry algebra can be regarded as representations of N = 1 super-symmetry algebra.

WCW gamma matrix �n, n > 0 corresponds to an operator creating fermion whereas �n,
n < 0 annihilates anti-fermion. For the Hermitian conjugate �†n the roles of fermion and anti-
fermion are interchanged. Only the anti-commutators of gamma matrices and their Hermitian
conjugates are non-vanishing. The dynamical Kac Moody type generators are Hermitian
and are constructed as bilinears of the gamma matrices and their Hermitian conjugates and,
just like conserved currents of the ordinary quantum theory, contain parts proportional to
a†a, b†b, a†b† and ab (a and b refer to fermionic and anti-fermionic oscillator operators).
The commutators between Kac Moody generators and Kac Moody generators and gamma
matrices remain as such.

For a given value of m Gn, n > 0 creates fermions whereas Gn, n < 0 annihilates anti-
fermions. Analogous result holds for G†

n. Virasoro generators remain Hermitian and decom-
pose just like Kac Moody generators do. Thus the usual anti-commutation relations for the
super Virasoro generators must be replaced with anti-commutations between Gm and G†

n

and one has

{Gm, G†
n} = 2Lm+n + c

3 (m
2 � 1

4 )�m,�n ,
{Gm, Gn} = 0 ,
{G†

m, G†
n} = 0 .

(6.4.14)
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The commutators of type [Lm, Ln] are not changed. Same applies to the purely kinematical
commutators between Ln and Gm/G†

m.

The Super Virasoro conditions satisfied by the physical states are as before in case of Ln

whereas the conditions for Gn are doubled to those of Gn, n < 0 and G†
n, n > 0.

What could be the counterparts of stringy conformal fields in TGD framework?

The experience with string models would suggest the conformal symmetries associated with
the complex coordinates of X2 as a candidate for conformal super-symmetries. One can
imagine two counterparts of the stringy coordinate z in TGD framework.

(a) Super-symplectic and super Kac-Moody symmetries are local with respect to X2 in the
sense that the coe�cients of generators depend on the invariant J = ✏↵�J↵�

p
g2 rather

than being completely free [K10] . Thus the real variable J replaces complex (or hyper-
complex) stringy coordinate and e↵ective 1-dimensionality holds true also now but in
di↵erent sense than for conformal field theories.

(b) The slicing of X4 by string world sheets Y 2 and partonic 2-surfaces X2 implied by
number theoretical compactification implies string-parton duality and involves the super
conformal fermionic gauge symmetries associated with the coordinates u and w in the
dual dimensional reductions to stringy and partonic dynamics. These coordinates define
the natural analogs of stringy coordinate. The e↵ective reduction ofX3

l to braid by finite
measurement resolution implies the e↵ective reduction of X4(X3) to string world sheet.
This implies quite strong resemblance with string model. The realization that spinor
modes with well- define em charge must be localized at string world sheets makes the
connection with strings even more explicit [K69].

One can understand how Equivalence Principle emerges in TGD framework at space-
time level when many-sheeted space-time (see fig. http://www.tgdtheory.fi/appfigures/
manysheeted.jpg or fig. 9 in the appendix of this book) is replaced with e↵ective space-
time lumping together the space-time sheets to M4 endowed with e↵ective metric. The
quantum counterpart EP has most feasible interpretation in terms of Quantum Classical
Correspondence (QCC): the conserved Kähler four-momentum equals to an eigenvalue
of conserved Kähler-Dirac four-momentum acting as operator.

(c) The conformal fields of string model would reside at X2 or Y 2 depending on which
description one uses and complex (hyper-complex) string coordinate would be identified
accordingly. Y 2 could be fixed as a union of stringy world sheets having the strands
of number theoretic braids as its ends. The proposed definition of braids is unique
and characterizes finite measurement resolution at space-time level. X2 could be fixed
uniquely as the intersection of X3

l (the light-like 3-surface at which induced metric of
space-time surface changes its signature) with �M4

± ⇥ CP2. Clearly, wormhole throats
X3

l would take the role of branes and would be connected by string world sheets defined
by number theoretic braids.

(d) An alternative identification for TGD parts of conformal fields is inspired by M8 �H
duality. Conformal fields would be fields in WCW. The counterpart of z coordinate
could be the hyper-octonionic M8 coordinate m appearing as argument in the Laurent
series of WCW Cli↵ord algebra elements. m would characterize the position of the tip
of CD and the fractal hierarchy of CDs within CDs would give a hierarchy of Cli↵ord
algebras and thus inclusions of hyper-finite factors of type II1. Reduction to hyper-
quaternionic field -that is field in M4 center of mass degrees of freedom- would be
needed to obtained associativity. The arguments m at various level might correspond
to arguments of N-point function in quantum field theory.

6.5 Appendix: Hamilton-Jacobi structure

In the following the definition of Hamilton-Jacobi structure is discussed in detail.

http://www.tgdtheory.fi/appfigures/manysheeted.jpg
http://www.tgdtheory.fi/appfigures/manysheeted.jpg
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6.5.1 Hermitian and hyper-Hermitian structures

The starting point is the observation that besides the complex numbers forming a number
field there are hyper-complex numbers. Imaginary unit i is replaced with e satisfying e2 = 1.
One obtains an algebra but not a number field since the norm is Minkowskian norm x2 � y2,
which vanishes at light-cone x = y so that light-like hypercomplex numbers x ± e) do not
have inverse. One has ”almost” number field.

Hyper-complex numbers appear naturally in 2-D Minkowski space since the solutions of a
massless field equation can be written as f = g(u = t�ex)+h(v = t+ex) whith e2 = 1 realized
by putting e = 1. Therefore Wick rotation relates sums of holomorphic and antiholomorphic
functions to sums of hyper-holomorphic and anti-hyper-holomorphic functions. Note that u
and v are hyper-complex conjugates of each other.

Complex n-dimensional spaces allow Hermitian structure. This means that the metric has
in complex coordinates (z1, ...., zn) the form in which the matrix elements of metric are non-
vanishing only between zi and complex conjugate of zj . In 2-D case one obtains just ds2 =
gzzdzdz. Note that in this case metric is conformally flat since line element is proportional
to the line element ds2 = dzdz of plane. This form is always possible locally. For complex
n-D case one obtains ds2 = gijdz

idzj . gij = gji guaranteeing the reality of ds2. In 2-D case
this condition gives gzz = gzz.

How could one generalize this line element to hyper-complex n-dimensional case. In 2-D case
Minkowski space M2 one has ds2 = guvdudv, guv = 1. The obvious generalization would
be the replacement ds2 = gu

i

v
j

duidvj . Also now the analogs of reality conditions must hold
with respect to ui $ vi.

6.5.2 Hamilton-Jacobi structure

Consider next the path leading to Hamilton-Jacobi structure.

4-D Minkowski space M4 = M2 ⇥ E2 is Cartesian product of hyper-complex M2 with com-
plex plane E2, and one has ds2 = dudv + dzdz in standard Minkowski coordinates. One
can also consider more general integrable decompositions of M4 for which the tangent space
TM4 = M4 at each point is decomposed to M2(x) ⇥ E2(x). The physical analogy would
be a position dependent decomposition of the degrees of freedom of massless particle to lon-
gitudinal ones (M2(x): light-like momentum is in this plane) and transversal ones (E2(x):
polarization vector is in this plane). Cylindrical and spherical variants of Minkowski coordi-
nates define two examples of this kind of coordinates (it is perhaps a good exercise to think
what kind of decomposition of tangent space is in question in these examples). An interesting
mathematical problem highly relevant for TGD is to identify all possible decompositions of
this kind for empty Minkowski space.

The integrability of the decomposition means that the planes M2(x) are tangent planes for
2-D surfaces of M4 analogous to Euclidian string world sheet. This gives slicing of M4 to
Minkowskian string world sheets parametrized by euclidian string world sheets. The question
is whether the sheets are stringy in a strong sense: that is minimal surfaces. This is not the
case: for spherical coordinates the Euclidian string world sheets would be spheres which are
not minimal surfaces. For cylindrical and spherical coordinates howeverr M2(x) integrate to
plane M2, which is minimal surface.

Integrability means in the case of M2(x) the existence of light-like vector field J whose flow
lines define a global coordinate. Its existence implies also the existence of its conjugate
and together these vector fields give rise to M2(x) at each point. This means that one has
J =  r�: � indeed defines the global coordinate along flow lines. In the case of M2 either
the coordinate u or v would be the coordinate in question. This kind of flows are called
Beltrami flows. Obviously the same holds for the transversal planes E2.

One can generalize this metric to the case of general 4-D space with Minkowski signature of
metric. At least the elements guv and gzz are non-vanishing and can depend on both u, v
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and z, z . They must satisfy the reality conditions gzz = gzz and guv = gvu where complex
conjugation in the argument involves also u $ v besides z $ z.

The question is whether the components guz, gvz, and their complex conjugates are non-
vanishing if they satisfy some conditions. They can. The direct generalization from complex
2-D space would be that one treats u and v as complex conjugates and therefore requires a
direct generalization of the hermiticity condition

guz = gvz , gvz = guz .

This would give complete symmetry with the complex 2-D (4-D in real sense) spaces. This
would allow the algebraic continuation of hermitian structures to Hamilton-Jacobi structures
by just replacing i with e for some complex coordinates.





Chapter 7

Recent View about Kähler
Geometry and Spin Structure of
”World of Classical Worlds”

7.1 Introduction

The construction of Kähler geometry of WCW (”world of classical worlds”) is fundamental
to TGD program. I ended up with the idea about physics as WCW geometry around 1985
and made a breakthrough around 1990, when I realized that Kähler function for WCW could
correspond to Kähler action for its preferred extremals defining the analogs of Bohr orbits so
that classical theory with Bohr rules would become an exact part of quantum theory and path
integral would be replaced with genuine integral over WCW. The motivating construction
was that for loop spaces leading to a unique Kähler geometry [A37]. The geometry for the
space of 3-D objects is even more complex than that for loops and the vision still is that the
geometry of WCW is unique from the mere existence of Riemann connection.

The basic idea is that WCW is union of symmetric spaces G/H labelled by zero modes which
do not contribute to the WCW metric. There have been many open questions and it seems
the details of the ealier approach [?]ust be modified at the level of detailed identifications
and interpretations.

(a) A longstanding question has been whether one could assign Equivalence Principle (EP)
with the coset representation formed by the super-Virasoro representation assigned to G
and H in such a manner that the four-momenta associated with the representations and
identified as inertial and gravitational four-momenta would be identical. This does not
seem to be the case. The recent view will be that EP reduces to the view that the classi-
cal four-momentum associated with Kähler action is equivalent with that assignable to
modified Dirac action supersymmetrically related to Kähler action: quantum classical
correspondence (QCC) would be in question. Also strong form of general coordinate in-
variance implying strong form of holography in turn implying that the super-symplectic
representations assignable to space-like and light-like 3-surfaces are equivalent could
imply EP with gravitational and inertial four-momenta assigned to these two represen-
tations.

At classical level EP follows from the interpretation of GRT space-time as e↵ective
space-time obtained by replacing many-sheeted space-time with Minkowski space with
e↵ective metric determined as a sum of Minkowski metric and sum over the deviations of
the induced metrices of space-time sheets from Minkowski metric. Poincare invariance
suggests strongly classical EP for the GRT limit in long length scales at least.

(b) The detailed identification of groups G and H and corresponding algebras has been a
longstanding problem. Symplectic algebra associated with�M4

± ⇥ CP2 (�M4
± is light-

265



266
Chapter 7. Recent View about Kähler Geometry and Spin Structure of ”World of

Classical Worlds”

cone boundary - or more precisely, with the boundary of causal diamond (CD) defined
as Cartesian product of CP2 with intersection of future and past direct light cones of
M4 has Kac-Moody type structure with light-like radial coordinate replacing complex
coordinate z. Virasoro algebra would correspond to radial di↵eomorphisms. I have also
introduced Kac-Moody algebra assigned to the isometries and localized with respect to
internal coordinates of the light-like 3-surfaces at which the signature of the induced
metric changes from Minkowskian to Euclidian and which serve as natural correlates
for elementary particles (in very general sense!). This kind of localization by force
could be however argued to be rather ad hoc as opposed to the inherent localization of
the symplectic algebra containing the symplectic algebra of isometries as sub-algebra.
It turns out that one obtains direct sum of representations of symplectic algebra and
Kac-Moody algebra of isometries naturally as required by the success of p-adic mass
calculations.

(c) The dynamics of Kähler action is not visible in the earlier construction. The con-
struction also expressed WCW Hamiltonians as 2-D integrals over partonic 2-surfaces.
Although strong form of general coordinate invariance (GCI) implies strong form of
holography meaning that partonic 2-surfaces and their 4-D tangent space data should
code for quantum physics, this kind of outcome seems too strong. The progress in the
understanding of the solutions of modified Dirac equation led however to the conclu-
sion that spinor modes other than right-handed neutrino are localized at string world
sheets with strings connecting di↵erent partonic 2-surfaces. This leads to a modifica-
tion of earlier construction in which WCW super-Hamiltonians are essentially integrals
with integrand identified as a Noether super current for the deformations in G Each
spinor mode gives rise to super current and the modes of right-handed neutrino and
other fermions di↵er in an essential manner. Right-handed neutrino would correspond
to symplectic algebra and other modes to the Kac-Moody algebra and one obtains the
crucial 5 tensor factors of Super Virasoro required by p-adic mass calculations.

The matrix elements of WCW metric between Killing vectors are expressible as anti-
commutators of super-Hamiltonians identifiable as contractions of WCW gamma ma-
trices with these vectors and give Poisson brackets of corresponding Hamiltonians. The
anti-commutation relates of induced spinor fields are dictated by this condition. Ev-
erything is 3-dimensional although one expects that symplectic transformations local-
ized within interior of X3 act as gauge symmetries so that in this sense e↵ective 2-
dimensionality is achieved. The components of WCW metric are labelled by standard
model quantum numbers so that the connection with physics is extremely intimate.

(d) An open question in the earlier visions was whether finite measurement resolution is
realized as discretization at the level of fundamental dynamics. This would mean that
only certain string world sheets from the slicing by string world sheets and partonic
2-surfaces are possible. The requirement that anti-commutations are consistent sug-
gests that string world sheets correspond to surfaces for which Kähler magnetic field is
constant along string in well defined sense (Jµ⌫✏µ⌫g1/2 remains constant along string).
It however turns that by a suitable choice of coordinates of 3-surface one can guarantee
that this quantity is constant so that no additional constraint results.

(e) Quantum criticality is one of the basic notions of quantum TGD and its relationship
to coset construction has remained unclear. In this chapter the concrete realization of
criticality in terms of symmetry breaking hierarchy of Super Virasoro algebra acting
on symplectic and Kac-Moody algebras. Also a connection with finite measurement
resolution - second key notion of TGD - emerges naturally.

The appendix of the book gives a summary about basic concepts of TGD with illustra-
tions. There are concept maps about topics related to the contents of the chapter pre-
pared using CMAP realized as html files. Links to all CMAP files can be found at http:
//www.tgdtheory.fi/cmaphtml.html [L13]. Pdf representation of same files serving as a
kind of glossary can be found at http://www.tgdtheory.fi/tgdglossary.pdf [L14]. The
topics relevant to this chapter are given by the following list.

• Hierarchy of Planck constants [L21]

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
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• Hyperfinite factors and TGD [L23]

• Structure of WCW [L33]

• TGD as infinite-dimensional geometry [L37]

• WCW gamma matrices [L41]

• WCW spinor fields [L42]

• Weak form of electric-magnetic duality [L43]

• Zero Energy Ontology (ZEO) [L44]

• 4-D spin glass degeneracy [L15]

• Equivalence Principle [L18]

• Holography [L22]

• Quantum Classical Correspondence [L28]

• Quantum criticality [L29]

• Symmetries of WCW [L34]

• TGD as ATQFT [L36]

• Vacuum functional in TGD [L40]

• KD equation [L25]

• Kaehler-Dirac action [L24]

7.2 WCW as a union of homogenous or symmetric spaces

In the following the vision about WCW as union of coset spaces is discussed in more detail.

7.2.1 Basic vision

The basic view about coset space construction for WCW has not changed.

(a) The idea about WCW as a union of coset spaces G/H labelled by zero modes is ex-
tremely attractive. The structure of homogenous space [A9] (http://en.wikipedia.
org/wiki/Homogenous_space) means at Lie algebra level the decomposition g = h� t
to sub-Lie-algebra h and its complement t such that [h, t] ⇢ t holds true. Homoge-
neous spaces have G as its isometries. For symmetric space the additional condition
[t, t] ⇢ h holds true and implies the existence of involution changing at the Lie alge-
bra level the sign of elements of t and leaving the elements of h invariant. The as-
sumption about the structure of symmetric space [A24] (http://en.wikipedia.org/
wiki/Symmetric_space) implying covariantly constant curvature tensor is attractive in
infinite-dimensional case since it gives hopes about calculability.

An important source of intuition is the analogy with the construction of CP2, which is
symmetric space A particular choice of h corresponds to Lie-algebra elements realized as
Killing vector fields which vanish at particular point of WCW and thus leave 3-surface
invariant. A preferred choice for this point is as maximum or minimum of Kähler func-
tion. For this 3-surface the Hamiltonians of h should be stationary. If symmetric space
property holds true then commutators of [t, t] also vanish at the minimum/maximum.
Note that Euclidian signature for the metric of WCW requires that Kähler function can
have only maximum or minimum for given zero modes.

(b) The basic objection against TGD is that one cannot use the powerful canonical quan-
tization using the phase space associated with configuration space - now WCW. The
reason is the extreme non-linearity of the Kähler action and its huge vacuum degen-
eracy, which do not allow the construction of Hamiltonian formalism. Symplectic and
Kähler structure must be realized at the level of WCW. In particular, Hamiltonians
must be represented in completely new manner. The key idea is to construct WCW

http://www.tgdtheory.fi/webCMAPs/Holography.html
http://en.wikipedia.org/wiki/Homogenous_space
http://en.wikipedia.org/wiki/Homogenous_space
http://en.wikipedia.org/wiki/Symmetric_space
http://en.wikipedia.org/wiki/Symmetric_space
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Hamiltonians as anti-commutators of super-Hamiltonians defining the contractions of
WCW gamma matrices with corresponding Killing vector fields and therefore defining
the matrix elements of WCW metric in the tangent vector basis defined by Killing vec-
tor fields. Super-symmetry therefre gives hopes about constructing quantum theory in
which only induced spinor fields are second quantized and imbedding space coordinates
are treated purely classically.

(c) It is important to understand the di↵erence between symmetries and isometries assigned
to the Kähler function. Symmetries of Kähler function do not a↵ect it. The symmetries
of Kähler action are also symmetries of Kähler action because Kähler function is Kähler
action for a preferred extremal (here there have been a lot of confusion). Isometries
leave invariant only the quadratic form defined by Kähler metric gMN = @M@LK but
not Kähler function in general. For G/H decomposition G represents isometries and H
both isometries and symmetries of Kähler function.

CP2 is familiar example: SU(3) represents isometries and U(2) leaves also Kähler func-
tion invariant since it depends on the U(2) invariant radial coordinate r of CP2. The ori-
gin r = 0 is left invariant by U(2) but for r > 0 U(2) performs a rotation at r = constant
3-sphere. This simple picture helps to understand what happens at the level of WCW.

How to then distinguish between symmetries and isometries? A natural guess is that
one obtains also for the isometries Noether charges but the vanishing of boundary terms
at spatial infinity crucial in the argument leading to Noether theorem as �S = �Q = 0
does not hold true anymore and one obtains charges which are not conserved anymore.
The symmetry breaking contributions would now come from e↵ective boundaries defined
by wormhole throats at which the induce metric changes its signature from Minkowskian
to Euclidian. A more delicate situation is in which first order contribution to �S
vanishes and therefore also �Q and the contribution to �S comes from second variation
allowing also to define Noether charge which is not conserved.

(d) The simple picture about CP2 as symmetric space helps to understand the general vision
if one assumes that WCW has the structure of symmetric space. The decomposition
g = h+t corresponds to decomposition of symplectic deformations to those which vanish
at 3-surface (h) and those which do not (t).

For the symmetric space option, the Poisson brackets for super generators associated
with t give Hamiltonians of h identifiable as the matrix elements of WCW metric. They
would not vanish although they are stationary at 3-surface meaning that Riemann con-
nection vanishes at 3-surface. The Hamiltonians which vanish at 3-surface X3 would
correspond to t and the Hamiltonians for which Killing vectors vanish and which there-
fore are stationary at X3 would correspond to h. Outside X3 the situation would of
course be di↵erent. The metric would be obtained by parallel translating the metric
from the preferred point of WCW to elsewhere and symplectic transformations would
make this parallel translation.

For the homogenous space option the Poisson brackets for super generators of t would
still give Hamiltonians identifiable as matrix elements of WCW metric but now they
would be necessary those of h. In particular, the Hamiltonians of t do not in general
vanish at X3.

7.2.2 Equivalence Principle and WCW

7.2.3 EP at quantum and classical level

Quite recently I returned to an old question concerning the meaning of Equivalence Principle
(EP) in TGD framework.

Heretic would of course ask whether the question about whether EP is true or not is a
pseudo problem due to uncritical assumption there really are two di↵erent four-momenta
which must be identified. If even the identification of these two di↵erent momenta is di�cult,
the pondering of this kind of problem might be waste of time.
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At operational level EP means that the scattering amplitudes mediated by graviton exchange
are proportional to the product of four-momenta of particles and that the proportionality
constant does not depend on any other parameters characterizing particle (except spin). The
are excellent reasons to expect that the stringy picture for interactions predicts this.

(a) The old idea is that EP reduces to the coset construction for Super Virasoro algebra
using the algebras associated with G and H. The four-momenta assignable to these
algebras would be identical from the condition that the di↵erences of the generators
annihilate physical states and identifiable as inertial and gravitational momenta. The
objection is that for the preferred 3-surface H by definition acts trivially so that time-
like translations leading out from the boundary of CD cannot be contained by H unlike
G. Hence four-momentum is not associated with the Super-Virasoro representations
assignable to H and the idea about assigning EP to coset representations does not look
promising.

(b) Another possibility is that EP corresponds to quantum classical correspondence (QCC)
stating that the classical momentum assignable to Kähler action is identical with gravi-
tational momentum assignable to Super Virasoro representations. This forced to recon-
sider the questions about the precise identification of the Kac-Moody algebra and about
how to obtain the magic five tensor factors required by p-adic mass calculations [K56].

A more precise formulation for EP as QCC comes from the observation that one indeed
obtains two four-momenta in TGD approach. The classical four-momentum assignable
to the Kähler action and that assignable to the modified Dirac action. This four-
momentum is an operator and QCC would state that given eigenvalue of this opera-
tor must be equal to the value of classical four-momentum for the space-time surfaces
assignable to the zero energy state in question. In this form EP would be highly non-
trivial. It would be justified by the Abelian character of four-momentum so that all
momentum components are well-defined also quantum mechanically. One can also con-
sider the splitting of four-momentum to longitudinal and transversal parts as done in the
parton model for hadrons: this kind of splitting would be very natural at the boundary
of CD. The objection is that this correspondence is nothing more than QCC.

(c) A further possibility is that duality of light-like 3-surfaces and space-like 3-surfaces
holds true. This is the case if the action of symplectic algebra can be defined at light-
like 3-surfaces or even for the entire space-time surfaces. This could be achieved by
parallel translation of light-cone boundary providing slicing of CD. The four-momenta
associated with the two representations of super-symplectic algebra would be naturally
identical and the interpretation would be in terms of EP.

One should also understand how General Relativity and EP emerge at classical level. The
understanding comes from the realization that GRT is only an e↵ective theory obtained by
endowing M4 with e↵ective metric.

(a) The replacement of superposition of fields with superposition of their e↵ects means
replacing superposition of fields with the set-theoretic union of space-time surfaces.
Particle experiences sum of the e↵ects caused by the classical fields at the space-time
sheets.

(b) This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
e↵ective metric as sum of M4 metric and deviations. This e↵ective metric would corre-
spond to that of General Relativity. This resolves long standing issues relating to the
interpretation of TGD.

(c) Einstein’s equations could hold true for the e↵ective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for
the e↵ective metric. The conjecture vanishing of divergence of Khler energy momentum
tensor can be seen as the microscopic justification for the claim that Einstein’s equations
hold true for the e↵ective space-time.
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(d) The breaking of Poincare invariance could have interpretation as e↵ective breaking in
zero energy ontology (ZEO), in which various conserved charges are length dependent
and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of
QCC rather than realise QCC interpreted as EP. The condition that the energy momentum
tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if
Einstein’s equations with cosmological term hold true. This is the case also now but one can
consider also more general solutions in which one has two cosmological constants which are
not genuine constants anymore [K78].

An interesting question is whether inertial-gravitational duality generalizes to the case of
color gauge charges so that color gauge fluxes would correspond to ”gravitational” color
charges and the charges defined by the conserved currents associated with color isometries
would define ”inertial” color charges. Since the induced color fields are proportional to color
Hamiltonians multiplied by Kähler form they vanish identically for vacuum extremals in
accordance with ”gravitational” color confinement.

7.2.4 Criticism of the earlier construction

The earlier detailed realization of super-Hamiltonians and Hamiltonians can be criticized.

(a) Even after these more than twenty years it looks strange that the Hamiltonians should
reduce to flux integrals over partonic 2-surfaces. The interpretation has been in terms
of e↵ective 2-dimensionality suggested strongly by strong form of general coordinate
invariance stating that the descriptions based on light-like orbits of partonic 2-surfaces
and space-like three surfaces at the ends of causal diamonds are dual so that only
partonic 2-surfaces and 4-D tangent space data at them would matter. Strong form of
holography implies e↵ective 2-dimensionality but this should correspond gauge character
for the action of symplectic generators in the interior the space-like 3-surfaces at the
ends of CDs, which is something much milder.

One expects that the strings connecting partonic 2-surfaces could bring something
new to the earlier simplistic picture. The guess is that imbedding space Hamiltonian
assignable to a point of partonic 2-surface should be replaced with that defined as in-
tegral over string attached to the point. Therefore the earlier picture would su↵er no
modification at the level of general formulas.

(b) The fact that the dynamics of Kähler action and modified Dirac action are not directly
involved with the earlier construction raises suspicions. I have proposed that Kähler
function could allow identification as Dirac determinant [K18] but one would expect
more intimate connection. Here the natural question is whether super-Hamiltonians
for the modified Dirac action could correspond to Kähler charges constructible using
Noether’s theorem for corresponding deformations of the space-time surface and would
also be identifiable as WCW gamma matrices.

7.2.5 Is WCW homogenous or symmetric space?

A key question is whether WCW can be symmetric space [A24] (http://en.wikipedia.
org/wiki/Riemannian_symmetric_space) or whether only homogenous structure is needed.
The lack of covariant constancy of curvature tensor might produce problems in infinite-
dimensional context.

The algebraic conditions for symmetric space are g = h + t, [h, t] ⇢ t, [t, t] ⇢ h. The latter
condition is the di�cult one.

(a) �CD Hamiltonians should induce di↵eomorphisms of X3 indeed leaving it invariant.
The symplectic vector fields would be parallel to X3. A stronger condition is that

http://en.wikipedia.org/wiki/Riemannian_symmetric_space
http://en.wikipedia.org/wiki/Riemannian_symmetric_space
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they induce symplectic transformations for which all points of X3 remain invariant.
Now symplectic vector fields vanish at preferred 3-surface (note that the symplectic
transformations are rM local symplectic transformations of S2 ⇥ CP2).

(b) For Kac-Moody algebra inclusion H ⇢ G for the finite-dimensional Lie-algebra induces
the structure of symmetric space. If entire algebra is involved this does not look phys-
ically very attractive idea unless one believes on symmetry breaking for both SU(3),
U(2)ew, and SO(3) and E2 (here complex conjugation corresponds to the involution).
If one assumes only Kac-Moody algebra as critical symmetries, the number of tensor
factors is 4 instead of five, and it is not clear whether one can obtain consistency with
p-adic mass calculations.

Examples of 3-surfaces remaining invariant under U(2) are 3-spheres of CP2. They
could correspond to intersections of deformations of CP2 type vacuum extremals with
the boundary of CD. Also geodesic spheres S2 of CP2 are invariant under U(2) subgroup
and would relate naturally to cosmic strings. The corresponding 3-surface would be
L⇥ S2, where L is a piece of light-like radial geodesic.

(c) In the case of symplectic algebra one can construct the imbedding space Hamiltonians
inducingWCWHamiltonians as products of elements of the isometry algebra of S2⇥CP2

for with parity under involution is well-defined. This would give a decomposition of the
symplectic algebra satisfying the symmetric space property at the level imbedding space.
This decomposition does not however look natural at the level of WCW since the only
single point of CP2 and light-like geodesic of �M4

+ can be fixed by SO(2)⇥U(2) so that
the 3-surfaces would reduce to pieces of light rays.

(d) A more promising involution is the inversion rM ! 1/rM of the radial coordinate map-
ping the radial conformal weights to their negatives. This corresponds to the inversion
in Super Virasoro algebra. t would correspond to functions which are odd functions of
u ⌘ log(rM/r0) and h to even function of u. Stationary 3-surfaces would correspond
to u = 1 surfaces for which log(u) = 0 holds true. This would assign criticality with
Virasoro algebra as one expects on general grounds.

rM = constant surface would most naturally correspond to a maximum of Kähler
function which could indeed be highly symmetric. The elements with even u-parity
should define Hamiltonians, which are stationary at the maximum of Kähler function.
For other 3-surfaces obtained by /rM -local) symplectic transformations the situation is
di↵erent: now H is replaced with its symplectic conjugate hHg�1 of H is acceptable and
if the conjecture is true one would obtained 3-surfaces assignable to perturbation theory
around given maximum as symplectic conjugates of the maximum. The condition that
H leaves X3 invariant in poin-twise manner is certainly too strong and imply that the
3-surface has single point as CP2 projection.

(e) One can also consider the possibility that critical deformations correspond to h and non-
critical ones to t for the preferred 3-surface. Criticality for given h would hold only for
a preferred 3-surface so that this picture would be very similar that above. Symplectic
conjugates of h would define criticality for other 3-surfaces. WCW would decompose
to a union corresponding to di↵erent criticalities perhaps assignable to the hierarchy of
sub-algebras of conformal algebra labelled by integer whose multiples give the allowed
conformal weights. Hierarchy of breakings of conformal symmetries would characterize
this hierarchy of sectors of WCW.

For sub-algebras of the conformal algebras (Kac-Moody and symplectic algebra) the
condition [t, t] ⇢ h cannot hold true so that one would obtain only the structure of
homogenous space.

7.2.6 Symplectic and Kac-Moody algebras as basic building bricks

The basic building bricks are symplectic algebra of �CD (this includes CP2 besides light-
cone boundary) and Kac-Moody algebra assignable to the isometries of �CD [K10]. It seems
however that the longheld view about the role of Kac-Moody algebra must be modified. Also
the earlier realization of super-Hamiltonians and Hamiltonians seems too naive.
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(a) I have been accustomed to think that Kac-Moody algebra could be regarded as a sub-
algebra of symplectic algebra. p-Adic mass calculations however requires five tensor
factors for the coset representation of Super Virasoro algebra naturally assigned to the
coset structure G/H of a sector of WCW with fixed zero modes. Therefore Kac-Moody
algebra cannot be regarded as a sub-algebra of symplectic algebra giving only single
tensor factor and thus inconsistent with interpretation of p-adic mass calculations.

(b) The localization of Kac-Moody algebra generators with respect to the internal coordi-
nates of light-like 3-surface taking the role of complex coordinate z in conformal field
theory is also questionable: the most economical option relies on localization with re-
spect to light-like radial coordinate of light-cone boundary as in the case of symplectic
algebra. Kac-Moody algebra cannot be however sub-algebra of the symplectic algebra
assigned with covariantly constant right-handed neutrino in the earlier approach.

(c) Right-handed covariantly constant neutrino as a generator of super symmetries plays
a key role in the earlier construction of symplectic super-Hamiltonians. What raises
doubts is that other spinor modes - both those of right-handed neutrino and electro-
weakly charged spinor modes - are absent. All spinor modes should be present and thus
provide direct mapping from WCW geometry to WCW spinor fields in accordance with
super-symmetry and the general idea that WCW geometry is coded by WCW spinor
fields.

Hence it seems that Kac-Moody algebra must be assigned with the modes of the in-
duced spinor field which carry electroweak quantum numbers. If would be natural that
the modes of right-handed neutrino having no weak and color interactions would gen-
erate the huge symplectic algebra of symmetries and that the modes of fermions with
electroweak charges generate much smaller Kac-Moody algebra.

(d) The dynamics of Kähler action and modified Dirac action action are invisible in the ear-
lier construction. This suggests that the definition of WCW Hamiltonians is too simplis-
tic. The proposal is that the conserved super charges derivable as Noether charges and
identifiable as super-Hamiltonians define WCW metric and Hamiltonians as their anti-
commutators. Spinor modes would become labels of Hamiltonians and WCW geometry
relates directly to the dynamics of elementary particles.

(e) Note that light-cone boundary �M4
+ = S2 ⇥ R+ allows infinite-dimensional group of

isometries consisting of conformal transformation of the sphere S2 with conformal scal-
ing compensated by an S2 local scaling or the light-like radial coordinate of R+. These
isometries contain as a subgroup symplectic isometries and could act as gauge symme-
tries of the theory.

7.3 Preferred extremals of Kähler action, solutions of
the modified Dirac operator, and quantum criticality

Perhaps due to my natural laziness I have not bothered to go through the basic construction
[K10, K9] although several new ideas have emerged during last years [K69].

(a) The new view about preferred extremals of Kähler action involves the slicing of space-
time surface to string world sheets labelled by points of any partonic two-surface or vice
versa. I have called this structure Hamilton-Jacobi structure [K5]. A number theoretic
interpretation based on the octonionic representation of imbedding space gamma matri-
ces. A gauge theoretic interpretation in terms of two orthogonal 2-D spaces assignable to
polarization and momentum of massless field mode is also possible. The slicing suggests
duality between string world sheets and conformal field theory at partonic 2-surfaces
analogous to AdS/CFT. Strong form of holography implied by strong form of GCI would
be behind the duality.

(b) The new view about the solutions of modified Dirac equation involves localization of
the modes at string world sheets: this emerges from the condition that electric charge is
well defined quantum number for the modes. The e↵ective 2-dimensionality of the space
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of the modified gamma matrices is crucial for the localization. This leads to a concrete
model of elementary particles as string like objects involving two space-time sheets and
flux tubes carrying Kähler magnetic monopole flux. Holomorphy and complexification
of modified gamma matrices are absolutely essential consequences of the localization
and is expected to be crucial also in the construction of WCW geometry. The weakest
interpretation is that the general solution of modified Dirac is superposition of these
localized modes parametrized by the points of partonic 2-surface and integer labelling
the modes themselves as in string theory. One has the same general picture as in
ordinary quantum theory.

One can wonder whether finite measurement resolution is realized dynamically in the
sense that a discrete set of stringy world sheets are possible. It will be found that
quantization of induced spinor fields leads to a concrete proposal realizing this: strings
would be identified as curves along which Kähler magnetic field has constant value.

(c) Quantum criticality is central notion in TGD framework: Kähler coupling strength is the
only coupling parameter appearing in Kähler action and is analogous to temperature.
The idea of quantum criticality is that TGD Universe is quantum critical so that Kähler
coupling strength is analogous to critical temperature. The hope is that this could make
the theory unique. I have not however been able to really understand it and relate it to
the coset space construction of WCW and to coset representations of Super Virasoro.

7.3.1 What criticality is?

The basic technical problem has been characterization of it quantitatively [K18]. Here there
is still a lot of fuzzy thinking and unanswered questions. What is the precise definition of
criticality and what is its relation to G/H decomposition of WCW? Could H correspond to
critical deformations so that it would have purely group theoretical characterization, and one
would have nice unification of two approaches to quantum TGD?

1. Does criticality correspond to the failure of classical determinism?

The intuitive guess is that quantum criticality corresponds classically to the criticality of
Kähler action implying non-determinism. The preferred extremal associated with given 3-
surface at the boundary of CD is not unique. There are several deformations of space-time
surface vanishing at X3 and leaving the Kähler action and thus Kähler function invariant.

Some nitpicking before continuing is in order.

(a) The key word is ”vanishing” in the above definition of criticality relying on classical non-
determinism. Could one allow also non-vanishing deformations of X3 with the property
that Kähler function and Kähler action are not changed? This would correspond to the
idea that critical directions correspond to flat directions for the potential in quadratic
approximation: now it would be Kähler function in quadratic approximation. The flat
direction would not contribute to Kähler metric GKL = @K@L.

Clearly, the subalgebra h associated with H would satisfy criticality in this sense for
all 3-surfaces except the one for which it acts as isotropy group: in this case one would
have criticality in the strong sense.

This identification of criticality is consistent with that based on non-determinism only
if the deformations in H leaving X3 fixed do not leave X4(X3) fixed. This would apply
also to h. One would have bundle like structure: 3-surface would represent base point
of the bundle and space-time surfaces associated with it would correspond to the points
in the fiber permuted by h.

(b) What about zero modes, which appear only in the conformal scaling factor of WCW
metric but not in the di↵erentials appearing the line element? Are the critical modes
zero modes but only up to second order in functional Taylor expansion?

Returning to the definition of criticality relying on classical non-determinism. One can try
to fix X4(X3) uniquely by fixing 3-surface at the second end of CD but even this need not
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be enough? One expects non-uniqueness in smaller scales in accordance with approximate
scaling invariance and fractality assignable to criticality.

A possible interpretation would be in terms of dynamical symmetry analogous to gauge
symmetry assignable to H and having interpretation in terms of measurement resolution.
Increasing the resolution would mean fixing X3 at upper and lower boundaries in shorter
scale. Finite measurement resolution would give rise to dynamical gauge symmetry. This
conforms with the idea that TGD Universe is analogous to a Turing machine able to mimic
any gauge dynamics. The hierarchy of inclusions for hyper-finite factors of type II1 supports
this view too [K60].

Criticality would be a space-time correlate for quantum non-determinism. I have assigned
this nondeterminism to multi-furcations of space-time sheets giving rise to the hierarchy
of Planck constants. This involves however something new: namely the idea that several
alternative paths are selected in the multi-furcation simultaneously [K17, K62].

2. Further aspects of criticality

(a) Mathematically the situation at criticality of Kähler action for X4(X3) (as distinguished
from Kähler function for X3) is analogous to that at the extremum of potential when
the Hessian defined by second derivatives has vanishing determinant and there are zero
modes. Now one would have an infinite number of deformations leaving Kähler action
invariant in second order. What is important that critical deformations leave X3 in-
variant so that they cannot correspond to the sub-algebra h except possibly at point for
which H acts as an isotropy group.

(b) Criticality would suggest that conserved charges linear in deformation vanish: this be-
cause deformation vanishes at X3. Second variation would give rise to charges to and
invariance of the Kähler action in this action would mean that �S2 = �Q2 = 0 holds
true unless e↵ective boundary terms spoil the situation. Second order charges would be
quadratic in the variation and it is not at all clear whether there is any hope about hav-
ing a non-linear analog of Lie-algebra or super algebra structure. I do not know whether
mathematicians have considered this kind of possibility. Yangian algebra represent in-
volving besides Lie algebra generators also generators coming as their multilinears have
some formal resemblance with this kind of non-linear structure.

(c) Supersymmetry would suggest that criticality for the Kähler action implies criticality
for the modified Dirac action. The first order charges for Dirac action involve the partial
derivatives of the canonical momentum currents T↵

k with respect to partial derivatives
@�hl of imbedding space coordinates just as the second order charges for Kähler action
do. First order Noether charges vanish if criticality means that variation vanishes at
X3 but not at X4(X3) since they involve linearly �hk vanishing at X3. Second order
charges for modified Dirac action get second contribution from the modification of the
induced spinor field by a term involving spin rotation and from the second variation of
the modified gamma matrices. Here it is essential that derivatives of @k�hl, which need
not vanish, are involved.

Note: I use the notation @↵ for space-time partial derivatives and @k for imbedding
space partial derivatives).

7.3.2 Do critical deformations correspond to Super Virasoro alge-
bra?

One can try to formulate criticality a in terms of super-conformal algebras and their sub-
algebras hc,m for which conformal weights are integer multiples of integer m. Now I mean
with super-conformal algebra also symplectic and super Kac-Moody algebras. These decom-
positions - call them just gc = tc � hc need not correspond to g + h associated with G/H
although it could do so. For instance, if gc corresponds to Super Virasoro algebra then the
decomposition gc = tc � hc does not correspond to g = t� h.
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(a) There would be a hierarchy of included sub-algebras hc,m, which corresponds to hierar-
chy of conformal algebras assignable to the light-like radial coordinate of the boundary
of light-cone and criticalities could form hierarchy in this sense. The algebras form in-
clusion hierarchies hm1 � hm2 � ... labelled by sequences consisting of integers such that
given integer is divisible by the previous integer in the sequence: mn mod mn�1 = 0.

Critical deformations assignable to hc,m would vanish at preferred X3 for which H is
isotropy group and leave Kähler action invariant and would not therefore contribute to
Kähler metric at X3. They could however a↵ect X4(X3).

Non-critical deformation would correspond to the complement of this sub-algebra a↵ect-
ing both X4(X3) and X3. This hierarchy would correspond to an infinite hierarchy of
conformal symmetry breakings and would be manifested at the level of WCW geometry.
Also a connection with the inclusion hierarchy for hyper-finite factors of type II1 [K60]
having interpretation in terms of finite measurement resolution is suggested by this hi-
erarchy. Super Virasoro generators with conformal weight coming as a multiple of m
would annihilate physical states so that e↵ectively the criticality correspond to finite-D
Hilbert space. This is something new as compared to the ordinary view about criticality
for which all Super Virasoro generators annihilate the states.

(b) A priori g = t+ h decomposition need not have anything to do with the decomposition
of deformations to non-critical and critical ones. Critical deformations could indeed
appear as sub-algebra of g = t+h and be present for both t and h in the same manner:
that is as sub-algebras of super- Virasoro algebras: Super Virasoro would represent the
non-determinism and criticality and in 2-D conformal theories describing criticality this
is indeed the case. In this case the actions of G and H identified as super-symplectic
and super Kac-Moody algebras could be unique and non-deterministic aspect would not
be present. This corresponds to the physical intuition.

If criticality corresponds to G/H structure, symmetric space property [t, t] ⇢ h would
not hold true as is clear from the additivity of super-conformal weights in the com-
mutators of conformal algebras. The reduction of G/H structure to criticality would
be very nice but personally I would give up covariant constancy of curvature tensor in
infinite-dimensional context only with heavy heart.

(c) The super-symmetric relation between Kähler action and corresponding modified Dirac
action suggests that the criticality of Kähler action implies vanishing conserved charges
also for the modified Dirac action (both ordinary and super charges so that one has
super-symmetry). The reason is that conserved charge is linear in deformation. Conser-
vation in turn means that Kähler action is not changed: �S = �Q = 0. For non-critical
deformations the boundary terms at the orbits wormhole throats imply non-conservation
so that �Q (the di↵erence of charges at space-like ends of space-time surface) is non-
vanishing although local conservation law holds strue. This in terms implies that the
contribution to the Kähler metric is non-trivial.

At criticality both bosonic and fermionic conserved currents can be assigned to the
second variation and are thus quadratic in deformation just like that associated with
Kähler action. If e↵ective boundary terms vanish the criticality for Kähler action implies
the conservation of second order charges by �2S = �2Q = 0.

7.3.3 Connection with the vanishing of second variation for Kähler
action

There are three general conjectures related to modified Dirac equation and the conserved
currents associated with the vanishing second variation of Kähler action at critical points
analogous to extrema of potential function at which flat directions appear and the determi-
nant defined by second derivatives of the potential function does not have maximal rank.

(a) Quantum criticality has as a correlate the vanishing of the second variation of Kähler
action for critical deformations. The conjecture is that the number of these directions
is infinite and corresponds to sub-algebras of Super Virasorol algebra corresponding
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to conformal weights coming as integer multiples of integer. Super Virasoro hypothesis
implies that preferred extremals have same algebra of critical deformations at all points.

Noether theorem applied to critical variations gives rise to conserved currents and
charges which are quadratic in deformation. For non-critical deformations one obtains
linearity in deformation and this charges define the super- conformal algebras.

Super Virasoro algebra indeed has a standard representation in which generators are
indeed quadratic in Kac-Moody (and symplectic generators in the recent case). This
quadratic character would have interpretation in terms of criticality not allowing linear
representation.

(b) Modified Dirac operator is assumed to have a solution spectrum for which both non-
critical and critical deformations act as symmetries. The critical currents vanish in the
first order. Second variation involving first variation for the modified gamma matrices
and first variation for spinors (spinor rotation term) gives and second variation for
canonical momentum currents gives conserved current. The general form of the current
is very similar to the corresponding current associated with Kähler action.

(c) The currents associated with the modified Dirac action and Kähler action have same ori-
gin. In other words: the conservation of Kähler currents implies the conservation of the
currents associated with the modes of the modified Dirac operator. A question inspired
by quantum classical correspondence is whether the eigen values of the fermionic charges
correspond to the values of corresponding classical conserved charges for Kähler action
in the Cartan algebra. This would imply that all space-time surfaces in superposition
representing momentum eigen state have the same value of classical four-momentum.
A stronger statement of QCC would be that classical correlation functions are same as
the quantal ones.

7.4 Quantization of the modified Dirac action

The quantization of the modified Dirac action follows standard rules.

(a) The general solution is written as a superposition of modes, which are for other fermions
than ⌫R localized to string world sheets and parametrized by a point of partonic 2-surface
which can be chosen to be the intersection of light-like 3-surface at which induced metric
changes signature with the boundary of CD.

(b) The anti-commutations for the induced spinor fields are dictated from the condition that
the anti-commutators of the super-Hamiltonians identified as WCW gamma matrices
give WCW Hamiltonians as matrix elements of WCW metric. Super Hamiltonians are
identified as Noether charges for the modified Dirac action assignable to the symplectic
algebra of �CD being labelled also by the quantum numbers labelling the modes of the
induced spinor field.

(c) Consistency conditions for the modified Dirac operator require that the modified gamma
matrices have vanishing divergence: this is true for the extremals of Kähler action.

(d) The guess for the critical algebra is as sub-algebra of Super Virasoro algebra a↵ecting
on the radial light-like coordinate of �CD as di↵eomorphisms. The deformations of the
modified Dirac operator should annihilate spinor modes. This requires that the deforma-
tion corresponds to a gauge transformation for the induced gauge fields. Furthermore,
the deformation for the modified gamma matrices determined by the deformation of the
canonical momentum densities contracted covariant derivatives should annihilate the
spinor modes. The situation is analogous to that for massless Dirac operator: Dirac
equation for momentum eigenstate does not imply vanishing of the momentum but only
that of mass. The condition that the divergence for the deformation of the modified
gamma matrices vanishes as does also the divergence of the modified gamma matri-
ces implies that the second variation of Kähler action vanishes. One obtains classical
Kähler charges and Dirac charges: the latter act as operators. The equivalence of the
two definitions of of four-momenta would corresponds to EP and QCC.
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(e) An interesting question of principle is what the almost topological QFT property mean-
ing that Kähler action reduces to Chern-Simons form integrated over boundary of space-
time and over the light-like 3-surfaces means. Could one write the currents in terms of
Chern-Simons form alone? Could one use also Chern-Simons analog of modified Dirac
action. What looks like problem at the first glance is that only the charges associated
with the symplectic group of CP2 would be non-vanishing. Here the weak form of
electric-magnetic duality [K18, K69] however introduce constraint terms to the action
implying that all charges can be non-vanishing.

The challenge is to construct explicit representations of super charges and demonstrate that
suitably defined anti-commutations for spinor fields reproduce the anti-commutations of the
super-symplectic algebra.

7.4.1 Integration measure in the superposition over modes

One can express  as a superposition over modes as usually. Except for ⌫R, the modes are
localized at string world sheets and can be labelled by a point of X2, integer characterizing
the mode and analogous to conformal weight, and quantum numbers characterizing spin,
electroweak quantum numbers, and M4 handedness. The de-localization of the modes of ⌫R
decouple from left-handed neutrino if the modified gamma matrices involved only M4 or CP2

gamma matrices. It might be possible to choose the string coordinate to be light-like radial
coordinate of �CD but this is by no means necessary.

The integration measure dµ in the superposition of modes has nothing to do with the metric
determinants assignable to 3-surface X3 or with the corresponding space-time surface at
X3. dµ at partonic 1-surface X2 must be taken to be such that its square multiplied by
transversal delta function resulting in anti-commutation of two modes gives a measure defined
by the Kähler form Jµ⌫ and given by dµ = Jµ⌫dxµdx⌫ = J

p
g2dx1 ^ dx2, J = Jµ⌫✏µ⌫ (note

that permutation tensor is inversely proportional
p
g2). This measure appears in the earlier

definition of WCW Hamiltonian as the analog of flux integral
H
HAJdx1 ^ dx2, where HA is

Hamiltonian to be replaced with its integral over string.

There are two manners to get J to the measure for Hamiltonian flux.

• Option I: One uses for super charges has ”half integration measure” given by dµ1/2 =p
J
p
g2dx1 ⇥ dx2. Note that

p
J is imaginary for J < 0 and also the unique choice of

sign of the square root might produce problems.

• Option II: The integration measure is dµ = J(x, end)
p
g2dx1 ^ dx2 for the super charge

and anti-commutations of  at string are proportional to 1/J(x, end)
p
g2 so that anti-

commutator of supercharges would be proportional to J(x, end)
p
g2 and metric deter-

minant disappears from the integration measure. Note that the vanishing of J(x, end)
does not produce any problems in anti-commutators.

J(x, end) means a non-locality in the anti-commutator. If the string is interpreted as
beginning from the partonic surface at its second end, one obtains two di↵erent anti-
commutation relations unless strings are J(x, y)

p
g2 = constant curves. This could

make sense for flux tubes which are indeed assumed to carry the Kähler flux. Note also
that partonic 2-surface decomposes naturally into regions with fixed sign of J forming
flux tubes.

J(x, y)
p
g2 = constant condition seems actually trivial. The reason is that by a suitable

coordinate transformations (x, y) ! (f(x, y) leaving string coordinate invariant thep
g2 gains a factor equal to the Jacobian of the transformation which reduces to 2-D

Jacobian for the transformation for the coordinates of partonic 2-surface. By a suitable
choice of this transformation J(x, y)

p
g2 = constant condition is satisfied along string

world sheets. This transformation is determined only modulo an area preserving - thus
symplectic - transformation for each partonic 2-surface in the slicing. One obtains space-
time analog of symplectic invariance as an additional symmetry having identification
as a remnant of 3-D GCI. Since also string parameterizations t ! f(t) are allowed so
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that 3-D GCI reduces to 1-D Di↵ and 2-D Sympl. Natural 4-D extension of string
reparameterizations would be to the analogs of conformal transformations associated
with the e↵ective metric defined by modified gamma matrices so that 4-D Di↵ would
reduce to a product of 2-D conformal and symplectic groups.

The physical state is specified by a finite number of fermion number carrying string world
sheets (one can of course have a superposition of these states with di↵erent locations of
string world sheets). One can ask whether QCC forces the space-time surface to code
this state in its geometry in the sense that only these string world sheets are possible.
J(x, y)

p
g2 = constant condition does not force this.

• Option III: If one assumes slicing by partonic 2-surfaces with common coordinates x =
(x1, x2) and that J(x, y)

p
g is included to current density at the point of string and

that 1/J(x, y)
p
g2 in the anti-commutations is evaluated at the point x of the partonic

surface intersecting the string at y, the flux is replaced with the superposition of local
fluxes from all points in the slicing by partonic 2-surfaces and J(x, y). For J

p
g2=

constant along strings Options II an III are equivalent.

On basis of physical picture Option II with J
p
g2= constant achieved by a proper choice of

partonic coordinates for the slicing looks very attractive.

7.4.2 Fermionic supra currents as Noether currents

Fermionic supra currents can be taken as Noether currents assignable to the modified Dirac
action. Charges are obtained by integrating over string. Here possible technical problems
relate to the correct identification of the integration measure. In the normal situation the
integration measure is

p
g4 but now 2-D delta function restricts the charge density for a given

mode to the string world sheet and might produce additional factors.

The general form of the super current at given string world sheet corresponding to a given
string world sheet is given by

J↵ =
⇥
 nO

↵
�,k�h

kD↵ + n�
↵� 

⇤p
g4 ,

O↵
�,k =

@�↵

@(@�hk)
. (7.4.1)

The covariant divergence of J↵ vanishes. Modified gamma matrices appearing in the equation
are defined as contractions of the canonical momentum densities T↵

k of Kähler action with
imbedding space gamma matrices �k as

�↵ = T↵
k �

k ,

T↵
k =

LK

@(@�hk)
,

(7.4.2)

 n is the mode of induced spinor field considered. � is the change of  in spin rotation
given by

� = @ljk⌃
kl . (7.4.3)

The corresponding current is obtained by replacing  n with  and integrating over the
modes.
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The current could quite well vanish. The reason is that holography means that one half of
modified gamma matrices whose number is e↵ectively 2 annihilates the spinor modes. Also
the covariant derivative Dz or Dz annihilates it. One obtains vanishing result if the quantity
Oz

�,k is proportional to �z. This can be circumvented if it is superposition of gamma matrices

which are not parallel to the string world sheet or if is superposition of �z and �z: this could
have interpretation as breaking of conformal invariance.

For critical deformations vanishing at X3 �hk appearing in the formula of current vanishes
so that one obtains non-vanishing charge only for second variation.

Note that the quantity O↵
�,k involves terms J↵kJ l

� and can be non-vanishing even when

J vanishes. The replacement of ordinary �0 in fermionic anti-commutation relations with
the modified gamma matrix �0 helps here since modified gamma matrices vanish when J
vanishes.

Note that for option II favoured by the existing physical picture J is constant along the
strings and anti-commutation relations are non-singular for J 6= 0.

7.4.3 Anti-commutators of super-charges

The anti-commutators for fermionic fields- or more generally, quantities related to them
- should be such that the anti-commutator of fermionic super-Hamiltonians defines WCW
Hamiltonian with correct group theoretical properties. To obtain the correct anti-commutator
requires that one obtains Poisson bracket of �CD Hamiltonians appearing in the super-
Hamiltonians. This is the case if the anti-commutator involved is proportional to iJkl since
this gives the desired Poisson bracket

Jklj
k
Aj

l
B = {HA, HB} . (7.4.4)

This is achieved if one replaces the anti-commutators of  and  with anti-commutator of
Ak ⌘ O0

k and Al ⌘  O0
l (O↵

k was defined in Eq. 7.4.1) and assumes

{Ak, Al} = iJkl�
0�2(x2, y2)�1(y1, y2)

X

g1/24

. (7.4.5)

Here �0 is modified gamma matrix and �2 is delta function assignable to the partonic 2-surface
and �1 is delta function assignable with the string. Depending on whether one assumes option
I, II, or III one has X = 1, X = 1/Jx,end or 1/J(x1, x2, y).

The modified anti-commutation relations do not make sense in higher imbedding space di-
mensions since the number of spinor components exceeds imbedding space dimension. For
D = 8 the dimension of H and the number of independent spinor components with given
H-chirality are indeed same (leptons and quarks have opposite H-chirality). This makes the
dimension D = 8 unique in TGD framework.

7.4.4 Strong form of General Coordinate Invariance and strong form
of holography

Strong form of general coordinate invariance (GCI) suggests a duality between descriptions
using light-like 3-surfaces X3

l at which the signature of the induced metric changes and space-
like 3-surface X3 at the ends of the space-time surface. Also the translates of these surfaces
along slicing might define the theory but with a Kähler function to which real part of a
holomorphic function defined in WCW is added.
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In order to define the formalism for light-like 3-surfaces, one should be able to define the
symplectic algebra. This requires the translation of the boundaries of the light-cone along
the line connecting the tips of the CD so that the Hamiltonians of �M4

+ or �M4
� make sense

at X3
l . Depending on whether the the state function reduction has occurred on upper or

lower boundary of CD one must use translates of �M4
+ or �M4

�: this would be one particular
manifestation for the arrow of time.

7.4.5 Radon, Penrose ja TGD

The construction of the induced spinor field as a superposition of modes restricted to string
world sheets to have well-defined em charge (except in the case of right-handed neutrino)
brings in mind Radon transform [A21] (http://en.wikipedia.org/wiki/Radon_transform)
and Penrose transform [A19] (http://en.wikipedia.org/wiki/Penrose_transform). In
Radon transform the function defined in Euclidian space En is coded by its integrals over
n � 1 dimensional hyper-planes. All planes are allowed and are characterized by their nor-
mal whose direction corresponds to a point of n � 1-dimensional sphere Sn�1 and by the
orthogonal distance of the plane from the origin. Note that the space of hyper-planes is
n-dimensional as it should be if it is to carry same information as the function itself. One
can easily demonstrate that n-dimensional Fourier transform is composite of 1-dimensional
Fourier transform in the direction normal vector parallel to wave vector obtained integrat-
ing over the distance parameter associated with n�dimensional Radon transform defined by
function multplied by the plane wave.

In the case of Penrose transform [A19] (http://en.wikipedia.org/wiki/Penrose_transform)
one has 6-dimensional twistor space CP3 and the space of complex two - planes- topologically
spheres in CP3 - one for each point of in CP3 - defines 4-D compactified Minkowski space.
A massless field in M4 has a representation in CP3 with field value at given point of M4

represented as an integral over S3 of holomorphic field in CP3.

In the recent case the situation resembles very much that for Penrose transform. In the case
of space-like 3-surface CP3 is replaced with the space of strings emanating from the partonic
2-surface and its points are labelled by points of partonic 2-surface and points of string so
that dimension is still D = 3. The transform describes second quantize spinor field as a
collection of ”Fourier components” along stringy curves. In 4-D case one has 4-D space-time
surface and collection of ”Fourier components” along string world sheets. One could say that
charge densities assignable to partonic 2-surfaces replace the massless fields in M4. Now
however the decomposition into strings and string world sheets takes place at the level of
physics rather than only mathematically.

7.5 About the notion of four-momentum in TGD frame-
work

The starting point of TGD was the energy problem of General Relativity [K56]. The solution
of the problem was proposed in terms of sub-manifold gravity and based on the lifting of the
isometries of space-time surface to those of M4 ⇥ CP2 in which space-times are realized as
4-surfaces so that Poincare transformations act on space-time surface as an 4-D analog of
rigid body rather than moving points at space-time surface. It however turned out that the
situation is not at all so simple.

There are several conceptual hurdles and I have considered several solutions for them. The
basic source of problems has been Equivalence Principle (EP): what does EP mean in TGD
framework [K56, K78]? A related problem has been the interpretation of gravitational and
inertial masses, or more generally the corresponding 4-momenta. In General Relativity based
cosmology gravitational mass is not conserved and this seems to be in conflict with the con-
servation of Noether charges. The resolution is in terms of zero energy ontology (ZEO),
which however forces to modify slightly the original view about the action of Poincare trans-
formations.

http://en.wikipedia.org/wiki/Radon_transform
http://en.wikipedia.org/wiki/Penrose_transform
http://en.wikipedia.org/wiki/Penrose_transform
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A further problem has been quantum classical correspondence (QCC): are quantal four-
momenta associated with super conformal representations and classical four-momenta as-
sociated as Noether charges with Kähler action for preferred extremals identical? Could
inertial-gravitational duality - that is EP - be actually equivalent with QCC? Or are EP
and QCC independent dualities. A powerful experimental input comes p-adic mass calcu-
lations [K74] giving excellent predictions provided the number of tensor factors of super-
Virasoro representations is five, and this input together with Occam’s razor strongly favors
QCC=EP identification.

There is also the question about classical realization of EP and more generally, TGD-GRT
correspondence.

Twistor Grassmannian approach has meant a technical revolution in quantum field theory
(for attempts to understand and generalize the approach in TGD framework see [K61, K44].
This approach seems to be extremely well suited to TGD and I have considered a generaliza-
tion of this approach from N = 4 SUSY to TGD framework by replacing point like particles
with string world sheets in TGD sense and super-conformal algebra with its TGD version:
the fundamental objects are now massless fermions which can be regarded as on mass shell
particles also in internal lines (but with unphysical helicity). The approach solves old prob-
lems related to the realization of stringy amplitudes in TGD framework, and avoids some
problems of twistorial QFT (IR divergences and the problems due to non-planar diagrams).
The Yangian variant of 4-D conformal symmetry is crucial for the approach in N = 4 SUSY,
and implies the recently introduced notion of amplituhedron [B6]. A Yangian generalization
of various super-conformal algebras seems more or less a ”must” in TGD framework. As
a consequence, four-momentum is expected to have characteristic multilocal contributions
identifiable as multipart on contributions now and possibly relevant for the understanding of
bound states such as hadrons.

7.5.1 Scale dependent notion of four-momentum in zero energy on-
tology

Quite generally, General Relativity does not allow to identify four-momentum as Noether
charges but in GRT based cosmology one can speak of non-conserved mass [K46], which
seems to be in conflict with the conservation of four-momentum in TGD framework. The
solution of the problem comes in terms of zero energy ontology (ZEO) [K4, K70], which
transforms four-momentum to a scale dependent notion: to each causal diamond (CD) one
can assign four-momentum assigned with say positive energy part of the quantum state
defined as a quantum superposition of 4-surfaces inside CD.

ZEO is necessary also for the fusion of real and various p-adic physics to single coherent whole.
ZEO also allows maximal ”free will” in quantum jump since every zero energy state can be
created from vacuum and at the same time allows consistency with the conservation laws.
ZEO has rather dramatic implications: in particular the arrow of thermodynamical time is
predicted to vary so that second law must be generalized. This has especially important
implications in living matter, where this kind of variation is observed.

More precisely, this superposition corresponds to a spinor field in the ”world of classical
worlds” (WCW) [K70]: its components - WCW spinors - correspond to elements of fermionic
Fock basis for a given 4-surface - or by holography implied by general coordinate invariance
(GCI) - for 3-surface having components at both ends of CD. Strong form of GGI implies
strong form of holography (SH) so that partonic 2-surfaces at the ends of space-time surface
plus their 4-D tangent space data are enough to fix the quantum state. The classical dynamics
in the interior is necessary for the translation of the outcomes of quantum measurements to
the language of physics based on classical fields, which in turn is reduced to sub-manifold
geometry in the extension of the geometrization program of physics provided by TGD.

Holography is very much reminiscent of QCC suggesting trinity: GCI-holography-QCC.
Strong form of holography has strongly stringy flavor: string world sheets connecting the
wormhole throats appearing as basic building bricks of particles emerge from the dynamics
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of induced spinor fields if one requires that the fermionic mode carries well-defined electro-
magnetic charge [K69].

7.5.2 Are the classical and quantal four-momenta identical?

One key question concerns the classical and quantum counterparts of four-momentum. In
TGD framework classical theory is an exact part of quantum theory. Classical four-momentum
corresponds to Noether charge for preferred extremals of Kähler action. Quantal four-
momentum in turn is assigned with the quantum superposition of space-time sheets assigned
with CD - actually WCW spinor field analogous to ordinary spinor field carrying fermionic
degrees of freedom as analogs of spin. Quantal four-momentum emerges just as it does in
super string models - that is as a parameter associated with the representations of super-
conformal algebras. The precise action of translations in the representation remains poorly
specified. Note that quantal four-momentum does not emerge as Noether charge: at at least
it is not at all obvious that this could be the case.

Are these classical and quantal four-momenta identical as QCC would suggest? If so, the
Noether four-momentum should be same for all space-time surfaces in the superposition.
QCC suggests that also the classical correlation functions for various general coordinate
invariant local quantities are same as corresponding quantal correlation functions and thus
same for all 4-surfaces in quantum superposition - this at least in the measurement resolution
used. This would be an extremely powerful constraint on the quantum states and to a high
extend could determined the U-, M-, and S-matrices.

QCC seems to be more or less equivalent with SH stating that in some respects the descrip-
tions based on classical physics defined by Kähler action in the interior of space-time surface
and the quantal description in terms of quantum states assignable to the intersections of
space-like 3-surfaces at the boundaries of CD and light-like 3-surfaces at which the signature
of induced metric changes. SH means e↵ective 2-dimensionality since the four-dimensional
tangent space data at partonic 2-surfaces matters. SH could be interpreted as Kac-Mody and
symplectic symmetries meaning that apart from central extension they act almost like gauge
symmetries in the interiors of space-like 3-surfaces at the ends of CD and in the interiors of
light-like 3-surfaces representing orbits of partonic 2-surfaces. Gauge conditions are replaced
with Super Virasoro conditions. The word ”almost” is of course extremely important.

7.5.3 What Equivalence Principle (EP) means in quantum TGD?

EP states the equivalence of gravitational and inertial masses in Newtonian theory. A possible
generalization would be equivalence of gravitational and inertial four-momenta. In GRT this
correspondence cannot be realized in mathematically rigorous manner since these notions are
poorly defined and EP reduces to a purely local statement in terms of Einstein’s equations.

What about TGD? What could EP mean in TGD framework?

(a) Is EP realized at both quantum and space-time level? This option requires the identifi-
cation of inertial and gravitational four-momenta at both quantum and classical level.
It is now clear that at classical level EP follows from very simple assumption that GRT
space-time is obtained by lumping together the space-time sheets of the many-sheeted
space-time and by the identification the e↵ective metric as sum of M4 metric and de-
viations of the induced metrics of space-time sheets from M2 metric: the deviations
indeed define the gravitational field defined by multiply topologically condensed test
particle. Similar description applies to gauge fields. EP as expressed by Einstein’s
equations would follow from Poincare invariance at microscopic level defined by TGD
space-time. The e↵ective fields have as sources the energy momentum tensor and YM
currents defined by topological inhomogenities smaller than the resolution scale.

(b) QCC would require the identification of quantal and classical counterparts of both gravi-
tational and inertial four-momenta. This would give three independent equivalences, say
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PI,class = PI,quant, Pgr,class = Pgr,quant, Pgr,class = PI,quant, which imply the remaining
ones.

Consider the condition Pgr,class = PI,class. At classical level the condition that the stan-
dard energy momentum tensor associated with Kähler action has a vanishing divergence
is guaranteed if Einstein’s equations with cosmological term are satisfied. If preferred
extremals satisfy this condition they are constant curvature spaces for non-vanishing
cosmological constant. A more general solution ansatz involves several functions analo-
gous to cosmological constant corresponding to the decomposition of energy momentum
tensor to terms proportional to Einstein tensor and several lower-dimensional projection
operators [K78]. It must be emphasized that field equations are extremely non-linear
and one must also consider preferred extremals (which could be identified in terms of
space-time regions having so called Hamilton-Jacobi structure): hence these proposals
are guesses motivated by what is known about exact solutions of field equations.

Consider next Pgr,class = PI,class. At quantum level I have proposed coset representa-
tions for the pair of super conformal algebras g and h ⇢ g which correspond to the coset
space decomposition of a given sector of WCW with constant values of zero modes.
The coset construction would state that the di↵erences of super-Virasoro generators
associated with g resp. h annhilate physical states.

The identification of the algebras g and h is not straightforward. The algebra g could
be formed by the direct sum of super-symplectic and super Kac-Moody algebras and
its sub-algebra h for which the generators vanish at partonic 2-surface considered. This
would correspond to the idea about WCW as a coset space G/H of corresponding groups
(consider as a model CP2 = SU(3)/U(2) with U(2) leaving preferred point invariant).
The sub-algebra h in question includes or equals to the algebra of Kac-Moody generators
vanishing at the partonic 2-surface. A natural choice for the preferred WCW point would
be as maximum of Kähler function in Euclidian regions: positive definiteness of Kähler
function allows only single maximum for fixed values of zero modes). Coset construction
states that di↵erences of super Virasoro generators associated with g and h annihilate
physical states. This implies that corresponding four-momenta are identical that is
Equivalence Principle.

(c) Does EP at quantum level reduce to one aspect of QCC? This would require that clas-
sical Noether four-momentum identified as inertial momentum equals to the quantal
four-momentum assignable to the states of super-conformal representations and identi-
fiable as gravitational four-momentum. There would be only one independent condition:
Pclass ⌘ PI,class = Pgr,quant ⌘ Pquant.

Holography realized as AdS/CFT correspondence states the equivalence of descriptions
in terms of gravitation realized in terms of strings in 10-D space-time and gauge fields at
the boundary of AdS. What is disturbing is that this picture is not completely equivalent
with the proposed one. In this case the super-conformal algebra would be direct sum of
super-symplectic and super Kac-Moody parts.

Which of the options looks more plausible? The success of p-adic mass calculations [K74]
have motivated the use of them as a guideline in attempts to understand TGD. The basic
outcome was that elementary particle spectrum can be understood if Super Virasoro algebra
has five tensor factors. Can one decide the fate of the two approaches to EP using this
number as an input?

This is not the case. For both options the number of tensor factors is five as required. Four
tensor factors come from Super Kac-Moody and correspond to translational Kac-Moody
type degrees of freedom in M4, to color degrees of freedom and to electroweak degrees of
freedom (SU(2)⇥U(1)). One tensor factor comes from the symplectic degrees of freedom in
�CD ⇥ CP2 (note that Hamiltonians include also products of �CD and CP2 Hamiltonians
so that one does not have direct sum!).

The reduction of EP to the coset structure of WCW sectors is extremely beautiful property.
But also the reduction of EP to QCC looks very nice and deep. It is of course possible that
the two realizations of EP are equivalent and the natural conjecture is that this is the case.
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For QCC option the GRT inspired interpretation of Equivalence Principle at space-time level
remains to be understood. Is it needed at all? The condition that the energy momentum
tensor of Kähler action has a vanishing divergence leads in General Relativity to Einstein
equations with cosmological term. In TGD framework preferred extremals satisfying the
analogs of Einstein’s equations with several cosmological constant like parameters can be
considered.

Should one give up this idea, which indeed might be wrong? Could the divergence of of energy
momentum tensor vanish only asymptotically as was the original proposal? Or should one
try to generalize the interpretation? QCC states that quantum physics has classical correlate
at space-time level and implies EP. Could also quantum classical correspondence itself have
a correlate at space-time level. If so, space-time surface would able to represent abstractions
as statements about statements about.... as the many-sheeted structure and the vision about
TGD physics as analog of Turing machine able to mimic any other Turing machine suggest.

7.5.4 TGD-GRT correspondence and Equivalence Principle

One should also understand how General Relativity and EP emerge at classical level. The
understanding comes from the realization that GRT is only an e↵ective theory obtained by
endowing M4 with e↵ective metric.

(a) The replacement of superposition of fields with superposition of their e↵ects means
replacing superposition of fields with the set-theoretic union of space-time surfaces.
Particle experiences sum of the e↵ects caused by the classical fields at the space-time
sheets (see fig. http://www.tgdtheory.fi/appfigures/fieldsuperpose.jpg or fig.
11 in the appendix of this book).

(b) This is true also for the classical gravitational field defined by the deviation from flat
Minkowski metric instandard M4 coordinates for the space-time sheets. One can define
e↵ective metric as sum of M4 metric and deviations. This e↵ective metric would corre-
spond to that of General Relativity. This resolves long standing issues relating to the
interpretation of TGD.

(c) Einstein’s equations could hold true for the e↵ective metric. They are motivated by the
underlying Poincare invariance which cannot be realized as global conservation laws for
the e↵ective metric. The conjecture vanishing of divergence of Khler energy momentum
tensor can be seen as the microscopic justification for the claim that Einstein’s equations
hold true for the e↵ective space-time.

(d) The breaking of Poincare invariance could have interpretation as e↵ective breaking in
zero energy ontology (ZEO), in which various conserved charges are length dependent
and defined separately for each causal diamond (CD).

One can of course consider the possibility that Einstein’s equations generalize for preferred
extremals of Kähbler action. This would actually represent at space-time level the notion of
QCC rather than realise QCC interpreted as EP. The condition that the energy momentum
tensor for Kähler action has vanishing covariant divergence would be satisfied in GRT if
Einstein’s equations with cosmological term hold true. This is the case also now but one can
consider also more general solutions in which one has two cosmological constants which are
not genuine constants anymore [K78].

7.5.5 How translations are represented at the level of WCW?

The four-momentum components appearing in the formulas of super conformal generators
correspond to infinitesimal translations. In TGD framework one must be able to identify these
infinitesimal translations precisely. As a matter of fact, finite measurement resolution implies
that it is probably too much to assume infinitesimal translations. Rather, finite exponentials
of translation generators are involved and translations are discretized. This does not have

http://www.tgdtheory.fi/appfigures/fieldsuperpose.jpg
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practical signficance since for optimal resolution the discretization step is about CP2 length
scale.

Where and how do these translations act at the level of WCW? ZEO provides a possible
answer to this question.

Discrete Lorentz transformations and time translations act in the space of CDs:
inertial four-momentum

Quantum state corresponds also to wave function in moduli space of CDs. The moduli space
is obtained from given CD by making all boosts for its non-fixed boundary: boosts correspond
to a discrete subgroup of Lorentz group and define a lattice-like structure at the hyperboloid
for which proper time distance from the second tip of CD is fixed to Tn = n ⇥ T (CP2).
The quantization of cosmic redshift for which there is evidence, could relate to this lattice
generalizing ordinary 3-D lattices from Euclidian to hyperbolic space by replacing translations
with boosts (velocities).

The additional degree of freedom comes from the fact that the integer n > 0 obtains all
positive values. One has wave functions in the moduli space defined as a pile of these lattices
defined at the hyperboloid with constant value of T (CP2): one can say that the points of
this pile of lattices correspond to Lorentz boosts and scalings of CDs defining sub-WCW:s.

The interpretation in terms of group which is product of the group of shifts Tn(CP2) !
Tn+m(CP2) and discrete Lorentz boosts is natural. This group has same Cartesian prod-
uct structure as Galilean group of Newtonian mechanics. This would give a discrete rest
energy and by Lorentz boosts discrete set of four-momenta giving a contribution to the
four-momentum appearing in the super-conformal representation.

What is important that each state function reduction would mean localisation of either
boundary of CD (that is its tip). This localization is analogous to the localization of particle
in position measurement in E3 but now discrete Lorentz boosts and discrete translations
Tn � � > Tn+m replace translations. Since the second end of CD is necessary del-ocalized
in moduli space, one has kind of flip-flop: localization at second end implies de-localization
at the second end. Could the localization of the second end (tip) of CD in moduli space
correspond to our experience that momentum and position can be measured simultaneously?
This apparent classicality would be an illusion made possible by ZEO.

The flip-flop character of state function reduction process implies also the alternation of
the direction of the thermodynamical time: the asymmetry between the two ends of CDs
would induce the quantum arrow of time. This picture also allows to understand what the
experience growth of geometric time means in terms of CDs.

The action of translations at space-time sheets

The action of imbedding space translations on space-time surfaces possibly becoming triv-
ial at partonic 2-surfaces or reducing to action at �CD induces action on space-time sheet
which becomes ordinary translation far enough from end end of space-time surface. The
four-momentum in question is very naturally that associated with Kähler action and would
therefore correspond to inertial momentum for PI,class = Pquant,gr option. Indeed, one
cannot assign quantal four-momentum to Kähler action as an operator since canonical quan-
tization badly fails. In finite measurement infinitesimal translations are replaced with their
exponentials for PI,class = Pquant,gr option.

What looks like a problem is that ordinary translations in the general case lead out from
given CD near its boundaries. In the interior one expects that the translation acts like ordi-
nary translation. The Lie-algebra structure of Poincare algebra including sums of translation
generators with positive coe�cient for time translation is preserved if only time-like super-
positions if generators are allowed also the commutators of time-like translation generators
with boost generators give time like translations. This defines a Lie-algebraic formulation for
the arrow of geometric time. The action of time translation on preferred extremal would be
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ordinary translation plus continuation of the translated preferred extremal backwards in time
to the boundary of CD. The transversal space-like translations could be made Kac-Moody
algebra by multiplying them with functions which vanish at �CD.

A possible interpretation would be that Pquant,gr corresponds to the momentum assignable
to the moduli degrees of freedom and Pcl,I to that assignable to the time like translations.
Pquant,gr = Pcl,I would code for QCC. Geometrically quantum classical correspondence would
state that time-like translation shift both the interior of space-time surface and second bound-
ary of CD to the geometric future/past while keeping the second boundary of space-time
surface and CD fixed.

7.5.6 Yangian and four-momentum

Yangian symmetry implies the marvellous results of twistor Grassmannian approach toN = 4
SUSY culminating in the notion of amplituhedron which promises to give a nice projective
geometry interpretation for the scattering amplitudes [B6]. Yangian symmetry is a multilocal
generalization of ordinary symmetry based on the notion of co-product and implies that Lie
algebra generates receive also multilocal contributions. I have discussed these topics from
slightly di↵erent point of view in [K61], where also references to the work of pioneers can be
found.

Yangian symmetry

The notion equivalent to that of Yangian was originally introduced by Faddeev and his group
in the study of integrable systems. Yangians are Hopf algebras which can be assigned with
Lie algebras as the deformations of their universal enveloping algebras. The elegant but
rather cryptic looking definition is in terms of the modification of the relations for generating
elements [K61] . Besides ordinary product in the enveloping algebra there is co-product �
which maps the elements of the enveloping algebra to its tensor product with itself. One
can visualize product and co-product is in terms of particle reactions. Particle annihilation
is analogous to annihilation of two particle so single one and co-product is analogous to the
decay of particle to two. � allows to construct higher generators of the algebra.

Lie-algebra can mean here ordinary finite-dimensional simple Lie algebra, Kac-Moody algebra
or Virasoro algebra. In the case of SUSY it means conformal algebra of M4- or rather its
super counterpart. Witten, Nappi and Dolan have described the notion of Yangian for
super-conformal algebra in very elegant and and concrete manner in the article Yangian
Symmetry in D=4 superconformal Yang-Mills theory [B18] . Also Yangians for gauge groups
are discussed.

In the general case Yangian resembles Kac-Moody algebra with discrete index n replaced with
a continuous one. Discrete index poses conditions on the Lie group and its representation
(adjoint representation in the case of N = 4 SUSY). One of the conditions conditions is
that the tensor product R ⌦ R⇤ for representations involved contains adjoint representation
only once. This condition is non-trivial. For SU(n) these conditions are satisfied for any
representation. In the case of SU(2) the basic branching rule for the tensor product of
representations implies that the condition is satisfied for the product of any representations.

Yangian algebra with a discrete basis is in many respects analogous to Kac-Moody algebra.
Now however the generators are labelled by non-negative integers labeling the light-like in-
coming and outgoing momenta of scattering amplitude whereas in in the case of Kac-Moody
algebra also negative values are allowed. Note that only the generators with non-negative
conformal weight appear in the construction of states of Kac-Moody and Virasoro represen-
tations so that the extension to Yangian makes sense.

The generating elements are labelled by the generators of ordinary conformal transformations
acting in M4 and their duals acting in momentum space. These two sets of elements can be
labelled by conformal weights n = 0 and n = 1 and and their mutual commutation relations
are same as for Kac-Moody algebra. The commutators of n = 1 generators with themselves
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are however something di↵erent for a non-vanishing deformation parameter h. Serre’s rela-
tions characterize the di↵erence and involve the deformation parameter h. Under repeated
commutations the generating elements generate infinite-dimensional symmetric algebra, the
Yangian. For h = 0 one obtains just one half of the Virasoro algebra or Kac-Moody algebra.
The generators with n > 0 are n+ 1-local in the sense that they involve n+ 1-forms of local
generators assignable to the ordered set of incoming particles of the scattering amplitude.
This non-locality generalizes the notion of local symmetry and is claimed to be powerful
enough to fix the scattering amplitudes completely.

How to generalize Yangian symmetry in TGD framework?

As far as concrete calculations are considered, it is not much to say. It is however possible
to keep discussion at general level and still say something interesting (as I hope!). The key
question is whether it could be possible to generalize the proposed Yangian symmetry and
geometric picture behind it to TGD framework.

(a) The first thing to notice is that the Yangian symmetry of N = 4 SUSY in question
is quite too limited since it allows only single representation of the gauge group and
requires massless particles. One must allow all representations and massive particles so
that the representation of symmetry algebra must involve states with di↵erent masses,
in principle arbitrary spin and arbitrary internal quantum numbers. The candidates
are obvious: Kac-Moody algebras [A12] and Virasoro algebras [A23] and their super
counterparts. Yangians indeed exist for arbitrary super Lie algebras. In TGD framework
conformal algebra of Minkowski space reduces to Poincare algebra and its extension to
Kac-Moody allows to have also massive states.

(b) The formal generalization looks surprisingly straightforward at the formal level. In zero
energy ontology one replaces point like particles with partonic two-surfaces appearing
at the ends of light-like orbits of wormhole throats located to the future and past light-
like boundaries of causal diamond (CD ⇥ CP2 or briefly CD). Here CD is defined as
the intersection of future and past directed light-cones. The polygon with light-like
momenta is naturally replaced with a polygon with more general momenta in zero
energy ontology and having partonic surfaces as its vertices. Non-point-likeness forces
to replace the finite-dimensional super Lie-algebra with infinite-dimensional Kac-Moody
algebras and corresponding super-Virasoro algebras assignable to partonic 2-surfaces.

(c) This description replaces disjoint holomorphic surfaces in twistor space with partonic
2-surfaces at the boundaries of CD ⇥ CP2 so that there seems to be a close analogy
with Cachazo-Svrcek-Witten picture. These surfaces are connected by either light-like
orbits of partonic 2-surface or space-like 3-surfaces at the ends of CD so that one indeed
obtains the analog of polygon.

What does this then mean concretely (if this word can be used in this kind of context)?

(a) At least it means that ordinary Super Kac-Moody and Super Virasoro algebras asso-
ciated with isometries of M4 ⇥ CP2 annihilating the scattering amplitudes must be
extended to a co-algebras with a non-trivial deformation parameter. Kac-Moody group
is thus the product of Poincare and color groups. This algebra acts as deformations of
the light-like 3-surfaces representing the light-like orbits of particles which are extremals
of Chern-Simon action with the constraint that weak form of electric-magnetic duality
holds true. I know so little about the mathematical side that I cannot tell whether
the condition that the product of the representations of Super-Kac-Moody and Super-
Virasoro algebras contains adjoint representation only once, holds true in this case. In
any case, it would allow all representations of finite-dimensional Lie group in vertices
whereas N = 4 SUSY would allow only the adjoint.

(b) Besides this ordinary kind of Kac-Moody algebra there is the analog of Super-Kac-
Moody algebra associated with the light-cone boundary which is metrically 3-dimensional.
The finite-dimensional Lie group is in this case replaced with infinite-dimensional group
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of symplectomorphisms of �M4
+/� made local with respect to the internal coordinates

of the partonic 2-surface. This picture also justifies p-adic thermodynamics applied to
either symplectic or isometry Super-Virasoro and giving thermal contribution to the
vacuum conformal and thus to mass squared.

(c) The construction of TGD leads also to other super-conformal algebras and the natural
guess is that the Yangians of all these algebras annihilate the scattering amplitudes.

(d) Obviously, already the starting point symmetries look formidable but they still act on
single partonic surface only. The discrete Yangian associated with this algebra associ-
ated with the closed polygon defined by the incoming momenta and the negatives of
the outgoing momenta acts in multi-local manner on scattering amplitudes. It might
make sense to speak about polygons defined also by other conserved quantum numbers
so that one would have generalized light-like curves in the sense that state are massless
in 8-D sense.

Could Yangian symmetry provide a new view about conserved quantum num-
bers?

The Yangian algebra has some properties which suggest a new kind of description for bound
states. The Cartan algebra generators of n = 0 and n = 1 levels of Yangian algebra commute.
Since the co-product � maps n = 0 generators to n = 1 generators and these in turn to
generators with high value of n, it seems that they commute also with n � 1 generators. This
applies to four-momentum, color isospin and color hyper charge, and also to the Virasoro
generator L0 acting on Kac-Moody algebra of isometries and defining mass squared operator.

Could one identify total four momentum and Cartan algebra quantum numbers as sum
of contributions from various levels? If so, the four momentum and mass squared would
involve besides the local term assignable to wormhole throats also n-local contributions.
The interpretation in terms of n-parton bound states would be extremely attractive. n-
local contribution would involve interaction energy. For instance, string like object would
correspond to n = 1 level and give n = 2-local contribution to the momentum. For baryonic
valence quarks one would have 3-local contribution corresponding to n = 2 level. The Yangian
view about quantum numbers could give a rigorous formulation for the idea that massive
particles are bound states of massless particles.



Chapter 8

Unified Number Theoretical
Vision

8.1 Introduction

Octonions, quaternions, quaternionic space-time surfaces, octonionic spinors and twistors
and twistor spaces are highly relevant for quantum TGD. In the following some general ob-
servations distilled during years are summarized. This summary involves several corrections
to the picture which has been developing for a decade or so.

A brief updated view about M8 � H duality and twistorialization is in order. There is a
beautiful pattern present suggesting thatM8�H duality makes sense and thatH = M4⇥CP2

is completely unique on number theoretical grounds.

(a) M8�H duality allows to deduceM4⇥CP2 via number theoretical compactification. For
the option with minimal number of conjectures the associativity/co-associativity of the
space-time surfaces in M8 guarantees that the space-time surfaces in M8 define space-
time surfaces in H. The tangent/normal spaces of quaternionic/hyper-quaternionic
surfaces in M8 contain also an integrable distribution of hyper-complex tangent planes
M2(x).

An important correction is that associativity/co-associativity does not make sense at the
level of H since the spinor structure of H is already complex quaternionic and reducible
to the ordinary one by using matrix representations for quaternions. The associativity
condition should however have some counterpart at level of H. One could require that
the induced gamma matrices at each point could span a real-quaternionic sub-space of
complexified quaternions for quaternionicity and a purely imaginary quaternionic sub-
space for co-quaternionicity. One might hope that it is consistent with - or even better,
implies - preferred extremal property. I have not however found a viable definition of
quaternionic ”reality”. On the other hand, it is possible assigne the tangent space M8

of H with octonion structure and define associativity as in case of M8.

M8�H duality could generalize to H�H duality in the sense that also the image of the
space-time surface under duality map is not only preferred extremal but also associative
(co-associative) surface. The duality map H ! H could be iterated and would define
the arrow for the category formed by preferred extremals.

(b) M4 and CP2 are the unique 4-D spaces allowing twistor space with Kähler structure. M8

allows twistor space for octonionic spinor structure obtained by direct generalization of
the standard construction for M4. M4⇥CP2 spinors can be regarded as tensor products
of quaternionic spinors associated with M4 and CP2: this trivial observation forces to
challenge the earlier rough vision, which however seems to stand up the challenge.

(c) Octotwistors generalise the twistorial construction from M4 to M8 and octonionic
gamma matrices make sense also for H with quaternionicity condition reducing 12-D

289
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T (M8) = G2/U(1)⇥ U(1) to the 12-D twistor space T (H) = CP3 ⇥ SU3/U(1)⇥ U(1).
The interpretation of the twistor space in the case of M8 is as the space of choices of
quantization axes for the 2-D Cartan algebra of G2 acting as octonionic automorphisms.
For CP2 one has space for the chocies of quantization axes for the 2-D SU(3) Cartan
algebra.

(d) It is also possible that the dualities extend to a sequence M8 ! H ! H... by mapping
the associative/co-associative tangent space to CP2 and M4 point to M4 point at each
step. One has good reasons to expect that this iteration generates fractal as the limiting
space-time surface.

(e) A fascinating structure related to octo-twistors is the non-associated analog of Lie group
defined by automorphisms by octonionic imaginary units: this group is topologically 7-
sphere. Second analogous structure is the 7-D Lie algebra like structure defined by
octonionic analogs of sigma matrices.

The analogy of quaternionicity of M8 pre-images of preferred extremals and quaternionicity
of the tangent space of space-time surfaces in H with the Majorana condition central in super
string models is very thought provoking. All this suggests that associativity at the level of
M8 indeed could define basic dynamical principle of TGD.

Number theoretical vision about quantum TGD involves both p-adic number fields and clas-
sical number fields and the challenge is to unify these approaches. The challenge is non-trivial
since the p-adic variants of quaternions and octonions are not number fields without addi-
tional conditions. The key idea is that TGD reduces to the representations of Galois group
of algebraic numbers realized in the spaces of octonionic and quaternionic adeles generalizing
the ordinary adeles as Cartesian products of all number fields: this picture relates closely to
Langlands program. Associativity would force sub-algebras of the octonionic adeles defining
4-D surfaces in the space of octonionic adeles so that 4-D space-time would emerge naturally.
M8 �H correspondence in turn would map the space-time surface in M8 to M4 ⇥ CP2.

The appendix of the book gives a summary about basic concepts of TGD with illustra-
tions. There are concept maps about topics related to the contents of the chapter pre-
pared using CMAP realized as html files. Links to all CMAP files can be found at http:
//www.tgdtheory.fi/cmaphtml.html [L13]. Pdf representation of same files serving as a
kind of glossary can be found at http://www.tgdtheory.fi/tgdglossary.pdf [L14]. The
topics relevant to this chapter are given by the following list.

• Physics as generalized number theory [L27]

• Quantum physics as generalized number theory [L30]

• TGD and classical number fields [L35]

• M8 �H duality [L26]

• Basic notions behind M8 �H duality [L16]

• Quaternionic planes of octonions [L32]

8.2 Number theoretic compactification and M 8 �H du-
ality

This section summarizes the basic vision about number theoretic compactification reducing
the classical dynamics to associativity or co-associativity. Originally M8 � H duality was
introduced as a number theoretic explanation for H = M4 ⇥ CP2. Much later it turned
out that the completely exceptional twistorial properties of M4 and CP2 are enough to jus-
tify X4 ⇢ H hypothesis. Skeptic could therefore criticize the introduction of M8 (actually
its complexification) as an un-necessary mathematical complication producing only unproven
conjectures and bundle of new statements to be formulated precisely. However, if quaternion-
icity can be realized in terms of M8

c using Oc-real analytic functions and if quaternionicity

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
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is equivalent with preferred extremal property, a huge simplification results and one can say
that field equations are exactly solvable.

One can question the feasibility of M8�H duality if the dynamics is purely number theoretic
at the level of M8 and determined by Kähler action at the level of H. Situation becomes
more democratic if Kähler action defines the dynamics in both M8 and H: this might mean
that associativity could imply field equations for preferred extremals or vice versa or there
might be equivalence between two. This means the introduction Kähler structure at the level
of M8, and motivates also the coupling of Kähler gauge potential to M8 spinors characterized
by Kähler charge or em charge. One could call this form of duality strong form of M8 �H
duality.

The strong form M8 �H duality boils down to the assumption that space-time surfaces can
be regarded either as 4-surfaces of H or as surfaces of M8 or even M8

c composed of associative
and co-associative regions identifiable as regions of space-time possessing Minkowskian resp.
Euclidian signature of the induced metric. They have the same induced metric and Kähler
form and WCW associated with H should be essentially the same as that associated with
M8. Associativity corresponds to hyper-quaterniocity at the level of tangent space and
co-associativity to co-hyper-quaternionicity - that is associativity/hyper-quaternionicity of
the normal space. Both are needed to cope with known extremals. Since in Minkowskian
context precise language would force to introduce clumsy terms like hyper-quaternionicity
and co-hyper-quaternionicity, it is better to speak just about associativity or co-associativity.

Remark: The original assumption was that space-times could be regarded as surfaces in
M8 rather than in its complexification M8

c identifiable as complexified octonions. This as-
sumption is un-necessarily strong and if one assumes that octonion-real analytic functions
characterize these surfaces M8

c must be assumed.

For the octonionic spinor fields the octonionic analogs of electroweak couplings reduce to mere
Kḧler or electromagnetic coupling and the solutions reduce to those for spinor d’Alembertian
in 4-D harmonic potential breaking SO(4) symmetry. Due to the enhanced symmetry of
harmonic oscillator, one expects that partial waves are classified by SU(4) and by reduction
to SU(3)⇥U(1) by em charge and color quantum numbers just as for CP2 - at least formally.

Harmonic oscillator potential defined by self-dual em field splits M8 to M4⇥E4 and implies
Gaussian localization of the spinor modes near origin so that E4 e↵ectively compactifies. The
The resulting physics brings strongly in mind low energy physics, where only electromagnetic
interaction is visible directly, and one cannot avoid associations with low energy hadron
physics. These are some of the reasons for considering M8 �H duality as something more
than a mere mathematical curiosity.

Remark: The Minkowskian signatures ofM8 andM4 produce technical nuisance. One could
overcome them by Wick rotation, which is however somewhat questionable trick. M8

c = Oc

provides the proper formulation.

(a) The proper formulation is in terms of complexified octonions and quaternions involving
the introduction of commuting imaginary unit j. If complexified quaternions are used
for H, Minkowskian signature requires the introduction of two commuting imaginary
units j and i meaning double complexification.

(b) Hyper-quaternions/octonions define as subspace of complexified quaternions/octonions
spanned by real unit and jIk, where Ik are quaternionic units. These spaces are obvi-
ously not closed under multiplication. One can however however define the notion of
associativity for the sub-space of M8 by requiring that the products and sums of the
tangent space vectors generate complexified quaternions.

(c) Ordinary quaternions Q are expressible as q = q0+qkIk. Hyper-quaternions are express-
ible as q = q0 + jqkIk and form a subspace of complexified quaternions Qc = Q � jQ.
Similar formula applies to octonions and their hyper counterparts which can be regarded
as subspaces of complexified octonions O� jO. Tangent space vectors of H correspond
hyper-quaternions qH = q0 + jqkIk + jiq2 defining a subspace of doubly complexified
quaternions: note the appearance of two imaginary units.
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The recent definitions of associativity and M8 duality has evolved slowly from in-accurate
characterizations and there are still open questions.

(a) Kähler form for M8 non-trivial only in E4 ⇢ M8 implies unique decomposition M8 =
M4 ⇥ E4 needed to define M8 � H duality uniquely. This applies also to M8

c . This
forces to introduce also Kähler action, induced metric and induced Kähler form. Could
strong form of duality meant that the space-time surfaces in M8 and H have same
induced metric and induced Kähler form? Could the WCWs associated with M8 and H
be identical with this assumption so that duality would provide di↵erent interpretations
for the same physics?

(b) One can formulate associativity in M8 (or M8
c ) by introducing octonionic structure

in tangent spaces or in terms of the octonionic representation for the induced gamma
matrices. Does the notion have counterpart at the level of H as one might expect if
Kähler action is involved in both cases? The analog of this formulation in H might be as
quaternionic ”reality” since tangent space ofH corresponds to complexified quaternions:
I have however found no acceptable definition for this notion.

The earlier formulation is in terms of octonionic flat space gamma matrices replacing
the ordinary gamma matrices so that the formulation reduces to that in M8 tangent
space. This formulation is enough to define what associativity means although one can
protest. Somehow H is already complex quaternionic and thus associative. Perhaps this
just what is needed since dynamics has two levels: imbedding space level and space-time
level. One must have imbedding space spinor harmonics assignable to the ground states
of super-conformal representations and quaternionicity and octonionicity of H tangent
space would make sense at the level of space-time surfaces.

(c) Whether the associativity using induced gamma matrices works is not clear for massless
extremals (MEs) and vacuum extremals with the dimension of CP2 projection not larger
than 2.

(d) What makes this notion of associativity so fascinating is that it would allow to iterate
duality as a sequence M8 ! H ! H... by mapping the space-time surface to M4⇥CP2

by the same recipe as in case of M8. This brings in mind the functional composition
of Oc-real analytic functions (Oc denotes complexified octonions: complexification is
forced by Minkowskian signature) suggested to produced associative or co-associative
surfaces. The associative (co-associative) surfaces in M8 would correspond to loci for
vanishing of imaginary (real) part of octonion-real-analytic function.

It might be possible to define associativity in H also in terms of modified gamma matrices
defined by Kähler action (certainly not M8).

(a) All known extremals are associative or co-associative in H in this sense. This would
also give direct correlation with the variational principle. For the known preferred
extremals this variant is successful partially because the modified gamma matrices need
not span the entire tangent space. The space spanned by the modified gammas is not
necessarily tangent space. For instance for CP2 type vacuum extremals the modified
gamma matrices are CP2 gamma matrices plus an additional light-like component from
M4 gamma matrices.

If the space spanned by modified gammas has dimensionD smaller than 3 co-associativity
is automatic. If the dimension of this space is D = 3 it can happen that the triplet of
gammas spans by multiplication entire octonionic algebra. For D = 4 the situation is
of course non-trivial.

(b) For modified gamma matrices the notion of co-associativity can produce problems since
modified gamma matrices do not in general span the tangent space. What does co-
associativity mean now? Should one replace normal space with orthogonal complement
of the space spanned by modified gamma matrices? Co-associativity option must be
considered for D = 4 only. CP2 type vacuum extremals provide a good example. In this
case the modified gamma matrices reduce to sums of ordinary CP2 gamma matrices and
ligt-like M4 contribution. The orthogonal complement for the modified gamma matrices
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consists of dual light-like gamma matrix and two gammas orthogonal to it: this space
is subspace of M4 and trivially associative.

8.2.1 Basic idea behind M8 �M4 ⇥ CP
2

duality

If four-surfaces X4 ⇢ M8 under some conditions define 4-surfaces in M4 ⇥ CP2 indirectly,
the spontaneous compactification of super string models would correspond in TGD to two
di↵erent manners to interpret the space-time surface. This correspondence could be called
number theoretical compactification or M8 �H duality.

The hard mathematical facts behind the notion of number theoretical compactification are
following.

(a) One must assume that M8 has unique decomposition M8 = M4 ⇥ E4. This decompo-
sition generalizes also to the case of M8

c . This would be most naturally due to Kähler
structure in E4 defined by a self-dual Kähler form defining parallel constant electric and
magnetic fields in Euclidian sense. Besides Kähler form there is vector field coupling
to sigma matrix representing the analog of strong isospin: the corresponding octonionic
sigma matrix however is imaginary unit times gamma matrix - say ie1 in M4 - defining a
preferred plane M2 in M4. Here it is essential that the gamma matrices of E4 defined in
terms of octonion units commute to gamma matrices in M4. What is involved becomes
clear from the Fano triangle illustrating octonionic multiplication table.

(b) The space of hyper-complex structures of the hyper-octonion space - they correspond
to the choices of plane M2 ⇢ M8 - is parameterized by 6-sphere S6 = G2/SU(3).
The subgroup SU(3) of the full automorphism group G2 respects the a priori selected
complex structure and thus leaves invariant one octonionic imaginary unit, call it e1.
Fixed complex structure therefore corresponds to a point of S6.

(c) Quaternionic sub-algebras of M8 (and M8
c ) are parametrized by G2/U(2). The quater-

nionic sub-algebras of octonions with fixed complex structure (that is complex sub-space
defined by real and preferred imaginary unit and parametrized by a point of S6) are
parameterized by SU(3)/U(2) = CP2 just as the complex planes of quaternion space
are parameterized by CP1 = S2. Same applies to hyper-quaternionic sub-spaces of
hyper-octonions. SU(3) would thus have an interpretation as the isometry group of
CP2, as the automorphism sub-group of octonions, and as color group. Thus the space
of quaternionic structures can be parametrized by the 10-dimensional space G2/U(2)
decomposing as S6 ⇥ CP2 locally.

(d) The basic result behind number theoretic compactification and M8 �H duality is that
associative sub-spaces M4 ⇢ M8 containing a fixed commutative sub-space M2 ⇢ M8

are parameterized by CP2. The choices of a fixed hyper-quaternionic basis 1, e1, e2, e3
with a fixed complex sub-space (choice of e1) are labeled by U(2) ⇢ SU(3). The choice of
e2 and e3 amounts to fixing e2±

p
�1e3, which selects the U(2) = SU(2)⇥U(1) subgroup

of SU(3). U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3.
SU(2) induces rotations of the spinor having e2 and e3 components. Hence all possible
completions of 1, e1 by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

Consider now the formulation of M8 �H duality.

(a) The idea of the standard formulation is that associative manifold X4 ⇢ M8 has at its
each point associative tangent plane. That is X4 corresponds to an integrable distribu-
tion of M2(x) ⇢ M8 parametrized 4-D coordinate x that is map x ! S6 such that the
4-D tangent plane is hyper-quaternionic for each x.

(b) Since the Kähler structure of M8 implies unique decomposition M8 = M4 ⇥ E4, this
surface in turn defines a surface in M4 ⇥ CP2 obtained by assigning to the point of
4-surface point (m, s) 2 H = M4 ⇥ CP2: m 2 M4 is obtained as projection M8 ! M4

(this is modification to the earlier definition) and s 2 CP2 parametrizes the quaternionic
tangent plane as point of CP2. Here the local decomposition G2/U(2) = S6 ⇥ CP2 is
essential for achieving uniqueness.
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(c) One could also map the associative surface in M8 to surface in 10-dimensional S6⇥CP2.
In this case the metric of the image surface cannot have Minkowskian signature and one
cannot assume that the induced metrics are identical. It is not known whether S6 allows
genuine complex structure and Kähler structure which is essential for TGD formulation.

(d) Does duality imply the analog of associativity for X4 ⇢ H? The tangent space of H
can be seen as a sub-space of doubly complexified quaternions. Could one think that
quaternionic sub-space is replaced with sub-space analogous to that spanned by real
parts of complexified quaternions? The attempts to define this notion do not however
look promising. One can however define associativity and co-associativity for the tangent
space M8 of H using octonionization and can formulate it also terms of induced gamma
matrices.

(e) The associativity defined in terms of induced gamma matrices in both in M8 and H
has the interesting feature that one can assign to the associative surface in H a new
associative surface in H by assigning to each point of the space-time surface its M4

projection and point of CP2 characterizing its associative tangent space or co-associative
normal space. It seems that one continue this series ad infinitum and generate new
solutions of field equations! This brings in mind iteration which is standard manner
to generate fractals as limiting sets. This certainly makes the heart of mathematician
beat.

(f) Kähler structure in E4 ⇢ M8 guarantees natural M4⇥E4 decomposition. Does associa-
tivity imply preferred extremal property or vice versa, or are the two notions equivalent
or only consistent with each other for preferred extremals?

A couple of comments are in order.

(a) This definition generalizes to the case of M8
c : all that matters is that tangent space-is

is complexified quaternionic and there is a unique identification M4 ⇢ M8
c : this allows

to assign the point of 4-surfaces a point of M4 ⇥ CP2. The generalization is needed if
one wants to formulate the hypothesis about Oc real-analyticity as a manner to build
quaternionic space-time surfaces properly.

(b) This definition di↵ers from the first proposal for years ago stating that each point of X4

contains a fixedM2 ⇢ M4 rather thanM2(x) ⇢ M8 and also from the proposal assuming
integrable distribution of M2(x) ⇢ M4. The older proposals are not consistent with
the properties of massless extremals and string like objects for which the counterpart
of M2 depends on space-time point and is not restricted to M4. The earlier definition
M2(x) ⇢ M4 was problematic in the co-associative case since for the Euclidian signature
is is not clear what the counterpart of M2(x) could be.

(c) The new definition is consistent with the existence of Hamilton-Jacobi structure meaning
slicing of space-time surface by string world sheets and partonic 2-surfaces with points
of partonic 2-surfaces labeling the string world sheets [K5]. This structure has been
proposed to characterize preferred extremals in Minkowskian space-time regions at least.

(d) Co-associative Euclidian 4-surfaces, say CP2 type vacuum extremal do not contain inte-
grable distribution of M2(x). It is normal space which contains M2(x). Does this have
some physical meaning? Or does the surface defined by M2(x) have Euclidian analog?

A possible identification of the analog would be as string world sheet at which W boson
field is pure gauge so that the modes of the modified Dirac operator [K18] restricted
to the string world sheet have well-defined em charge. This condition appears in the
construction of solutions of modified Dirac operator.

For octonionic spinor structure the W coupling is however absent so that the condition
does not make sense in M8. The number theoretic condition would be as commutative
or co-commutative surface for which imaginary units in tangent space transform to
real and imaginary unit by a multiplication with a fixed imaginary unit! One can also
formulate co-associativity as a condition that tangent space becomes associative by a
multiplication with a fixed imaginary unit.
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There is also another justification for the distribution of Euclidian tangent planes. The
idea about associativity as a fundamental dynamical principle can be strengthened to
the statement that space-time surface allows slicing by hyper-complex or complex 2-
surfaces, which are commutative or co-commutative inside space-time surface. The
physical interpretation would be as Minkowskian or Euclidian string world sheets car-
rying spinor modes. This would give a connection with string model and also with the
conjecture about the general structure of preferred extremals.

(e) Minimalist could argue that the minimal definition requires octonionic structure and
associativity only in M8. There is no need to introduce the counterpart of Kähler
action in M8 since the dynamics would be based on associativity or co-associativity
alone. The objection is that one must assumes the decomposition M8 = M4 ⇥ E4

without any justification.

The map of space-time surfaces to those of H = M4 ⇥ CP2 implies that the space-
time surfaces in H are in well-defined sense quaternionic. As a matter of fact, the
standard spinor structure of H can be regarded as quaternionic in the sense that gamma
matrices are essentially tensor products of quaternionic gamma matrices and reduce in
matrix representation for quaternions to ordinary gamma matrices. Therefore the idea
that one should introduce octonionic gamma matrices in H is questionable. If all goes
as in dreams, the mere associativity or co-associativity would code for the preferred
extremal property of Kähler action in H. One could at least hope that associativity/co-
associativity in H is consistent with the preferred extremal property.

(f) One can also consider a variant of associativity based on modified gamma matrices
- but only in H. This notion does not make sense in M8 since the very existence
of quaternionic tangent plane makes it possible to define M8 � H duality map. The
associativity for modified gamma matrices is however consistent with what is known
about extremals of Kähler action. The associativity based on induced gamma matrices
would correspond to the use of the space-time volume as action. Note however that
gamma matrices are not necessary in the definition.

8.2.2 Hyper-octonionic Pauli ”matrices” and the definition of asso-
ciativity

Octonionic Pauli matrices suggest an interesting possibility to define precisely what associa-
tivity means at the level of M8 using gamma matrices (for background see [K59] ).

(a) According to the standard definition space-time surface X4 ⇢ M8 is associative if the
tangent space at each point of X4 in X4 ⇢ M8 picture is associative. The definition
can be given also in terms of octonionic gamma matrices whose definition is completely
straightforward.

(b) Could/should one define the analog of associativity at the level of H? One can identify
the tangent space of H as M8 and can define octonionic structure in the tangent space
and this allows to define associativity locally. One can replace gamma matrices with
their octonionic variants and formulate associativity in terms of them locally and this
should be enough.

Skeptic however reminds M4 allows hyper-quaternionic structure and CP2 quaternionic
structure so that complexified quaternionic structure would look more natural for H.
The tangent space would decompose as M8 = HQ+ ijQ, weher j is commuting imagi-
nary unit and HQ is spanned by real unit and by units iIk, where i second commutating
imaginary unit and Ik denotes quaternionic imaginary units. There is no need to make
anything associative.

There is however far from obvious that octonionic spinor structure can be (or need to
be!) defined globally. The lift of the CP2 spinor connection to its octonionic variant
has questionable features: in particular vanishing of the charged part and reduction of
neutral part to photon. Therefore is is unclear whether associativity condition makes
sense for X4 ⇢ M4⇥CP2. What makes it so fascinating is that it would allow to iterate
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duality as a sequences M8 ! H ! H.... This brings in mind the functional composition
of octonion real-analytic functions suggested to produced associative or co-associative
surfaces.

I have not been able to settle the situation. What seems the working option is associativity
in both M8 and H and modified gamma matrices defined by appropriate Kähler action and
correlation between associativity and preferred extremal property.

8.2.3 Are Kähler and spinor structures necessary in M8?

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces
obtained as images of the preferred extremals of Kähler action in H are also extremals of
M8 Kähler action with same value of Kähler action defining Kähler function. As found, this
leads to the conclusion that the M8 �H duality is Kähler isometry. Coupling of spinors to
Kähler potential is the next step and this in turn leads to the introduction of spinor structure
so that quantum TGD in H should have full M8 dual.

Are also the 4-surfaces in M8 preferred extremals of Kähler action?

It would be a mathematical miracle if associative and co-associative surfaces in M8 would be
in 1-1 correspondence with preferred extremals of Kähler action. This motivates the question
whether Kähler action make sense also in M8. This does not exclude the possibility that
associativity implies or is equivalent with the preferred extremal property.

One expects a close correspondence between preferred extremals: also now vacuum degen-
eracy is obtained, one obtains massless extremals, string like objects, and counterparts of
CP2 type vacuum extremals. All known extremals would be associative or co-associative if
modified gamma matrices define the notion (possible only in the case of H).

The strongest form of duality would be that the space-time surfaces in M8 and H have same
induced metric same induced Kähler form. The basic di↵erence would be that the spinor
connection for surfaces in M8 would be however neutral and have no left handed components
and only em gauge potential. A possible interpretation is that M8 picture defines a theory in
the phase in which electroweak symmetry breaking has happened and only photon belongs
to the spectrum.

The question is whether one can define WCW also for M8. Certainly it should be equivalent
with WCW for H: otherwise an inflation of poorly defined notions follows. Certainly the
general formulation of the WCW geometry generalizes from H to M8. Since the matrix
elements of symplectic super-Hamiltonians defining WCW gamma matrices are well defined
as matrix elements involve spinor modes with Gaussian harmonic oscillator behavior, the
non-compactness of E4 does not pose any technical problems.

Spinor connection of M8

There are strong physical constraints on M8 dual and they could kill the hypothesis. The ba-
sic constraint to the spinor structure ofM8 is that it reproduces basic facts about electro-weak
interactions. This includes neutral electro-weak couplings to quarks and leptons identified as
di↵erent H-chiralities and parity breaking.

(a) By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full
S2 of covariantly constant Kähler forms so that one can accommodate free independent
Abelian gauge fields assuming that the independent gauge fields are orthogonal to each
other when interpreted as realizations of quaternionic imaginary units. This is possible
but perhaps a more natural option is the introduction of just single Kähler form as in
the case of CP2.
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(b) One should be able to distinguish between quarks and leptons also inM8, which suggests
that one introduce spinor structure and Kähler structure in E4. The Kähler structure
of E4 is unique apart form SO(3) rotation since all three quaternionic imaginary units
and the unit vectors formed from them allow a representation as an antisymmetric
tensor. Hence one must select one preferred Kähler structure, that is fix a point of S2

representing the selected imaginary unit. It is natural to assume di↵erent couplings of
the Kähler gauge potential to spinor chiralities representing quarks and leptons: these
couplings can be assumed to be same as in case of H.

(c) Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involv-
ing coupling to Kähler form and Z0 contains both axial and vector parts. The naive
replacement of sigma matrices appearing in the coupling of electroweak gauge fields
takes the left handed parts of these fields to zero so that only neutral part remains.
Further, gauge fields correspond to curvature of CP2 which vanishes for E4 so that only
Kähler form form remains. Kähler form couples to 3L and q so that the basic asymme-
try between leptons and quarks remains. The resulting field could be seen as analog of
photon.

(d) The absence of weak parts of classical electro-weak gauge fields would conform with the
standard thinking that classical weak fields are not important in long scales. A further
prediction is that this distinction becomes visible only in situations, where H picture is
necessary. This is the case at high energies, where the description of quarks in terms of
SU(3) color is convenient whereas SO(4) QCD would require large number of E4 partial
waves. At low energies large number of SU(3) color partial waves are needed and the
convenient description would be in terms of SO(4) QCD. Proton spin crisis might relate
to this.

Dirac equation for leptons and quarks in M8

Kähler gauge potential would also couple to octonionic spinors and explain the distinction
between quarks and leptons.

(a) The complexified octonions representing H spinors decompose to 1 + 1 + 3 + 3 under
SU(3) representing color automorphisms but the interpretation in terms of QCD color
does not make sense. Rather, the triplet and single combine to two weak isospin doublets
and quarks and leptons corresponds to to ”spin” states of octonion valued 2-spinor. The
conservation of quark and lepton numbers follows from the absence of coupling between
these states.

(b) One could modify the coupling so that coupling is on electric charge by coupling it
to electromagnetic charge which as a combination of unit matrix and sigma matrix
is proportional to 1 + kI1, where I1 is octonionic imaginary unit in M2 ⇢ M4. The
complexified octonionic units can be chosen to be eigenstates of Qem so that Laplace
equation reduces to ordinary scalar Laplacian with coupling to self-dual em field.

(c) One expects harmonic oscillator like behavior for the modes of the Dirac operator of M8

since the gauge potential is linear in E4 coordinates. One possibility is Cartesian coor-
dinates is A(Ax, Ay, Az, At) = k(�y, x, t,�z). Thhe coupling would make E4 e↵ectively
a compact space.

(d) The square of Dirac operator gives potential term proportional to r2 = x2+y2+ z2+ t2

so that the spectrum of 4-D harmonic oscillator operator and SO(4) harmonics localized
near origin are expected. For harmonic oscillator the symmetry enhances to SU(4).

If one replaces Kähler coupling with em charge symmetry breaking of SO(4) to vectorial
SO(3) is expected since the coupling is proportional to 1+ike1 defining electromagnetic
charge. Since the basis of complexified quaternions can be chosen to be eigenstates of
e1 under multiplication, octonionic spinors are eigenstates of em charge and one obtains
two color singles 1 ± e1 and color triplet and antitriplet. The color triplets cannot be
however interpreted in terms of quark color.
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Harmonic oscillator potential is expected to enhance SO(3) to SU(3). This suggests the
reduction of the symmetry to SU(3) ⇥ U(1) corresponding to color symmetry and em
charge so that one would have same basic quantum numbers as tof CP2 harmonics. An
interesting question is how the spectrum and mass squared eigenvalues of harmonics
di↵er from those for CP2.

(e) In the square of Dirac equation Jkl⌃kl term distinguishes between di↵erent em charges
(⌃kl reduces by self duality and by special properties of octonionic sigma matrices to
a term proportional to iI1 and complexified octonionic units can be chosen to be its
eigenstates with eigen value ±1. The vacuum mass squared analogous to the vacuum
energy of harmonic oscillator is also present and this contribution are expected to cancel
themselves for neutrinos so that they are massless whereas charged leptons and quarks
are massive. It remains to be checked that quarks and leptons can be classified to triality
T = ±1 and t = 0 representations of dynamical SU(3) respectively.

What about the analog of Kähler Dirac equation

Only the octonionic structure in T (M8) is needed to formulate quaternionicity of space-time
surfaces: the reduction to Oc-real-analyticity would be extremely nice but not necessary
(Oc denotes complexified octonions needed to cope with Minkowskian signature). Most
importantly, there might be no need to introduce Kähler action (and Kähler form) in M8.
Even the octonionic representation of gamma matrices is un-necessary. Neither there is any
absolute need to define octonionic Dirac equation and octonionic Kähler Dirac equation nor
octonionic analog of its solutions nor the octonionic variants of imbedding space harmonics.

It would be of course nice if the general formulas for solutions of the Kähler Dirac equation in
H could have counterparts for octonionic spinors satisfying quaternionicity condition. One
can indeed wonder whether the restriction of the modes of induced spinor field to string
world sheets defined by integrable distributions of hyper-complex spaces M2(x) could be
interpretated in terms of commutativity of fermionic physics in M8. M8�H correspondence
could map the octonionic spinor fields at string world sheets to their quaternionic counterparts
in H. The fact that only holomorphy is involved with the definition of modes could make
this map possible.

8.2.4 How could one solve associativity/co-associativity conditions?

The natural question is whether and how one could solve the associativity/-co-associativity
conditions explicitly. One can imagine two approaches besides M8 ! H ! H... iteration
generating new solutions from existing ones.

Could octonion-real analyticity be equivalent with associativity/co-associativity?

Analytic functions provide solutions to 2-D Laplace equations and one might hope that also
the field equations could be solved in terms of octonion-real-analyticity at the level of M8

perhaps also at the level of H. Signature however causes problems - at least technical. Also
the compactness of CP2 causes technical di�culties but they need not be insurmountable.

For E8 the tangent space would be genuinely octonionic and one can define the notion
octonion-real analytic map as a generalization of real-analytic function of complex variables
(the coe�cients of Laurent series are real to guarantee associativity of the series). The
argument is complexified octonion in O � iO forming an algebra but not a field. The norm
square is Minkowskian as di↵erence of two Euclidian octonionic norms: N(o1+io2) = N(o1)�
N(o2) and vanishes at 15-D light cone boundary. Obviously, di↵erential calculus is possible
outside the light-cone boundary. Rational analytic functions have however poles at the light-
cone boundary. One can wonder whether the poles at M4 light-cone boundary, which is
subset of 15-D light-cone boundary could have physical significance and relevant for the role
of causal diamonds in ZEO.
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The candidates for associative surfaces defined by Oc-real-analytic functions (I use Oc for
complexified octonions) have Minkowskian signature of metric and are 4-surfaces at which
the projection of f(o1+ io2) to Im(O1), iIm(O2), and iRe(Q2)�Im(Q1) vanish so that only
the projection to hyper-quaternionic Minkowskian sub-space M4 = Re(Q1) + iIm(Q2) with
signature (1,�1,�, 1�, 1) is non-vanishing. The inverse image need not belong to M8 and in
general it belongs to M8

c but this is not a problem: all that is needed that the tangent space
of inverse image is complexified quaternionic. If this is the case then M8 �H duality maps
the tangent space of the inverse image to CP2 point and image itself defines the point of M4

so that a point of H is obtained. Co-associative surfaces would be surfaces for which the
projections of image to Re(O1), iRe(O2), and to Im(O1) vanish so that only the projection
to iIm(O2) with signature (�1,�1,�1,�1) is non-vanishing.

The inverse images as 4-D sub-manifolds of M8
c (not M8!) are excellent candidates for

associative and co-associative 4-surfaces since M8 �H duality assignes to them a 4-surface
in M4 ⇥CP2 if the tangent space at given point is complexified quaternionic. This is true if
one believes on the analytic continuation of the intuition from complex analysis (the image
of real axes under the map defined by Oc-real-analytic function is real axes in the new
coordinates defined by the map: the intuition results by replacing ”real” by ”complexified
quaternionic”). The possibility to solve field equations in this manner would be of enormous
significance since besides basic arithmetic operations also the functional decomposition of
Oc-real-analytic functions produces similar functions. One could speak of the algebra of
space-time surfaces.

What is remarkable that the complexified octonion real analytic functions are obtained by
analytic continuation from single real valued function of real argument. The real functions
form naturally a hierarchy of polynomials (maybe also rational functions) and number the-
oretic vision suggests that there coe�cients are rationals or algebraic numbers. Already for
rational coe�cients hierarchy of algebraic extensions of rationals results as one solves the
vanishing conditions. There is a temptation to regard this hierarchy coding for space-time
sheets as an analog of DNA.

Note that in the recent formulation there is no need to pose separately the condition about
integrable distribution of M2(x) ⇢ M4.

Quaternionicity condition for space-time surfaces

Quaternionicity actually has a surprisingly simple formulation at the level of space-time
surfaces. The following discussion applies to both M8 and H with minor modifications if
one accepts that also H can allow octonionic tangent space structure, which does not require
gamma matrices.

(a) Quaternionicity is equivalent with associativity guaranteed by the vanishing of the as-
sociator A(a, b, c) = a(bc) � (ab)c for any triplet of imaginary tangent vectors in the
tangent space of the space-time surface. The condition must hold true for purely imag-
inary combinations of tangent vectors.

(b) If one is able to choose the coordinates in such a manner that one of the tangent
vectors corresponds to real unit (in the imbedding map imbedding space M4 coordinate
depends only on the time coordinate of space-time surface), the condition reduces to
the vanishing of the octonionic product of remaining three induced gamma matrices
interpreted as octonionic gamma matrices. This condition looks very simple - perhaps
too simple!- since it involves only first derivatives of the imbedding space vectors.

One can of course whether quaternionicity conditions replace field equations or only
select preferred extremals. In the latter case, one should be able to prove that quater-
nionicity conditions are consistent with the field equations.

(c) Field equations would reduce to tri-linear equations in in the gradients of imbedding
space coordinates (rather than involving imbedding space coordinates quadratically).
Sum of analogs of 3 ⇥ 3 determinants deriving from a ⇥ (b ⇥ b) for di↵erent octonion
units is involved.
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(d) Written explicitly field equations give in terms of vielbein projections eA↵ , vielbein vectors
eAk , coordinate gradients @↵hk and octonionic structure constants fABC the following
conditions stating that the projections of the octonionic associator tensor to the space-
time surface vanishes:

eA↵e
B
� e

C
� A

E
ABC = 0 ,

AE
ABC = f E

AD f D
BC � f D

AB f E
DC ,

eA↵ = @↵h
keAk ,

�k = eAk �A .

(8.2.1)

The very naive idea would be that the field equations are indeed integrable in the sense
that they reduce to these tri-linear equations. Tri-linearity in derivatives is highly non-
trivial outcome simplifying the situation further. These equations can be formulated as
the as purely algebraic equations written above plus integrability conditions

FA
↵� = D↵e

A
� �D�e

A
↵ = 0 . (8.2.2)

One could say that vielbein projections define an analog of a trivial gauge potential.
Note however that the covariant derivative is defined by spinor connection rather than
this e↵ective gauge potential which reduces to that in SU(2). Similar formulation holds
true for field equations and one should be able to see whether the field equations for-
mulated in terms of derivatives of vielbein projections commute with the associatitivity
conditions.

(e) The quaternionicity conditions can be formulated as vanishing of generalization of Cay-
ley’s hyperdeterminant for ”hypermatrix” aijk with 2-valued indiced
(see http://en.wikipedia.org/wiki/Hyperdeterminant). Now one has 8 hyper-matrices
with 3 8-valued indices associated with the vanishing AE

BCDxByCzD = 0 of trilinear
forms defined by the associators. The conditions say somethig only about the octonioni
structure constants and since octonionic space allow quaternionic sub-spaces these con-
ditions must be satisfied.

The inspection of the Fano triangle [A28] expressing the multiplication table for octonionic
imaginary units reveals that give any two imaginary octonion units e1 and e2 their product
e1e2 (or equivalently commutator) is imaginary octonion unit (2 times octonion unit) and
the three units span together with real unit quaternionic sub-algebra. There it seems that
one can generate local quaternionic sub-space from two imaginary units plus real unit. This
generalizes to the vielbein components of tangent vectors of space-time surface and one
can build the solutions to the quaternionicity conditions from vielbein projections e1, e2,
their product e3 = k(x)e1e2 and real fourth ”time-like” vielbein component which must be
expressible as a combination of real unit and imaginary units:

e0 = a⇥ 1 + biei

For static solutions this condition is trivial. Here summation over i is understood in the
latter term. Besides these conditions one has integrability conditions and field equations for
Kähler action. This formulation suggests that quaternionicity is additional - perhaps defining
- property of preferred extremals.

http://en.wikipedia.org/wiki/Hyperdeterminant
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Figure 8.1: Octonionic triangle: the six lines and one circle containing three vertices define the
seven associative triplets for which the multiplication rules of the ordinary quaternion imaginary
units hold true. The arrow defines the orientation for each associative triplet. Note that the
product for the units of each associative triplets equals to real unit apart from sign factor.

8.2.5 Quaternionicity at the level of imbedding space quantum num-
bers

From the multiplication table of octonions as illustrated by Fano triangle [A28] one finds that
all edges of the triangle, the middle circle and the three the lines connecting vertices to the
midpoints of opposite side define triplets of quaternionic units. This means that by taking
real unit and any imaginary unit in quaternionic M4 algebra spanning M2 ⇢ M4 and two
imaginary units in the complement representing CP2 tangent space one obtains quaternionic
algebra. This suggests an explanation for the preferred M2 contained in tangent space
of space-time surface (the M2:s could form an integrable distribution). Four-momentum
restricted to M2 and I3 and Y interpreted as tangent vectors in CP2 tangent space defined
quaterionic sub-algebra. This could give content for the idea that quantum numbers are
quaternionic.

I have indeed proposed that the four-momentum belongs to M2. If M2(x) form a distribution
as the proposal for the preferred extremals suggests this could reflect momentum exchanges
between di↵erent points of the space-time surface such that total momentum is conserved or
momentum exchange between two sheets connected by wormhole contacts.

8.2.6 Questions

In following some questions related to M8 �H duality are represented.

Could associativity condition be formulated using modified gamma matrices?

Skeptic can criticize the minimal form of M8 �H duality involving no Kähler action in M8

is unrealistic. Why just Kähler action? What makes it so special? The only defense that I
can imagine is that Kähler action is in many respects unique choice.

An alternative approach would replace induced gamma matrices with the modified ones to
get the correlation In the case of M8 this option cannot work. One cannot exclude it for H.

(a) For Kähler action the modified gamma matrices �↵ = @L
K

@hk

↵

�k, �k = eAk �A, assign to

a given point of X4 a 4-D space which need not be tangent space anymore or even its
sub-space.

The reason is that canonical momentum current contains besides the gravitational con-
tribution coming from the induced metric also the ”Maxwell contribution” from the
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induced Kähler form not parallel to space-time surface. In the case of M8 the duality
map to H is therefore lost.

(b) The space spanned by the modified gamma matrices need not be 4-dimensional. For
vacuum extremals with at most 2-D CP2 projection modified gamma matrices vanish
identically. For massless extremals they span 1- D light-like subspace. For CP2 vacuum
extremals the modified gamma matrices reduces to ordinary gamma matrices for CP2

and the situation reduces to the quaternionicity of CP2. Also for string like objects the
conditions are satisfied since the gamma matrices define associative sub-space as tangent
space of M2 ⇥ S2 ⇢ M4 ⇥ CP2. It seems that associativity is satisfied by all known
extremals. Hence modified gamma matrices are flexible enough to realize associativity
in H.

(c) Modified gamma matrices in Dirac equation are required by super conformal symmetry
for the extremals of action and they also guarantee that vacuum extremals defined by
surfaces inM4⇥Y 2, Y 2 a Lagrange sub-manifold of CP2, are trivially hyper-quaternionic
surfaces. The modified definition of associativity in H does not a↵ect in any manner
M8 � H duality necessarily based on induced gamma matrices in M8 allowing purely
number theoretic interpretation of standard model symmetries. One can however argue
that the most natural definition of associativity is in terms of induced gamma matrices
in both M8 and H.

Remark: A side comment not strictly related to associativity is in order. The anti-
commutators of the modified gamma matrices define an e↵ective Riemann metric and one can
assign to it the counterparts of Riemann connection, curvature tensor, geodesic line, volume,
etc... One would have two di↵erent metrics associated with the space-time surface. Only
if the action defining space-time surface is identified as the volume in the ordinary metric,
these metrics are equivalent. The index raising for the e↵ective metric could be defined also
by the induced metric and it is not clear whether one can define Riemann connection also in
this case. Could this e↵ective metric have concrete physical significance and play a deeper
role in quantum TGD? For instance, AdS-CFT duality leads to ask whether interactions be
coded in terms of the gravitation associated with the e↵ective metric.

Now skeptic can ask why should one demand M8 �H correspondence if one in any case is
forced to introduced Kähler also at the level of M8? Does M8 �H correspondence help to
construct preferred extremals or does it only bring in a long list of conjectures? I can repeat
the questions of the skeptic.

Minkowskian-Euclidian $ associative–co-associative?

The 8-dimensionality of M8 allows to consider both associativity of the tangent space and
associativity of the normal space- let us call this co-associativity of tangent space- as alter-
native options. Both options are needed as has been already found. Since space-time surface
decomposes into regions whose induced metric possesses either Minkowskian or Euclidian
signature, there is a strong temptation to propose that Minkowskian regions correspond to
associative and Euclidian regions to co-associative regions so that space-time itself would
provide both the description and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an
interesting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive
integer as preferred p-adic length scales. Lp / p

p corresponds to the p-adic length scale
defining the size of the space-time sheet at which elementary particle represented as CP2 type
extremal is topologically condensed and is of order Compton length. Lk /

p
k represents

the p-adic length scale of the wormhole contacts associated with the CP2 type extremal
and CP2 size is the natural length unit now. Obviously the quantitative formulation for
associative-co-associative duality would be in terms p ! k duality.
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Can M8 �H duality be useful?

Skeptic could of course argue that M8 �H duality generates only an inflation of unproven
conjectures. This might be the case. In the following I will however try to defend the
conjecture. One can however find good motivations for M8 � H duality: both theoretical
and physical.

(a) If M8 � H duality makes sense for induced gamma matrices also in H, one obtains
infinite sequence if dualities allowing to construct preferred extremals iteratively. This
might relate to octonionic real-analyticity and composition of octonion-real-analytic
functions.

(b) M8�H duality could provide much simpler description of preferred extremals of Kähler
action as hyper-quaternionic surfaces. Unfortunately, it is not clear whether one should
introduce the counterpart of Kähler action in M8 and the coupling of M8 spinors to
Kähler form. Note that the Kähler form in E4 would be self dual and have constant
components: essentially parallel electric and magnetic field of same constant magnitude.

(c) M8 � H duality provides insights to low energy physics, in particular low energy
hadron physics. M8 description might work when H-description fails. For instance,
perturbative QCD which corresponds to H-description fails at low energies whereas
M8 description might become perturbative description at this limit. Strong SO(4) =
SU(2)L ⇥ SU(2)R invariance is the basic symmetry of the phenomenological low en-
ergy hadron models based on conserved vector current hypothesis (CVC) and partially
conserved axial current hypothesis (PCAC). Strong SO(4) = SU(2)L ⇥ SU(2)R relates
closely also to electro-weak gauge group SU(2)L ⇥U(1) and this connection is not well
understood in QCD description. M8 �H duality could provide this connection. Strong
SO(4) symmetry would emerge as a low energy dual of the color symmetry. Orbital
SO(4) would correspond to strong SU(2)L ⇥ SU(2)R and by flatness of E4 spin like
SO(4) would correspond to electro-weak group SU(2)L ⇥ U(1)R ⇢ SO(4). Note that
the inclusion of coupling to Kähler gauge potential is necessary to achieve respectable
spinor structure in CP2. One could say that the orbital angular momentum in SO(4)
corresponds to strong isospin and spin part of angular momentum to the weak isospin.

This argument does not seem to be consistent with SU(3) ⇥ U(1) ⇢ SU(4) symmetry
for Mx Dirac equation. One can however argue that SU(4) symmetry combines SO(4)
multiplets together. Furthermore, SO(4) represents the isometries leaving Kähler form
invariant.

M8 �H duality in low energy physics and low energy hadron physics

M8 � H can be applied to gain a view about color confinement. The basic idea would be
that SO(4) and SU(3) provide provide dual descriptions of quarks using E4 and CP2 partial
waves and low energy hadron physics corresponds to a situation in which M8 picture provides
the perturbative approach whereas H picture works at high energies.

A possible interpretation is that the space-time surfaces vary so slowly in CP2 degrees of
freedom that can approximate CP2 with a small region of its tangent space E4. One could
also say that color interactions mask completely electroweak interactions so that the spinor
connection of CP2 can be neglected and one has e↵ectively E4. The basic prediction is that
SO(4) should appear as dynamical symmetry group of low energy hadron physics and this
is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 �H duality.

(a) At high energy limit only lowest color triplet color partial waves for quarks dominate so
that QCD description becomes appropriate whereas very higher color partial waves for
quarks and gluons are expected to appear at the confinement limit. Since WCW degrees
of freedom begin to dominate, color confinement limit transcends the descriptive power
of QCD.
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(b) The success of SO(4) sigma model in the description of low lying hadrons would directly
relate to the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong
SO(4) quantum numbers can be identified as orbital counterparts of right and left
handed electro-weak isospin coinciding with strong isospin for lowest quarks. In sigma
model pion and sigma boson form the components of E4 valued vector field or equiv-
alently collection of four E4 Hamiltonians corresponding to spherical E4 coordinates.
Pion corresponds to S3 valued unit vector field with charge states of pion identifiable
as three Hamiltonians defined by the coordinate components. Sigma is mapped to the
Hamiltonian defined by the E4 radial coordinate. Excited mesons corresponding to
more complex Hamiltonians are predicted.

(c) The generalization of sigma model would assign to quarks E4 partial waves belonging
to the representations of SO(4). The model would involve also 6 SO(4) gluons and
their SO(4) partial waves. At the low energy limit only lowest representations would
be be important whereas at higher energies higher partial waves would be excited and
the description based on CP2 partial waves would become more appropriate.

(d) The low energy quark model would rely on quarks moving SO(4) color partial waves.
Left resp. right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so
that spin statistics problem would be solved in the same manner as in the standard
quark model.

(e) Family replication phenomenon is described in TGD framework the same manner in
both cases so that quantum numbers like strangeness and charm are not fundamental.
Indeed, p-adic mass calculations allowing fractally scaled up versions of various quarks
allow to replace Gell-Mann mass formula with highly successful predictions for hadron
masses [K32] .

To my opinion these observations are intriguing enough to motivate a concrete attempt to
construct low energy hadron physics in terms of SO(4) gauge theory.

8.2.7 Summary

The overall conclusion is that the most convincing scenario relies on the associativity/co-
associativity of space-time surfaces define by induced gamma matrices and applying both for
M8 and H. The fact that the duality can be continued to an iterated sequence of duality
maps M8 ! H ! H... is what makes the proposal so fascinating and suggests connection
with fractality.

The introduction of Kähler action and coupling of spinors to Kähler gauge potentials is
highly natural. One can also consider the idea that the space-time surfaces in M8 and H
have same induced metric and Kähler form: for iterated duality map this would mean that
the steps in the map produce space-time surfaces which identical metric and Kähler form so
that the sequence might stop. M8

H duality might provide two descriptions of same underlying
dynamics: M8 description would apply in long length scales andH description in short length
scales.

8.3 Octo-twistors and twistor space

The basic problem of the twistor approach is that one cannot represent massive momenta in
terms of twistors in an elegant manner. One can also consider generalization of the notion
of spinor and twistor. I have proposed a possible representation of massive states based on
the existence of preferred plane of M2 in the basic definition of theory allowing to express
four-momentum as one of two light-like momenta allowing twistor description. One could
however ask whether some more elegant representation of massive M4 momenta might be
possible by generalizing the notion of twistor -perhaps by starting from the number theoretic
vision.
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The basic idea is obvious: in quantum TGD massive states in M4 can be regarded as massless
states in M8 and M4 ⇥ CP2 (recall M8 �H duality). One can therefore map any massive
M4 momentum to a light-like M8 momentum and hope that this association could be made
in a unique manner. One should assign to a massless 8-momentum an 8-dimensional spinor
of fixed chirality. The spinor assigned with the light-like four-momentum is not unique
without additional conditions. The existence of covariantly constant right-handed neutrino
in CP2 degrees generating the super-conformal symmetries could allow to eliminate the non-
uniqueness. 8-dimensional twistor in M8 would be a pair of this kind of spinors fixing the
momentum of massless particle and the point through which the corresponding light-geodesic
goes through: the set of these points forms 8-D light-cone and one can assign to each point
a spinor. In M4 ⇥ CP2 definitions makes also in the case of M4 ⇥ CP2 and twistor space
would also now be a lifting of the space of light-like geodesics.

The possibility to interpretM8 as hyperoctonionic space suggests also the possibility to define
the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma
matrix algebra which is not a matrix representation. The mapping of gamma matrices to
this representation allows to define a notion of hyper-quaternionicity in terms of the modified
gamma matrices both in M8 and H.

The basic challenge is to achieve twistorial description of four-momenta or even M4 ⇥ CP2

quantum numbers: this applies both to the momenta of fundamental fermions at the lines of
generalized Feynman diagrams and to the massive incoming and outcoming states identified
as their composites.

(a) A rather attractive way to overcome the problem at the level of fermions propagat-
ing along the braid strands at the light-like orbits of partonic 2-surfaces relies on the
assumption that generalized Feynman diagrammatics e↵ectively reduces to a form in
which all fermions in the propagator lines are massless although they can have non-
physical helicity [K44]. One can use ordinary M4 twistors. This is consistent with the
idea that space-time surfaces are quaternionic sub-manifolds of octonionic imbedding
space.

(b) Incoming and outgoing states are composites of massless fermions and not massless.
They are however massless in 8-D sense. This suggests that they could be described
using generalization of twistor formalism fromM4 toM8 and even betterm toM4⇥CP2.

In the following two possible twistorializations are considered.

8.3.1 Two manners to twistorialize imbedding space

In the following the generalization of twistor formalism forM8 orM4⇥CP2 will be considered
in more detail. There are two options to consider.

(a) For the first option one assigns to M4⇥CP2 twistor space as a product of corresponding
twistor spaces T (M4) = CP3 and the flag-manifold T (CP2) = SU(3)/U(1) ⇥ U(1)
parameterizing the choices of quantization axes for SU(3): TH = T (M4) ⇥ T (CP2).
Quite remarkably, M4 and CP2 are the only 4-D manifolds allowing twistor space with
Kähler structure. The twistor space is 12-dimensional. The choice of quantization axis is
certainly a physically well-define operation so that T (CP2) has physical interpretation.
If all observable physical states are color singlets situation becomes more complex. If
one assumes QCC for color quantum numbers Y and I3, then also the choice of color
quantization axis is fixed at the level of Kähler action from the condition that Y and I3
have classically their quantal values.

(b) For the second option one generalizes the usual construction for M8 regarded as tangent
space of M4 ⇥ CP2 (unless one takes M8 �H duality seriously).

The tangent space option looks like follows.
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(a) One can map the points ofM8 to octonions. One can consider 2-component spinors with
octonionic components and map points of M8 light-cone to linear combinations of 2⇥ 2
Pauli sigma matrices but with octonionic components. By the same arguments as in the
deduction of ordinary twistor space one finds that 7-D light-cone boundary is mapped
to 7+8 D space since the octonionic 2-spinor/its conjugate can be multiplied/divided
by arbitrary octonion without changing the light-like point. By standard argument this
space extends to 8+8-D space. The points of M8 can be identified as 8-D octonionic
planes (analogs of complex sphere CP1 in this space. An attractive identification is as
octonionic projective spaceOP2. Remarkably, octonions do not allow higher dimensional
projective spaces.

(b) If one assumes that the spinors are quaternionic the twistor space should have dimension
7+4+1=12. This dimension is same as for M4⇥CP2. Does this mean that quaternion-
icity assumption reduces T (M8) = OP2 to T (H) = CP3⇥SU(3)/U(1)⇥U(1)? Or does
it yield 12-D space G2/U(1)⇥U(1), which is also natural since G2 has 2-D Cartan alge-
bra? Number theoretical compactification would transform T (M8) = G2/U(1) ⇥ U(1)
to T (H) = CP3 ⇥ SU(3)/U(1)⇥ U(1). This would not be surprising since in M8 �H-
duality CP2 parametrizes (hyper)quaternionic planes containing preferred plane M2.

Quaternionicity is certainly very natural in TGD framework. Quaternionicity for 8-
momenta does not in general imply that they reduce to the observed M4-momenta
unless one identifies M4 as one particular subspace of M8. In M8 �H duality one in
principle allows all choices of M4: it is of course unclear whether this makes any physical
di↵erence. Color confinement could be interpreted as a reduction of M8 momenta to
M4 momenta and would also allow the interpretational problems caused by the fact
that CP2 momenta are not possible.

(c) Since octonions can be regarded as complexified quaternions with non-commuting imag-
inary unit, one can say that quaternionic spinors in M8 are ”real” and thus analogous to
Majorana spinors. Similar interpretation applies at the level of H. Could one can inter-
pret the quaternionicity condition for space-time surfaces and imbedding space spinors
as TGD analog of Majorana condition crucial in super string models? This would also
be crucial for understanding supersymmetry in TGD sense.

8.3.2 Octotwistorialization of M8

Consider first the twistorialization in 4-D case. In M4 one can map light-like momoment to
spinors satisfying massless Dirac equation. General point m of M4 can be mapped to a pair
of massless spinors related by incidence relation defining the point m. The essential element
of this association is that mass squared can be defined as determinant of the 2 ⇥ 2 matrix
resulting in the assignment. Light-likeness is coded to the vanishing of the determinant
implying that the spinors defining its rows are linearly independent. The reduction of M4

inner product to determinant occurs because the 2 ⇥ 2 matrix can be regarded as a matrix
representation of complexified quaternion. Massless means that the norm of a complexified
quaternion defined as the product of q and its conjugate vanishes. Incidence relation s1 = xs2
relating point ofM4 and pair of spinors defining the corresponding twistor, can be interpreted
in terms of product for complexified quaternions.

The generalization to the 8-D situation is straightforward: replace quaternions with octo-
nions.

(a) The transition to M8 means the replacement of quaternions with octonions. Massless-
ness corresponds to the vanishing norm for complexified octonion (hyper-octonion).

(b) One should assign to a massless 8-momentum an 8-dimensional spinor identifiable as
octonion - or more precisely as hyper-octonion obtained by multiplying the imaginary
part of ordinary octonion with commuting imaginary unit j and defining conjugation
as a change of sign of j or that of octonionic imaginar units.

(c) This leads to a generalization of the notion of twistor consisting of pair of massless
octonion valued spinors (octonions) related by the incidence relation fixing the point of
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M8. The incidence relation for Euclidian octonions says s1 = xs2 and can be interpreted
in terms of triality for SO(8) relating conjugate spinor octet to the product of vector
octed and spinor octet. For Minkowskian subspace of complexified octonions light-like
vectors and s1 and s2 can be taken light-like as octonions. Light like x can annihilate
s2.

The possibility to interpretM8 as hyperoctonionic space suggests also the possibility to define
the 8-D counterparts of sigma matrices to hyperoctonions to obtain a representation of sigma
matrix algebra which is not a matrix representation. The mapping of gamma matrices to
this representation allows to define a notion of hyper-quaternionicity in terms of the modified
gamma matrices both in M8 and H.

8.3.3 Octonionicity, SO(1, 7), G
2

, and non-associative Malcev group

The symmetries assignable with octonions are rather intricate. First of all, octonions (their
hyper-variants defining M8) have SO(8) (SO(1,7)) as isometries. G2 ⇢ SO(7) acts as auto-
morphisms of octonions and SO(1, 7) ! G2 clearly means breaking of Lorentz invariance.

John Baez has described in a lucid manner G2 geometrically (http://math.ucr.edu/home/
baez/octonions/node14.html). The basic observation is that that quaternionic sub-space
is generated by two linearly independent imaginary units and by their product. By adding a
fourth linearly independent imaginary unit, one can generated all octonions. From this and
the fact that G2 represents subgroup of SO(7), one easily deduces that G2 is 14-dimensional.
The Lie algebra of G2 corresponds to derivations of octonionic algebra as follows infinites-
imally from the condition that the image of product is the product of images. The entire
algebra SO(8) is direct sum of G2 and linear transformations generated by right and left
multiplication by imaginary octonion: this gives 14 + 14 = 28 = D(SO(8)). The subgroup
SO(7) acting on imaginary octonsions corresponds to the direct sum of derivations and ad-
joint transformations defined by commutation with imaginary octonions, and has indeed
dimension 14 + 7 = 21.

One can identify also a non-associative group-like structure.

(a) In the case of octonionic spinors this group like structure is defined by the analog
of phase multiplication of spinor generalizing to a multiplication with octonionic unit
expressible as linear combinations of 8 octonionic imaginary units and defining 7-sphere
plays appear as analog of automorphisms o ! uou�1 = uou⇤.
One can associate with these transformations a non-associative Lie group and Lie algebra
like structures by defining the commutators just as in the case of matrices that is as
[a, b] = ab � ba. One 7-D non-associative Lie group like structure with topology of 7-
sphere S7 whereas G2 is 14-dimensional exceptional Lie group (having S6 as coset space
S6 = G2/SU(3)). This group like object might be useful in the treatment of octonionic
twistors. In the case of quaternions one has genuine group acting as SO(3) rotations.

(b) Octonionic gamma matrices allow to define as their commutators octonionic sigma ma-
trices:

⌃kl =
i

2
[�k, �l] . (8.3.1)

This algebra is 14-dimensional thanks to the fact that octonionic gamma matrices are
of form �0 = �1⌦ 1, �i = �2⌦ ei. Due to the non-associativity of octonions this algebra
does not satisfy Jacobi identity - as is easy to verify using Fano triangle - and is therefore
not a genuine Lie-algebra. Therefore these sigma matrices do not define a representation
of G2 as I thought first.
This algebra has decomposition g = h+ t, [h, t] ⇢ t, [t, t] ⇢ h characterizing for symmet-
ric spaces. h is the 7-D algebra generated by ⌃ij and identical with the non-associative
Malcev algebra generated by the commutators of octonionic units. The complement t
corresponds to the generators ⌃0i. The algebra is clearly an octonionic non-associative
analog fo SO(1, 7).

http://math.ucr.edu/home/baez/octonions/node14.html
http://math.ucr.edu/home/baez/octonions/node14.html
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8.3.4 Octonionic spinors in M8 and real complexified-quaternionic
spinors in H?

This above observations about the octonionic sigma matrices raise the problem about the
octonionic representation of spinor connection. In M8 = M4 ⇥ E4 the spinor connection is
trivial but for M4 ⇥ CP2 not. There are two options.

(a) Assume that octonionic spinor structure makes sense for M8 only and spinor connection
is trivial.

(b) An alternative option is to identify M8 as tangent space of M4⇥CP2 possessing quater-
nionic structure defined in terms of octonionic variants of gamma matrices. Should one
replace sigma matrices appearing in spinor connection with their octonionic analogs to
get a sigma matrix algebra which is pseudo Lie algebra. Or should one map the holon-
omy algebra of CP2 spinor connection to a sub-algebra of G2 ⇢ SO(7) and define the
action of the sigma matrices as ordinary matrix multiplication of octonions rather than
octonionic multiplication? This seems to be possible formally.

The replacement of sigma matrices with their octonionic counterparts seems to lead to
weird looking results. Octonionic multiplication table implies that the electroweak sigma
matrices associated with CP2 tangent space reduce to M4 sigma matrices so that the
spinor connection is quaternionic. Furthermore, left-handed sigma matrices are mapped
to zero so that only the neutral part of spinor connection is non-vanishing. This supports
the view that onlyM8 gamma matrices make sense and that Dirac equation inM8 is just
free massless Dirac equation leading naturally also to the octonionic twistorialization.

One might think that distinction between di↵erent H-chiralities is di�cult to make
but it turns out that quarks and leptons can be identified as di↵erent components of
2-component complexified octonionic spinors.

The natural question is what associativization of octonions gives. This amounts to a condition
putting the associator a(bc)�(ab)c to zero. It is enough to consider octonionic imaginary units
which are di↵erent. By using the decomposition of the octonionic algebra to quaternionic
sub-algebra and its complement and general structure of structure constants, one finds that
quaternionic sub-algebra remains as such but the products of all imaginary units in the
complement with di↵erent imaginary units vanish. This means that the complement behaves
e↵ectively as 4-D flat space-gamma matrix algebra annihilated by the quaternionic sub-
algebra whose imaginary part acts like Lie algebra of SO(3).

8.3.5 What the replacement of SO(7, 1) sigma matrices with octo-
nionic sigma matrices could mean?

The basic implication of octonionization is the replacement of SO(7, 1) sigma matrices with
octonionic sigma matrices. For M8 this has no consequences since since spinor connection is
trivial.

For M4 ⇥ CP2 situation would be di↵erent since CP2 spinor connection would be replaced
with its octonionic variant. This has some rather unexpected consequences and suggests that
one should not try to octonionize at the level of M4 ⇥ CP2 but interepret gamma matrices
as tensor products of quaternionic gamma matrices, which can be replaced with their matrix
representations. There are however some rather intriguing observations which force to keep
mind open.

Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D
gamma matrices and 2-D Pauli sigma matrices.
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(a) The gamma matrices are given by

�0 = 1⇥ �1 , �i = �i ⌦ �2 , i = 1, .., 7 . (8.3.2)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by
expressing �7 as

�7)
i+1 = �6)

i , i = 1, ..., 6 , �7)
1 = �6)

7 =
6Y

i=1

�6)
i . (8.3.3)

(b) The octonionic representation is obtained as

�0 = 1⌦ �1 , �i = ei ⌦ �2 . (8.3.4)

where ei are the octonionic units. e2i = �1 guarantees that the M4 signature of the
metric comes out correctly. Note that �7 =

Q
�i is the counterpart for choosing the

preferred octonionic unit and plane M2.

(c) The octonionic sigma matrices are obtained as commutators of gamma matrices:

⌃0i = jei ⇥ �3 , ⌃ij = jf k
ij ek ⌦ 1 . (8.3.5)

Here j is commuting imaginary unit. These matrices span G2 algebra having dimension
14 and rank 2 and having imaginary octonion units and their conjugates as the fun-
damental representation and its conjugate. The Cartan algebra for the sigma matrices
can be chosen to be ⌃01 and ⌃23 and belong to a quaternionic sub-algebra.

(d) The lower dimension D = 14 of the non-associative version of sigma matrix algebra
algebra means that some combinations of sigma matrices vanish. All left or right handed
generators of the algebra are mapped to zero: this explains why the dimension is halved
from 28 to 14. From the octonionic triangle expressing the multiplication rules for
octonion units [A17] one finds e4e5 = e1 and e6e7 = �e1 and analogous expressions for
the cyclic permutations of e4, e5, e6, e7. From the expression of the left handed sigma
matrix I3L = �23 + �30 representing left handed weak isospin (see the Appendix about
the geometry of CP2 [L1]) one can conclude that this particular sigma matrix and left
handed sigma matrices in general are mapped to zero. The quaternionic sub-algebra
SU(2)L ⇥ SU(2)R is mapped to that for the rotation group SO(3) since in the case of
Lorentz group one cannot speak of a decomposition to left and right handed subgroups.
The elements of the complement of the quaternionic sub-algebra are expressible in terms
of ⌃ij in the quaternionic sub-algebra.

Some physical implications of the reduction of SO(7, 1) to its octonionic counter-
part

The octonization of spinor connection of CP2 has some weird physical implications forcing
to keep mind to the possibility that the octonionic description even at the level of H might
have something to do with reality.

(a) If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field
survive octonionization. The right handed part is neutral containing only photon and
Z0 so that the gauge field becomes Abelian. Z0 and photon fields become proportional
to each other (Z0 ! sin2(✓W )�) so that classical Z0 field disappears from the dynamics,
and one would obtain just electrodynamics.
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(b) The gauge potentials and gauge fields defined by CP2 spinor connection are mapped
to fields in SO(2) ⇢ SU(2) ⇥ U(1) in quaternionic sub-algebra which in a well-defined
sense corresponds to M4 degrees of freedom and gauge group becomes SO(2) subgroup
of rotation group of E3 ⇢ M4. This looks like catastrophe. One might say that
electroweak interactions are transformed to gravimagnetic interactions.

(c) In very optimistic frame of mind one might ask whether this might be a deeper reason
for why electrodynamics is an excellent description of low energy physics and of classical
physics. This is consistent with the fact that CP2 coordinates define 4 field degrees of
freedom so that single Abelian gauge field should be enough to describe classical physics.
This would remove also the interpretational problems caused by the transitions changing
the charge state of fermion induced by the classical W boson fields.

(d) Interestingly, the condition that electromagnetic charge is well-defined quantum number
for the modes of the induced spinor field for X4 ⇢ H leads to the proposal that the solu-
tions of the modified Dirac equation are localized to string world sheets in Minkowskian
regions of space-time surface at least. For CP2 type vacuum extremals one has mass-
less Dirac and this allows only covariantly constant right-handed neutrino as solution.
One has however only a piece of CP2 (wormhole contact) so that holomorphic solutions
annihilated by two complexified gamma matrices are possible in accordance with the
conformal symmetries.

Can one assume non-trivial spinor connection in M8

(a) The simplest option encouraged by the requirement of maximal symmetries is that it
is absent. Massless 8-momenta would characterize spinor modes in M8 and this would
give physical justification for the octotwistors.

(b) If spinor connection is present at all, it reduces essentially to Kähler connection having
di↵erent couplings to quarks and leptons identifiable as components of octonionic 2-
spinors. It should be SO(4) symmetric and since CP2 is instant one might argue that
now one has also instanton that is self-dual U(1) gauge field in E4 ⇢ M4 ⇥E4 defining
Kähler form. One can loosely say that that one has of constant electric and magnetic
fields which are parallel to each other. The rotational symmetry in E4 would break
down to SO(2).

(c) Without spinor connection quarks and leptons are in completely symmetric position
at the level of M8: this is somewhat disturbing. The di↵erence between quarks and
leptons in H is made possible by the fact that CP2 does not allow standard spinor
structure. Now this problem is absent. I have also consider the possibility that only
leptonic spinor chirality is allowed and quarks result via a kind of anyonization process
allowing them to have fractional em charges (see http://www.tgdtheory.fi/public_
html/articles/genesis.pdf).

(d) If the solutions of the Kähler Dirac equation in Minkowskian regions are localized to
two surfaces identifiable as integrable distributions of planes M2(x) and characterized
by a local light-like direction defining the direction of massless momentum, they are
holomorphic (in the sense of hyper-complex numbers) such that the second complexified
modified gamma matrix annihilates the solution. Same condition makes sense also at
the level of M8 for solutions restricted to string world sheets and the presence or absence
of spinor connection does not a↵ect the situation.

Does this mean that the di↵erence between quarks and leptons becomes visible only at
the imbedding space level where ground states of super-conformal representations cor-
respond to to imbedding space spinor harmonics which in CP2 cm degrees are di↵erent
for quarks and leptons?

Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

http://www.tgdtheory.fi/public_html/articles/genesis.pdf
http://www.tgdtheory.fi/public_html/articles/genesis.pdf
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 L,i = ei

✓
1
0

◆
,

 q,i = ei

✓
0
1

◆
. (8.3.6)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to
leptons. Note that octospinors can be seen as 2-dimensional spinors with components which
have values in the space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds
naturally to the two spin states of the right handed neutrino. In quark sector this would
mean that right handed U quark corresponds to the real unit. The octonions decompose as
1 + 1 + 3 + 3 as representations of SU(3) ⇢ G2. The concrete representations are given by

{1± ie1} , eR and ⌫R with spin 1/2 ,
{e2 ± ie3} , eR and ⌫L with spin -1/2 ,
{e4 ± ie5} eL and ⌫L with spin 1/2 ,
{e6 ± ie7} eL and ⌫L with spin 1/2 .

(8.3.7)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and
thus of the corresponding sigma matrix) with opposite values for the sign factor ✏ = ±.
The interpretation is in terms of vectorial isospin. States with ✏ = 1 can be interpreted as
charged leptons and D type quarks and those with ✏ = �1 as neutrinos and U type quarks.
The interpretation would be that the states with vanishing color isospin correspond to right
handed fermions and the states with non-vanishing SU(3) isospin (to be not confused with
QCD color isospin) and those with non-vanishing SU(3) isospin to left handed fermions.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some
delicacies involved due to the possibility to chose the preferred unit e1 so that the preferred
subspace M2 can corresponds to a sub-manifold M2 ⇢ M4.

8.4 Abelian class field theory and TGD

The context leading to the discovery of adeles (http://en.wikipedia.org/wiki/Adele_
ring) was so called Abelian class field theory. Typically the extension of rationals means
that the ordinary primes decompose to the primes of the extension just like ordinary integers
decompose to ordinary primes. Some primes can appear several times in the decomposition
of ordinary non-square-free integers and similar phenomenon takes place for the integers of
extension. If this takes place one says that the original prime is ramified. The simplest
example is provided Gaussian integers Q(i). All odd primes are unramified and primes
p mod 4 = 1 they decompose as p = (a + ib)(a � ib) whereas primes p mos 4 = 3 do not
decompose at all. For p = 2 the decomposition is 2 = (1 + i)(1� i) = �i(1 + i)2 = i(1� i)2

and is not unique {±1,±i} are the units of the extension. Hence p = 2 is ramified.

There goal of Abelian class field theory (http://en.wikipedia.org/wiki/Class_field_
theory) is to understand the complexities related to the factorization of primes of the original
field. The existence of the isomorphism between ideles modulo rationals - briefly ideles -
and maximal Abelian Galois Group of rationals (MAGG) is one of the great discoveries of
Abelian class field theory. Also the maximal - necessarily Abelian - extension of finite field
Gp has Galois group isomorphic to the ideles. The Galois group of Gp(n) with pn elements is
actually the cyclic group Zn. The isomorphism opens up the way to study the representations
of Abelian Galois group and also those of the AGG. One can indeed see these representations

http://en.wikipedia.org/wiki/Adele_ring
http://en.wikipedia.org/wiki/Adele_ring
http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Class_field_theory
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as special kind of representations for which the commutator group of AGG is represented
trivially playing a role analogous to that of gauge group.

This framework is extremely general. One can replace rationals with any algebraic extension
of rationals and study the maximal Abelian extension or algebraic numbers as its extension.
One can consider the maximal algebraic extension of finite fields consisting of union of all
all finite fields associated with given prime and corresponding adele. One can study function
fields defined by the rational functions on algebraic curve defined in finite field and its maxi-
mal extension to include Taylor series. The isomorphisms applies in al these cases. One ends
up with the idea that one can represent maximal Abelian Galois group in function space of
complex valued functions in GLe(A) right invariant under the action of GLe(Q). A denotes
here adeles.

In the following I will introduce basic facts about adeles and ideles and then consider a
possible realization of the number theoretical vision about quantum TGD as a Galois theory
for the algebraic extensions of classical number fields with associativity defining the dynamics.
This picture leads automatically to the adele defined by p-adic variants of quaternions and
octonions, which can be defined by posing a suitable restriction consistent with the basic
physical picture provide by TGD.

8.4.1 Adeles and ideles

Adeles and ideles are structures obtained as products of real and p-adic number fields. The
formula expressing the real norm of rational numbers as the product of inverses of its p-
adic norms inspires the idea about a structure defined as produc of reals and various p-adic
number fields.

Class field theory (http://en.wikipedia.org/wiki/Class_field_theory) studies Abelian
extensions of global fields (classical number fields or functions on curves over finite fields),
which by definition have Abelian Galois group acting as automorphisms. The basic result
of class field theory is one-one correspondence between Abelian extensions and appropriate
classes of ideals of the global field or open subgroups of the ideal class group of the field. For
instance, Hilbert class field, which is maximal unramied extension of global field corresponds
to a unique class of ideals of the number field. More precisely, reciprocity homomorphism
generalizes the quadratic resiprocity for quadratic extensions of rationals. It maps the idele
class group of the global field defined as the quotient of the ideles by the multiplicative group
of the field - to the Galois group of the maximal Abelian extension of the global field. Each
open subgroup of the idele class group of a global field is the image with respect to the norm
map from the corresponding class field extension down to the global field.

The idea of number theoretic Langlands correspondence, [A15, A39, A38]. is that n-dimensional
representations of Absolute Galois group correspond to infinite-D unitary representations of
group Gln(A). Obviously this correspondence is extremely general but might be highly rele-
vant for TGD, where imbedding space is replaced with Cartesian product of real imbedding
space and its p-adic variants - something which might be related to octonionic and quater-
nionic variants of adeles. It seems however that the TGD analogs for finite-D matrix groups
are analogs of local gauge groups or Kac-Moody groups (in particular symplectic group of
�M4

+ ⇥ CP2) so that quite heavy generalization of already extremely abstract formalism is
expected.

The following gives some more precise definitions for the basic notions.

(a) Prime ideals of global field, say that of rationals, are defined as ideals which do not
decompose to a product of ideals: this notion generalizes the notion of prime. For
instance, for p-adic numbers integers vanishing mod pn define an ideal and ideals can be
multiplied. For Abelian extensions of a global field the prime ideals in general decompose
to prime ideals of the extension, and the decompostion need not be unique: one speaks
of ramification. One of the challenges of tjhe class field theory is to provide information
about the ramification. Hilbert class field is define as the maximal unramified extension
of global field.

http://en.wikipedia.org/wiki/Class_field_theory
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(b) The ring of integral adeles (see http://en.wikipedia.org/wiki/Adele_ring) is de-
fined as AZ = R⇥ Ẑ, where Ẑ =

Q
p Zp is Cartesian product of rings of p-adic integers

for all primes (prime ideals) p of assignable to the global field. Multiplication of element
of AZ by integer means multiplication in all factors so that the structure is like direct
sum from the point of view of physicist.

(c) The ring of rational adeles can be defined as the tensor product AQ = Q⌦ZAZ . Z means
that in the multiplication by element of Z the factors of the integer can be distributed
freely among the factors Ẑ. Using quantum physics language, the tensor product makes
possible entanglement between Q and AZ .

(d) Another definition for rational adeles is as R⇥
Q0

p Qp: the rationals in tensor factor Q
have been absorbed to p-adic number fields: given prime power in Q has been absorbed
to corresponding Qp. Here all but finite number of Qp elements ar p-adic integers. Note
that one can take out negative powers of pi and if their number is not finite the resulting
number vanishes.The multiplication by integer makes sense but the multiplication by a
rational does not smake sense since all factors Qp would be multiplied.

(e) Ideles are defined as invertible adeles (http://en.wikipedia.org/wiki/Idele_class_
groupIdele class group). The basic result of the class field theory is that the quotient
of the multiplicative group of ideles by number field is homomorphic to the maximal
Abelian Galois group!

8.4.2 Questions about adeles, ideles and quantum TGD

The intriguing general result of class field theory (http://en.wikipedia.org/wiki/Class_
field_theory) is that the the maximal Abelian extension for rationals is homomorphic
with the multiplicative group of ideles. This correspondence plays a key role in Langlands
correspondence.

Does this mean that it is not absolutely necessary to introduce p-adic numbers? This is
actually not so. The Galois group of the maximal abelian extension is rather complex ob-
jects (absolute Galois group, AGG, defines as the Galois group of algebraic numbers is even
more complex!). The ring Ẑ of adeles defining the group of ideles as its invertible ele-
ments homeomorphic to the Galois group of maximal Abelian extension is profinite group
(http://en.wikipedia.org/wiki/Profinite_group). This means that it is totally discon-
nected space as also p-adic integers and numbers are. What is intriguing that p-dic integers
are however a continuous structure in the sense that di↵erential calculus is possible. A con-
crete example is provided by 2-adic units consisting of bit sequences which can have literally
infinite non-vanishing bits. This space is formally discrete but one can construct di↵erential
calculus since the situation is not democratic. The higher the pinary digit in the expansion
is, the less significant it is, and p-adic norm approaching to zero expresses the reduction of
the insignificance.

1. Could TGD based physics reduce to a representation theory for the Galois groups of
quaternions and octonions?

Number theoretical vision about TGD raises questions about whether adeles and ideles could
be helpful in the formulation of TGD. I have already earlier considered the idea that quantum
TGD could reduce to a representation theory of appropriate Galois groups. I proceed to make
questions.

(a) Could real physics and various p-adic physics on one hand, and number theoretic physics
based on maximal Abelian extension of rational octonions and quaternions on one hand,
define equivalent formulations of physics?

(b) Besides various p-adic physics all classical number fields (reals, complex numbers, quater-
nions, and octonions) are central in the number theoretical vision about TGD. The
technical problem is that p-adic quaternions and octonions exist only as a ring unless
one poses some additional conditions. Is it possible to pose such conditions so that one
could define what might be called quaternionic and octonionic adeles and ideles?

http://en.wikipedia.org/wiki/Adele_ring
http://en.wikipedia.org/wiki/Idele_class_group
http://en.wikipedia.org/wiki/Idele_class_group
http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Profinite_group
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It will be found that this is the case: p-adic quaternions/octonions would be products
of rational quaternions/octonions with a p-adic unit. This definition applies also to
algebraic extensions of rationals and makes it possible to define the notion of derivative
for corresponding adeles. Furthermore, the rational quaternions define non-commutative
automorphisms of quaternions and rational octonions at least formally define a non-
associative analog of group of octonionic automorphisms [K77].

(c) I have already earlier considered the idea about Galois group as the ultimate symmetry
group of physics. The representations of Galois group of maximal Abelian extension (or
even that for algebraic numbers) would define the quantum states. The representation
space could be group algebra of the Galois group and in Abelian case equivalently the
group algebra of ideles or adeles. One would have wave functions in the space of ideles.

The Galois group of maximal Abelian extension would be the Cartan subgroup of the
absolute Galois group of algebraic numbers associated with given extension of rationals
and it would be natural to classify the quantum states by the corresponding quantum
numbers (number theoretic observables).

If octonionic and quaternionic (associative) adeles make sense, the associativity condi-
tion would reduce the analogs of wave functions to those at 4-dimensional associative
sub-manifolds of octonionic adeles identifiable as space-time surfaces so that also space-
time physics in various number fields would result as representations of Galois group
in the maximal Abelian Galois group of rational octonions/quaternions. TGD would
reduce to classical number theory! One can hope that WCW spinor fields assignable to
the associative and co-associative space-time surfaces provide the adelic representations
for super-conformal algebras replacing symmetries for point like objects.

This of course involves huge challenges: one should find an adelic formulation for
WCWin terms octonionic and quaternionic adeles, similar formulation for WCW spinor
fields in terms of adelic induced spinor fields or their octonionic variants is needed. Also
zero energy ontology, causal diamonds, light-like 3-surfaces at which the signature of
the induced metric changes, space-like 3-surfaces and partonic 2-surfaces at the bound-
aries of CDs, M8 � H duality, possible representation of space-time surfaces in terms
of of Oc-real analytic functions (Oc denotes for complexified octonions), etc. should be
generalized to adelic framework.

(d) Absolute Galois group is the Galois group of the maximal algebraic extension and as
such a poorly defined concept. One can however consider the hierarchy of all finite-
dimensional algebraic extensions (including non-Abelian ones) and maximal Abelian
extensions associated with these and obtain in this manner a hierarchy of physics defined
as representations of these Galois groups homomorphic with the corresponding idele
groups.

(e) In this approach the symmetries of the theory would have automatically adelic rep-
resentations and one might hope about connection with Langlands program [K24],
[A15, A39, A38].

2. Adelic variant of space-time dynamics and spinorial dynamics?

As an innocent novice I can continue to pose stupid questions. Now about adelic variant
of the space-time dynamics based on the generalization of Kähler action discussed already
earlier but without mentioning adeles ( [K79]).

(a) Could one think that adeles or ideles could extend reals in the formulation of the theory:
note that reals are included as Cartesian factor to adeles. Could one speak about adelic
space-time surfaces endowed with adelic coordinates? Could one formulate variational
principle in terms of adeles so that exponent of action would be product of actions
exponents associated with various factors with Neper number replaced by p for Zp.
The minimal interpretation would be that in adelic picture one collects under the same
umbrella real physics and various p-adic physics.

(b) Number theoretic vision suggests that 4:th/8:th Cartesian powers of adeles have in-
terpretation as adelic variants of quaternions/ octonions. If so, one can ask whether
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adelic quaternions and octonions could have some number theoretical meaning. Adelic
quaternions and octonions are not number fields without additional assumptions since
the moduli squared for a p-adic analog of quaternion and octonion can vanish so that
the inverse fails to exist at the light-cone boundary which is 17-dimensional for com-
plexified octonions and 7-dimensional for complexified quaternions. The reason is that
norm squared is di↵erence N(o1) � N(o2) for o1 � io2. This allows to define di↵eren-
tial calculus for Taylor series and one can consider even rational functions. Hence the
restriction is not fatal.

If one can pose a condition guaranteeing the existence of inverse for octonionic adel,
one could define the multiplicative group of ideles for quaternions. For octonions one
would obtain non-associative analog of the multiplicative group. If this kind of structures
exist then four-dimensional associative/co-associative sub-manifolds in the space of non-
associative ideles define associative/co-associative adeles in which ideles act. It is easy to
find that octonionic ideles form 1-dimensional objects so that one must accept octonions
with arbitrary real or p-adic components.

(c) What about equations for space-time surfaces. Do field equations reduce to separate
field equations for each factor? Can one pose as an additional condition the constraint
that p-adic surfaces provide in some sense cognitive representations of real space-time
surfaces: this idea is formulated more precisely in terms of p-adic manifold concept [K79]
(see the appendix of the book). Or is this correspondence an outcome of evolution?

Physical intuition would suggest that in most p-adic factors space-time surface corre-
sponds to a point, or at least to a vacuum extremal. One can consider also the possibility
that same algebraic equation describes the surface in various factors of the adele. Could
this hold true in the intersection of real and p-adic worlds for which rationals appear in
the polynomials defining the preferred extremals.

(d) To define field equations one must have the notion of derivative. Derivative is an op-
eration involving division and can be tricky since adeles are not number field. The
above argument suggests this is not actually a problem. Of course, if one can guar-
antee that the p-adic variants of octonions and quaternions are number fields, there
are good hopes about well-defined derivative. Derivative as limiting value df/dx =
lim(f(x+ dx)� f(x))/dx for a function decomposing to Cartesian product of real func-
tion f(x) and p-adic valued functions fp(xp) would require that fp(x) is non-constant
only for a finite number of primes: this is in accordance with the physical picture that
only finite number of p-adic primes are active and define ”cognitive representations”
of real space-time surface. The second condition is that dx is proportional to product
dx⇥

Q
dxp of di↵erentials dx and dxp, which are rational numbers. dx goes to xero as

a real number but not p-adically for any of the primes involved. dxp in turn goes to
zero p-adically only for Qp.

(e) The idea about rationals as points common to all number fields is central in number
theoretical vision. This vision is realized for adeles in the minimal sense that the action of
rationals is well-defined in all Cartesian factors of the adeles. Number theoretical vision
allows also to talk about common rational points of real and various p-adic space-time
surfaces in preferred coordinate choices made possible by symmetries of the imbedding
space, and one ends up to the vision about life as something residing in the intersection
of real and p-adic number fields. It is not clear whether and how adeles could allow to
formulate this idea.

(f) For adelic variants of imbedding space spinors Cartesian product of real and p-adc
variants of imbedding spaces is mapped to their tensor product. This gives justification
for the physical vision that various p-adic physics appear as tensor factors. Does this
mean that the generalized induced spinors are infinite tensor products of real and various
p-adic spinors and Cli↵ord algebra generated by induced gamma matrices is obtained
by tensor product construction? Does the generalization of massless Dirac equation
reduce to a sum of d’Alembertians for the factors? Does each of them annihilate the
appropriate spinor? If only finite number of Cartesian factors corresponds to a space-
time surface which is not vacuum extremal vanishing induced Kähler form, Kähler Dirac
equation is non-trivial only in finite number of adelic factors.
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3. Objections leading to the identification of octonionic adeles and ideles

The basic idea is that appropriately defined invertible quaternionic/octonionic adeles can be
regarded as elements of Galois group assignable to quaternions/octonions. The best manner
to proceed is to invent objections against this idea.

(a) The first objection is that p-adic quaternions and octonions do not make sense since
p-adic variants of quaternions and octonions do not exist in general. The reason is
that the p-adic norm squared

P
x2
i for p-adic variant of quaternion, octonion, or even

complex number can vanish so that its inverse does not exist.

(b) Second objection is that automorphisms of the ring of quaternions (octonions) in the
maximal Abelian extension are products of transformations of the subgroup of SO(3)
(G2) represented by matrices with elements in the extension and in the Galois group
of the extension itself. Ideles separate out as 1-dimensional Cartesian factor from this
group so that one does not obtain 4-field (8-fold) Cartesian power of this Galois group.

One can define quaternionic/octonionic ideles in terms of rational quaternions/octonions
multiplied by p-adic number. For adeles this condition produces non-sensical results.

(a) This condition indeed allows to construct the inverse of p-adic quaternion/octonion as
a product of inverses for rational quaternion/octonion and p-adic number. The reason
is that the solutions to

P
x2
i = 0 involve always p-adic numbers with an infinite number

of pinary digits - at least one and the identification excludes this possibility. The ideles
form also a group as required.

(b) One can interpret also the quaternionicity/octonionicity in terms of Galois group. The
7-dimensional non-associative counterparts for octonionic automorphisms act as trans-
formations x ! gxg�1. Therefore octonions represent this group like structure and the
p-adic octonions would have interpretation as combination of octonionic automorphisms
with those of rationals.

(c) One cannot assign to ideles 4-D idelic surfaces. The reason is that the non-constant
part of all 8-coordinates is proportional to the same p-adic valued function of space-time
point so that space-time surface would be a disjoint union of e↵ectively 1-dimensional
structures labelled by a subset of rational points of M8. Induced metric would be
1-dimensional and induced Kähler and spinor curvature would vanish identically.

(d) One must allow p-adic octonions to have arbitrary p-adic components. The action of
ideles representing Galois group on these surfaces is well-defined. Number field prop-
erty is lost but this feature comes in play as poles only when one considers rational
functions. Already the Minkowskian signature forces to consider complexified octonions
and quaternions leading to the loss of field property. It would not be surprising if p-adic
poles would be associated with the light-like orbits of partonic 2-surfaces. Both p-adic
and Minkowskian poles might therefore be highly relevant physically and analogous to
the poles of ordinary analytic functions. For instance, n-point functions could have
poles at the light-like boundaries of causal diamonds and at light-like partonic orbits
and explain their special physical role.

The action of ideles in the quaternionic tangent space of space-time surface would be
analogous to the action of of adelic linear group Gln(A) in n-dimensional space.

(e) Adelic variants of octonions would be Cartesian products of ordinary and various p-adic
octonions and would define a ring. Quaternionic 4-surfaces would define associative
local sub-rings of octonion-adelic ring.



Chapter 9

Knots and TGD

9.1 Introduction

Witten has highly inspiring popular lecture about knots and quantum physics [A26] mention-
ing also his recent work with knots related to an attempt to understand Khovanov homology.
Witten manages to explain in rather comprehensible manner both the construction recipe of
Jones polynomial and the idea about how Jones polynomial emerges from topological quan-
tum field theory as a vacuum expectation of so called Wilson loop defined by path integral
with weighting coming from Chern-Simons action [A62] . Witten also tells that during the
last year he has been working with an attempt to understand in terms of quantum theory the
so called Khovanov polynomial associated with a much more abstract link invariant whose
interpretation and real understanding remains still open. In particular, he mentions the ap-
proach of Gukov, Schwartz, and Vafa [A55, A55] as an attempt to understand Khovanov
polynomial.

This kind of talks are extremely inspiring and lead to a series of questions unavoidably
culminating to the frustrating ”Why I do not have the brain of Witten making perhaps
possible to answer these questions?”. This one must just accept. In the following I summarize
some thoughts inspired by the associations of the talk of Witten with quantum TGD and
with the model of DNA as topological quantum computer. In my own childish manner I
dare believe that these associations are interesting and dare also hope that some more brainy
individual might take them seriously.

An idea inspired by TGD approach which also main streamer might find interesting is that
the Jones invariant defined as vacuum expectation for a Wilson loop in 2+1-D space-time
generalizes to a vacuum expectation for a collection of Wilson loops in 2+2-D space-time
and could define an invariant for 2-D knots and for cobordisms of braids analogous to Jones
polynomial. As a matter fact, it turns out that a generalization of gauge field known as
gerbe is needed and that in TGD framework classical color gauge fields defined the gauge
potentials of this field. Also topological string theory in 4-D space-time could define this kind
of invariants. Of course, it might well be that this kind of ideas have been already discussed
in literature.

Khovanov homology generalizes the Jones polynomial as knot invariant. The challenge is
to find a quantum physical construction of Khovanov homology analous to the topological
QFT defined by Chern-Simons action allowing to interpret Jones polynomial as vacuum
expectation value of Wilson loop in non-Abelian gauge theory.

Witten’s approach to Khovanov homology relies on fivebranes as is natural if one tries to
define 2-knot invariants in terms of their cobordisms involving violent un-knottings. Despite
the di↵erence in approaches it is very useful to try to find the counterparts of this approach in
quantum TGD since this would allow to gain new insights to quantum TGD itself as almost
topological QFT identified as symplectic theory for 2-knots, braids and braid cobordisms.
This comparison turns out to be extremely useful from TGD point of view.
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(a) A highly unique identification of string world sheets and therefore also of the braids
whose ends carry quantum numbers of many particle states at partonic 2-surfaces
emerges if one identifies the string word sheets as singular surfaces in the same manner
as is done in Witten’s approach.

This identification need not of course be correct and in TGD framework the localization
of the modes of the induced spinor fields at 2-D surfaces carrying vanishing induced W
boson fields guaranteeing that the em charge of spinor modes is well-defined for a generic
preferred extremal is natural. Besides string world sheets partonic 2-surfaces are good
candidates for this kind of surfaces. It is not clear whether one can have continuous
slicing of this kind by string world sheets and partonic 2-surfaces orthogonal to them
or whether only discrete set of these surfaces is possible.

(b) Also a physical interpretation of the operators Q, F, and P of Khovanov homology
emerges. P would correspond to instanton number and F to the fermion number
assignable to right handed neutrinos. The breaking of M4 chiral invariance makes
possible to realize Q physically. The finding that the generalizations of Wilson loops
can be identified in terms of the gerbe fluxes

R
HAJ supports the conjecture that TGD

as almost topological QFT corresponds essentially to a symplectic theory for braids and
2-knots.

The basic challenge of quantum TGD is to give a precise content to the notion of generaliza-
tion Feynman diagram and the reduction to braids of some kind is very attractive possibility
inspired by zero energy ontology. The point is that no n > 2-vertices at the level of braid
strands are needed if bosonic emergence holds true.

(a) For this purpose the notion of algebraic knot is introduced and the possibility that it
could be applied to generalized Feynman diagrams is discussed. The algebraic struc-
trures kei, quandle, rack, and biquandle and their algebraic modifications as such are
not enough. The lines of Feynman graphs are replaced by braids and in vertices braid
strands redistribute. This poses several challenges: the crossing associated with braid-
ing and crossing occurring in non-planar Feynman diagrams should be integrated to a
more general notion; braids are replaced with sub-manifold braids; braids of braids ....of
braids are possible; the redistribution of braid strands in vertices should be algebraized.
In the following I try to abstract the basic operations which should be algebraized in
the case of generalized Feynman diagrams.

(b) One should be also able to concretely identify braids and 2-braids (string world sheets) as
well as partonic 2-surfaces and I have discussed several identifications during last years.
Legendrian braids turn out to be very natural candidates for braids and their duals for
the partonic 2-surfaces. String world sheets in turn could correspond to the analogs of
Lagrangian sub-manifolds or two minimal surfaces of space-time surface satisfying the
weak form of electric-magnetic duality. The latter option turns out to be more plausible.
This identification - if correct - would solve quantum TGD explicitly at string world
sheet level which corresponds to finite measurement resolution.

(c) Also a brief summary of generalized Feynman rules in zero energy ontology is proposed.
This requires the identification of vertices, propagators, and prescription for integrating
over al 3-surfaces. It turns out that the basic building blocks of generalized Feynman
diagrams are well-defined.

The appendix of the book gives a summary about basic concepts of TGD with illustra-
tions. There are concept maps about topics related to the contents of the chapter pre-
pared using CMAP realized as html files. Links to all CMAP files can be found at http:
//www.tgdtheory.fi/cmaphtml.html [L13]. Pdf representation of same files serving as a
kind of glossary can be found at http://www.tgdtheory.fi/tgdglossary.pdf [L14].

http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/cmaphtml.html
http://www.tgdtheory.fi/tgdglossary.pdf
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9.2 Some TGD background

What makes quantum TGD [L4, L5, L8, L9, L6, L3, L7, L10] interesting concerning the
description of braids and braid cobordisms is that braids and braid cobordisms emerge both
at the level of generalized Feynman diagrams and in the model of DNA as a topological
quantum computer [K16] .

9.2.1 Time-like and space-like braidings for generalized Feynman
diagrams

(a) In TGD framework space-times are 4-D surfaces in 8-D imbedding space. Basic objects
are partonic 2-surfaces at the two ends of causal diamonds CD (intersections of future
and past directed light-cones of 4-D Minkowski space with each point replaced with CP2

). The light-like orbits of partonic 2-surfaces define 3-D light-like 3-surfaces identifiable
as lines of generalized Feynman diagrams. At the vertices of generalized Feynman
diagrams incoming and outgoing light-like 3-surfaces meet. These diagrams are not
direct generalizations of string diagrams since they are singular as 4-D manifolds just
like the ordinary Feynman diagrams.
By strong form of holography one can assign to the partonic 2-surfaces and their tangent
space data space-time surfaces as preferred extremals of Kähler action. This guarantees
also general coordinate invariance and allows to interpret the extremals as generalized
Bohr orbits.

(b) One can assign to the partonic 2-surfaces discrete sets of points carrying quantum
numbers. These sets of points emerge from the solutions of of the Kähler-Dirac equation,
which are localized at 2-D surfaces - string world sheets and possibly also partonic 2-
surfaces - carrying vanishing induced W fields and also Z0 fields above weak scale.
These points and their orbits identifiable as boundaries of string world sheets define
braid strands at the light-like orbits of partonic 2-surfaces. In the generic case the
strands get tangled in time direction and one has linking and knotting giving rise to a
time-like braiding. String world sheets and also partonic surfaces define 2-braids and
2-knots at 4-D space-time surface so that knot theory generalizes.

(c) Also space-like braidings are possible. One can imagine that the partonic 2-surfaces are
connected by space-like curves defining TGD counterparts for strings and that in the
initial state these curves define space-like braids whose ends belong to di↵erent partonic
2-surfaces. Quite generally, the basic conjecture is that the preferred extremals define
orbits of string-like objects with their ends at the partonic 2-surfaces. One would have
slicing of space-time surfaces by string world sheets one one hand and by partonic 2-
surface on one hand. This string model is very special due to the fact that the string
orbits define what could be called braid cobordisms representing which could represent
unknotting of braids. String orbits in higher dimensional space-times do not allow this
topological interpretation.

9.2.2 Dance metaphor

Time like braidings induces space-like braidings and one can speak of time-like or dynam-
ical braiding and even duality of time-like and space-like braiding. What happens can be
understood in terms of dance metaphor.

(a) One can imagine that the points carrying quantum numbers are like dancers at par-
quettes defined by partonic 2-surfaces. These parquettes are somewhat special in that
it is moving and changing its shape.

(b) Space-like braidings means that the feet of the dancers at di↵erent parquettes are con-
nected by threads. As the dance continues, the threads connecting the feet of di↵erent
dancers at di↵erent parquettes get tangled so that the dance is coded to the braiding
of the threads. Time-like braiding induce space-like braiding. One has what might be
called a cobordism for space-like braiding transforming it to a new one.
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9.2.3 DNA as topological quantum computer

The model for topological quantum computation is based on the idea that time-like braidings
defining topological quantum computer programs. These programs are robust since the
topology of braiding is not a↵ected by small deformations.

(a) The first key idea in the model of DNA as topological quantum computer is based on
the observation that the lipids of cell membrane form a 2-D liquid whose flow defines
the dance in which dancers are lipids which define a flow pattern defining a topological
quantum computation. Lipid layers assignable to cellular and nuclear membranes are
the parquettes. This 2-D flow pattern can be induced by the liquid flow near the cell
membrane or in case of nerve pulse transmission by the nerve pulses flowing along the
axon. This alone defines topological quantum computation.

(b) In DNA as topological quantum computer model one however makes a stronger assump-
tion motivated by the vision that DNA is the brain of cell and that information must
be communicated to DNA level wherefrom it is communicated to what I call magnetic
body. It is assumed that the lipids of the cell membrane are connected to DNA nu-
cleotides by magnetic flux tubes defining a space-like braiding. It is also possible to
connect lipids of cell membrane to the lipids of other cell membranes, to the tubulins
at the surfaces of microtubules, and also to the aminoadics of proteins. The spectrum
of possibilities is really wide.

The space-like braid strands would correspond to magnetic flux tubes connecting DNA
nucleotides to lipids of nuclear or cell membrane. The running of the topological quan-
tum computer program defined by the time-like braiding induced by the lipid flow would
be coded to a space-like braiding of the magnetic flux tubes. The braiding of the flux
tubes would define a universal memory storage mechanism and combined with 4-D view
about memory provides a very simple view about how memories are stored and how
they are recalled.

9.3 Could braid cobordisms define more general braid
invariants?

Witten says that one should somehow generalize the notion of knot invariant. The above
described framework indeed suggests a very natural generalization of braid invariants to those
of braid cobordisms reducing to braid invariants when the braid at the other end is trivial.
This description is especially natural in TGD but allows a generalization in which Wilson
loops in 4-D sense describe invariants of braid cobordisms.

9.3.1 Di↵erence between knotting and linking

Before my modest proposal of a more general invariant some comments about knotting and
linking are in order.

(a) One must distinguish between internal knotting of each braid strand and linking of 2
strands. They look the same in the 3-D case but in higher dimensions knotting and
linking are not the same thing. Codimension 2 surfaces get knotted in the generic case,
in particular the 2-D orbits of the braid strands can get knotted so that this gives
additional topological flavor to the theory of strings in 4-D space-time. Linking occurs
for two surfaces whose dimension d1 and d2 satisfying d1 + d2 = D � 1, where D is the
dimension of the imbedding space.

(b) 2-D orbits of strings do not link in 4-D space-time but do something more radical since
the sum of their dimensions is D = 4 rather than only D� 1 = 3. They intersect and it
is impossible to eliminate the intersection without a change of topology of the stringy
2-surfaces: a hole is generated in either string world sheet. With a slight deformation
intersection can be made to occur generically at discrete points.
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9.3.2 Topological strings in 4-D space-time define knot cobordisms

What makes the 4-D braid cobordisms interesting is following.

(a) The opening of knot by using brute force by forcing the strands to go through each
other induces this kind of intersection point for the corresponding 2-surfaces. From
3-D perspective this looks like a temporary cutting of second string, drawing the string
ends to some distance and bringing them back and gluing together as one approaches
the moment when the strings would go through each other. This surgical operation
for either string produces a pair of non-intersecting 2-surfaces with the price that the
second string world sheet becomes topologically non-trivial carrying a hole in the region
were intersection would occur. This operation relates a given crossing of braid strands
to its dual crossing in the construction of Jones polynomial in given step (string 1 above
string 2 is transformed to string 2 above string 1).

(b) One can also cut both strings temporarily and glue them back together in such a manner
that end a/b of string 1 is glued to the end c/d of string 2. This gives two possibilities
corresponding to two kinds of reconnections. Reconnections appears as the second
operation in the construction of Jones invariant besides the operation putting the string
above the second one below it or vice versa. Jones polynomial relates in a simple manner
to Kau↵man bracket allowing a recursive construction. At a given step a crossing is
replaced with a weighted sum of the two reconnected terms [A1, A11] . Reconnection
represents the analog of trouser vertex for closed strings replaced with braid strands.

(c) These observations suggest that stringy diagrams describe the braid cobordisms and
a kind of topological open string model in 4-D space-time could be used to construct
invariants of braid cobordisms. The dynamics of strand ends at the partonic 2-surfaces
would partially induce the dynamics of the space-like braiding. This dynamics need not
induce the un-knotting of space-like braids and simple string diagrams for open strings
are enough to define a cobordism leading to un-knotting. The holes needed to realize
the crossover for braid strands would contribute to the Wilson loop an additional factor
corresponding to the rotation of the gauge potential around the boundary of the hole
(non-integrable phase factor). In abelian case this gives simple commuting phase factor.

Note that braids are actually much more closer to the real world than knots since a useful
strand of knotted structure must end somewhere. The abstract closed loops of mathematician
floating in empty space are not very useful in real life albeit mathematically very convenient as
Witten notices. Also the braid cobordisms with ends of a collection of space-like braids at the
ends of causal diamond are more practical than 2-knots in 4-D space. Mathematician would
see these objects as analogous to surfaces in relative homology allowed to have boundaries
if they located at fixed sub-manifolds. Homology for curves with ends fixed to be on some
surfaces is a good example of this. Now these fixed sub-manifolds would correspond to space-
like 3-surfaces at the ends CDs and light-like wormhole throats at which the signature of the
induced metric changes and which are carriers of elementary particle quantum numbers.

9.4 Invariants 2-knots as vacuum expectations of Wilson
loops in 4-D space-time?

The interpretation of string world sheets in terms of Wilson loops in 4-dimensional space-
time is very natural. This raises the question whether Witten’s a original identification of the
Jones polynomial as vacuum expectation for a Wilson loop in 2+1-D space might be replaced
with a vacuum expectation for a collection of Wilson loops in 3+1-D space-time and would
characterize in the general case (multi-)braid cobordism rather than braid. If the braid at
the lower or upped boundary is trivial, braid invariant is obtained. The intersections of the
Wilson loops would correspond to the violent un-knotting operations and the boundaries of
the resulting holes give an additional Wilson loop. An alternative interpretation would be as

http://en.wikipedia.org/wiki/Jones_polynomial
http://en.wikipedia.org/wiki/Bracket_polynomial
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the analog of Jones polynomial for 2-D knots in 4-D space-time generalizing Witten’s theory.
This description looks completely general and does not require TGD at all.

The following considerations suggest that Wilson loops are not enough for the description of
general 2-knots and that that Wilson loops must be replaced with 2-D fluxes. This requires
a generalization of gauge field concept so that it corresponds to a 3-form instead of 2-form
is needed. In TGD framework this kind of generalized gauge fields exist and their gauge
potentials correspond to classical color gauge fields.

9.4.1 What 2-knottedness means concretely?

It is easy to imagine what ordinary knottedness means. One has circle imbedded in 3-space.
One projects it in some plane and looks for crossings. If there are no crossings one knows
that un-knot is in question. One can modify a given crossing by forcing the strands to go
through each other and this either generates or removes knottedness. One can also destroy
crossing by reconnection and this always reduces knottedness. Since knotting reduces to
linking in 3-D case, one can find a simple interpretation for knottedness in terms of linking
of two circles. For 2-knots linking is not what gives rise to knotting.

One might hope to find something similar in the case of 2-knots. Can one imagine some
simple local operations which either increase of reduce 2-knottedness?

(a) To proceed let us consider as simple situation as possible. Put sphere in 3-D time=
constant section E3 of 4-space. Add a another sphere to the same section E3 such that
the corresponding balls do not intersect. How could one build from these two spheres a
knotted 2-sphere?

(b) From two spheres one can build a single sphere in topological sense by connecting them
with a small cylindrical tube connecting the boundaries of disks (circles) removed from
the two spheres. If this is done in E3, a trivial 2-knot results. One can however do the
gluing of the cylinder in a more exotic manner by going temporarily to ”hyper-space”,
in other words making a time travel. Let the cylinder leave the second sphere from
the outer surface, let it go to future or past and return back to recent but through the
interior. This is a good candidate for a knotted sphere since the attempts to deform
it to self-non-intersecting sphere in E3 are expected to fail since the cylinder starting
from interior necessarily goes through the surface of sphere if wants to the exterior of
the sphere.

(c) One has actually 2 ⇥ 2 manners to perform the connected sum of 2-spheres depending
on whether the cylinders leave the spheres through exterior or interior. At least one of
them (exterior-exterior) gives an un-knotted sphere and intuition suggests that all the
three remaining options requiring getting out from the interior of sphere give a knotted
2-sphere. One can add to the resulting knotted sphere new spheres in the same manner
and obtain an infinite number of them. As a matter fact, the proposed 1+3 possibilities
correspond to di↵erent versions of connected sum and one could speak of knotting and
non-knotting connected sums. If the addition of knotted spheres is performed by non-
knotting connected sum, one obtains composites of already existing 2-knots. Connected
sum composition is analogous to the composition of integer to a product of primes. One
indeed speaks of prime knots and the number of prime knots is infinite. Of course, it is
far from clear whether the connected sum operation is enough to build all knots. For
instance it might well be that cobordisms of 1-braids produces knots not producible in
this manner. In particular, the e↵ects of time-like braiding induce braiding of space-like
strands and this looks totally di↵erent from local knotting.

9.4.2 Are all possible 2-knots possible for stringy world sheets?

Whether all possible 2-knots are allowed for stringy world sheets, is not clear. In particular,
if they are dynamically determined it might happen that many possibilities are not realized.



9.4. Invariants 2-knots as vacuum expectations of Wilson loops in 4-D space-time?323

For instance, the condition that the signature of the induced metric is Minkowskian could be
an e↵ective killer of 2-knottedness not reducing to braid cobordism.

(a) One must start from string world sheets with Minkowskian signature of the induced
metric. In other words, in the previous construction one must E3 with 3-dimensional
Minkowski space M3 with metric signature 1+2 containing the spheres used in the con-
struction. Time travel is replaced with a travel in space-like hyper dimension. This
is not a problem as such. The spheres however have at least one two special points
corresponding to extrema at which the time coordinate has a local minimum or max-
imum. At these points the induced metric is necessarily degenerate meaning that its
determinant vanishes. If one allows this kind of singular points one can have elementary
knotted spheres. This liberal attitude is encouraged by the fact that the light-like 3-
surfaces defining the basic dynamical objects of quantum TGD correspond to surfaces at
which 4-D induced metric is degenerate. Otherwise 2-knotting reduces to that induced
by cobordisms of 1-braids. If one allows only the 2-knots assignable to the slicings of
the space-time surface by string world sheets and even restricts the consideration to
those suggested by the duality of 2-D generalization of Wilson loops for string world
sheets and partonic 2-surfaces, it could happen that the string world sheets reduce to
braidings.

(b) The time=constant intersections define a representation of 2-knots as a continuous se-
quence of 1-braids. For critical times the character of the 1-braids changes. In the case
of braiding this corresponds to the basic operations for 1-knots having interpretation as
string diagrams (reconnection and analog of trouser vertex). The possibility of genuine
2-knottedness brings in also the possibility that strings pop up from vacuum as points,
expand to closed strings, are fused to stringy words sheet temporarily by the analog of
trouser vertex, and eventually return to the vacuum. Essentially trouser diagram but
second string open and second string closed and beginning from vacuum and ending to
it is in question. Vacuum bubble interacting with open string would be in question. The
believer in string model might be eager to accept this picture but one must be cautious.

9.4.3 Are Wilson loops enough for 2-knots?

Suppose that the space-like braid strands connecting partonic 2-surfaces at given boundary
of CD and light-like braids connecting partonic 2-surfaces belonging to opposite boundaries
of CD form connected closed strands. The collection of closed loops can be identified as
boundaries of Wilson loops and the expectation value is defined as the product of traces
assignable to the loops. The definition is exactly the same as in 2+1-D case [A62] .

Is this generalization of Wilson loops enough to describe 2-knots? In the spirit of the proposed
philosophy one could ask whether there exist two-knots not reducible to cobordisms of 1-knots
whose knot invariants require cobordisms of 2-knots and therefore 2-braids in 5-D space-time.
Could it be that dimension D = 4 is somehow very special so that there is no need to go to
D = 5? This might be the case since for ordinary knots Jones polynomial is very faithful
invariant.

Innocent novice could try to answer the question in the following manner. Let us study what
happens locally as the 2-D closed surface in 4-D space gets knotted.

(a) In 1-D case knotting reduces to linking and means that the first homotopy group of
the knot complement is changed so that the imbedding of first circle implies that the
there exists imbedding of the second circle that cannot be transformed to each other
without cutting the first circle temporarily. This phenomenon occurs also for single
circle as the connected sum operation for two linked circles producing single knotted
circle demonstrates.

(b) In 2-D case the complement of knotted 2-sphere has a non-trivial second homotopy
group so that 2-balls have homotopically non- equivalent imbeddings, which cannot be
transformed to each other without intersection of the 2-balls taking place during the
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process. Therefore the description of 2-knotting in the proposed manner would require
cobordisms of 2-knots and thus 5-D space-time surfaces. However, since 3-D description
for ordinary knots works so well, one could hope that the generalization the notion of
Wilson loop could allow to avoid 5-D description altogether. The generalized Wilson
loops would be assigned to 2-D surfaces and gauge potential A would be replaced with
2-gauge potential B defining a three-form F = dB as the analog of gauge field.

(c) This generalization of bundle structure known as gerbe structure has been introduced
in algebraic geometry [A7, A44] and studied also in theoretical physics [A50] . 3-forms
appear as analogs of gauge fields also in the QFT limit of string model. Algebraic
geometer would see gerbe as a generalization of bundle structure in which gauge group
is replaced with a gauge groupoid. Essentially a structure of structures seems to be in
question. For instance, the principal bundles with given structure group for given space
defines a gerbe. In the recent case the space of gauge fields in space-time could be seen
as a gerbe. Gerbes have been also assigned to loop spaces and WCW can be seen as a
generalization of loop space. Lie groups define a much more mundane example about
gerbe. The 3-form F is given by F (X,Y, Z) = B(X, [Y, Z]) , where B is Killing form
and for U(n) reduces to (g�1dg)3. It will be found that classical color gauge fields define
gerbe gauge potentials in TGD framework in a natural manner.

9.5 TGD inspired theory of braid cobordisms and 2-
knots

In the sequel the considerations are restricted to TGD and to a comparison of Witten’s ideas
with those emerging in TGD framework.

9.5.1 Weak form of electric-magnetic duality and duality of space-
like and time-like braidings

Witten notices that much of his work in physics relies on the assumption that magnetic
charges exist and that rather frustratingly, cosmic inflation implies that all traces of them
disappear. In TGD Universe the non-trivial topology of CP2 makes possible Kähler magnetic
charge and inflation is replaced with quantum criticality. The recent view about elementary
particles is that they correspond to string like objects with length of order electro-weak
scale with Kähler magnetically charged wormhole throats at their ends. Therefore magnetic
charges would be there and LHC might be able to detect their signatures if LHC would get
the idea of trying to do this.

Witten mentions also electric-magnetic duality. If I understood correctly, Witten believes
that it might provide interesting new insights to the knot invariants. In TGD framework
one speaks about weak form of electric magnetic duality. This duality states that Kähler
electric fluxes at space-like ends of the space-time sheets inside CDs and at wormhole throats
are proportional to Kähler magneic fluxes so that the quantization of Kähler electric charge
quantization reduces to purely homological quantization of Kähler magnetic charge.

The weak form of electric-magnetic duality fixes the boundary conditions of field equations at
the light-like and space-like 3-surfaces. Together with the conjecture that the Kähler current
is proportional to the corresponding instanton current this implies that Kähler action for
the preferred extremal sof Kähler action reduces to 3-D Chern-Simons term so that TGD
reduces to almost topological QFT. This means an enormous mathematical simplification
of the theory and gives hopes about the solvability of the theory. Since knot invariants are
defined in terms of Abelian Chern-Simons action for induced Kähler gauge potential, one
might hope that TGD could as a by-product define invariants of braid cobordisms in terms
of the unitary U-matrix of the theory between zero energy states and having as its rows the
non-unitary M-matrices analogous to thermal S-matrices.

Electric magnetic duality is 4-D phenomenon as is also the duality between space-like and
time like braidings essential also for the model of topological quantum computation. Also
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this suggests that some kind of topological string theory for the space-time sheets inside CDs
could allow to define the braid cobordism invariants.

9.5.2 Could Kähler magnetic fluxes define invariants of braid cobor-
disms?

Can one imagine of defining knot invariants or more generally, invariants of knot cobordism
in this framework? As a matter fact, also Jones polynomial describes the process of un-
knotting and the replacement of unknotting with a general cobordism would define a more
general invariant. Whether the Khovanov invariants might be understood in this more gen-
eral framework is an interesting question.

(a) One can assign to the 2-dimensional stringy surfaces defined by the orbits of space-like
braid strands Kähler magnetic fluxes as flux integrals over these surfaces and these
integrals depend only on the end points of the space-like strands so that one deform
the space-like strands in an arbitrarily manner. One can in fact assign these kind of
invariants to pairs of knots and these invariants define the dancing operation transform-
ing these knots to each other. In the special case that the second knot is un-knot one
obtains a knot-invariant (or link- or braid- invariant).

(b) The objection is that these invariants depend on the orbits of the end points of the
space-like braid strands. Does this mean that one should perform an averaging over the
ends with the condition that space-like braid is not a↵ected topologically by the allowed
deformations for the positions of the end points?

(c) Under what conditions on deformation the magnetic fluxes are not a↵ect in the defor-
mation of the braid strands at 3-D surfaces? The change of the Kähler magnetic flux
is magnetic flux over the closed 2-surface defined by initial non-deformed and deformed
stringy two-surfaces minus flux over the 2-surfaces defined by the original time-like and
space-like braid strands connected by a thin 2-surface to their small deformations. This
is the case if the deformation corresponds to a U(1) gauge transformation for a Kähler
flux. That is di↵eomorphism of M4 and symplectic transformation of CP2 inducing the
U(1) gauge transformation.

Hence a natural equivalence for braids is defined by these transformations. This is quite
not a topological equivalence but quite a general one. Symplectic transformations of
CP2 at light-like and space-like 3-surfaces define isometries of the world of classical
worlds so that also in this sense the equivalence is natural. Note that the deformations
of space-time surfaces correspond to this kind of transformations only at space-like 3-
surfaces at the ends of CDs and at the light-like wormhole throats where the signature
of the induced metric changes. In fact, in quantum TGD the sub-spaces of world of
classical worlds with constant values of zero modes (non-quantum fluctuating degrees
of freedom) correspond to orbits of 3-surfaces under symplectic transformations so that
the symplectic restriction looks rather natural also from the point of view of quantum
dynamics and the vacuum expectation defined by Kähler function be defined for physical
states.

(d) A further possibility is that the light-like and space-like 3-surfaces carry vanishing in-
duced Kähler fields and represent surfaces in M4 ⇥ Y 2, where Y 2 is Lagrangian sub-
manifold of CP2 carrying vanishing Kähler form. The interior of space-time surface
could in principle carry a non-vanishing Kähler form. In this case weak form of self-
duality cannot hold true. This however implies that the Kähler magnetic fluxes vanish
identically as circulations of Kähler gauge potential. The non-integrable phase factors
defined by electroweak gauge potentials would however define non-trivial classical Wil-
son loops. Also electromagnetic field would do so. It would be therefore possible to
imagine vacuum expectation value of Wilson loop for given quantum state. Exponent
of Kähler action would define for non-vacuum extremals the weighting. For 4-D vacuum
extremals this exponent is trivial and one might imagine of using imaginary exponent
of electroweak Chern-Simons action. Whether the restriction to vacuum extremals in
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the definition of vacuum expectations of electroweak Wilson loops could define general
enough invariants for braid cobordisms remains an open question.

(e) The quantum expectation values for Wilson loops are non-Abelian generalizations of
exponentials for the expectation values of Kähler magnetic fluxes. The classical color
field is proportional to the induced Kähler form and its holonomy is Abelian which
raises the question whether the non-Abelian Wilson loops for classical color gauge field
could be expressible in terms of Kähler magnetic fluxes.

9.5.3 Classical color gauge fields and their generalizations define
gerbe gauge potentials allowing to replace Wilson loops with Wilson
sheets

As already noticed, the description of 2-knots seems to necessitate the generalization of gauge
field to 3-form and the introduction of a gerbe structure. This seems to be possible in TGD
framework.

(a) Classical color gauge fields are proportional to the products BA = HAJ of the Hamilto-
nians of color isometries and of Kähler form and the closed 3-form FA = dBA = dHA^J
could serve as a colored 3-form defining the analog of U(1) gauge field. What would be
interesting that color would make F non-vanishing. The ”circulation” hA =

H
HAJ over

a closed partonic 2-surface transforms covariantly under symplectic transformations of
CP2, whose Hamiltonians can be assigned to irreps of SU(3): just the commutator of
Hamiltonians defined by Poisson bracket appears in the infinitesimal transformation.
One could hope that the expectation values for the exponents of the fluxes of BA over
2-knots could define the covariants able to catch 2-knotted-ness in TGD framework. The
exponent defining Wilson loop would be replaced with exp(iQAhA), where QA denote
color charges acting as operators on particles involved.

(b) Since the symplectic group acting on partonic 2-surfaces at the boundary of CD replaces
color group as a gauge group in TGD, one can ask whether symplectic SU(3) should
be actually replaced with the entire symplectic group of [±�M4

± ⇥ CP2 with Hamil-
tonians carrying both spin and color quantum numbers. The symplectic fluxes

H
HAJ

are indeed used in the construction of both quantum states and of WCW geometry.
This generalization is indeed possible for the gauge potentials BAJ so that one would
have infinite number of classical gauge fields having also interpretation as gerbe gauge
potentials.

(c) The objection is that symplectic transformations are not symmetries of Kähler action.
Therefore the action of symplectic transformation induced on the space-time surface
reduces to a symplectic transformation only at the partonic 2-surfaces. This spoils the
covariant transformation law for the 2-fluxes over stringy world sheets unless there exist
preferred stringy world sheets for which the action is covariant. The proposed duality
between the descriptions based on partonic 2-surfaces and stringy world sheets realized
in terms of slicings of space-time surface by string world sheets and partonic 2-surfaces
suggests that this might be the case.

This would mean that one can attach to a given partonic 2-surface a unique collec-
tion string world sheets. The duality suggests even stronger condition stating that the
total exponents exp(iQAhA) of fluxes are the same irrespective whether hA evaluated
for partonic 2-surfaces or for string world sheets defining the analog of 2-knot. This
would mean an immense calculational simplification! This duality would correspond
very closely to the weak form of electric magnetic duality whose various forms I have
pondered as a must for the geometry of WCW. Partonic 2-surfaces indeed correspond
to magnetic monopoles at least for elementary particles and stringy world sheets to
surfaces carrying electric flux (note that in the exponent magnetic charges do not make
themselves visible so that the identity can make sense also for HA = 1).

(d) Quantum expectation means in TGD framework a functional integral over the symplec-
tic orbits of partonic 2-surfaces plus 4-D tangent space data assigned to the upper and
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lower boundaries of CD. Suppose that holography fixes the space-like 3-surfaces at the
ends of CD and light-like orbits of partonic 2-surfaces. In completely general case the
braids and the stringy space-time sheets could be fixed using a representation in terms
of space-time coordinates so that the representation would be always the same but the
imbedding varies as also the values of the exponent of Kähler function, of the Wilson
loop, and of its 2-D generalization. The functional integral over symplectic transforms
of 3-surfaces implies that Wilson loop and its 2-D generalization varies.

The proposed duality however suggests that both Wilson loop and its 2-D generaliza-
tion are actually fixed by the dynamics of quantum TGD. One can ask whether the
presence of 2-D analog of Wilson loop has a direct physical meaning bringing into al-
most topological stringy dynamics associated with color quantum numbers and coding
explicit information about space-time interior and topology of field lines so that color
dynamics would also have interpretation as a theory of 2-knots. If the proposed dual-
ity suggested by holography holds true, only the data at partonic 2-surfaces would be
needed to calculate the generalized Wilson loops.

In TGD framework the localization of the modes of the induced spinor fields at 2-D
surfaces carrying vanishing induced W boson fields guaranteeing that the em charge of
spinor modes is well-defined for a generic preferred extremal is natural [K69]. Besides
string world sheets partonic 2-surfaces are good candidates for this kind of surfaces.
It is not clear whether one can have a continuous slicing of this kind by string world
sheets and partonic 2-surfaces orthogonal to them or whether only discrete set of these
surfaces is possible.

This picture is very speculative and sounds too good to be true but follows if one consistently
applies holography.

9.5.4 Summing sup the basic ideas

Let us summarize the ideas discussed above.

(a) Instead of knots, links, and braids one could study knot and link cobordisms, that is
their dynamical evolutions concretizable in terms of dance metaphor and in terms of
interacting string world sheets. Each space-like braid strand can have purely internal
knotting and braid strands can be linked. TGD could allow to identify uniquely both
space-like and time-like braid strands and thus also the stringy world sheets more or
less uniquely and it could be that the dynamics induces automatically the temporary
cutting of braid strands when knot is opened violently so that a hole is generated.
Gerbe gauge potentials defined by classical color gauge fields could make also possible
to characterize 2-knottedness in symplectic invariant manner in terms of color gauge
fluxes over 2-surfaces.

The weak form of electric-magnetic duality would reduce the situation to almost topo-
logical QFT in general case with topological invariance replaced with symplectic one
which corresponds to the fixing of the values of non-quantum fluctuating zero modes in
quantum TGD. In the vacuum sector it would be possible to have the counterparts of
Wilson loops weighted by 3-D electroweak Chern-Simons action defined by the induced
spinor connection.

(b) One could also leave TGD framework and define invariants of braid cobordisms and 2-D
analogs of braids as vacuum expectations of Wilson loops using Chern-Simons action
assigned to 3-surfaces at which space-like and time-like braid strands end. The presence
of light-like and space-like 3-surfaces assignable to causal diamonds could be assumed
also now.

I checked whether the article of Gukov, Scwhartz, and Vafa entitled ”Khovanov-Rozansky
Homology and Topological Strings” [A55, A55] relies on the primitive topological observations
made above. This does not seem to be the case. The topological strings in this case are strings
in 6-D space rather than 4-D space-time.
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There is also an article by Dror Bar-Natan with title ”Khovanov’s homology for tangles
and cobordisms” [A29] . The article states that the Khovanov homology theory for knots
and links generalizes to tangles, cobordisms and 2-knots. The article does not say anything
explicit about Wilson loops but talks about topological QFTs.

An article of Witten about his physical approach to Khovanov homology has appeared in
arXiv [A63] . The article is more or less abracadabra for anyone not working with M-theory
but the basic idea is simple. Witten reformulates 3-D Chern-Simons theory as a path integral
for N = 4 SYM in the 4-D half space W⇥;R. This allows him to use dualities and bring
in the machinery of M-theory and 6-branes. The basic structure of TGD forces a highly
analogous approach: replace 3-surfaces with 4-surfaces, consider knot cobordisms and also
2-knots, introduce gerbes, and be happy with symplectic instead of topological QFT, which
might more or less be synonymous with TGD as almost topological QFT. Symplectic QFT
would obviously make possible much more refined description of knots.

9.6 Witten’s approach to Khovanov homology from TGD
point of view

Witten’s approach to Khovanov comohology [A63] relies on fivebranes as is natural if one
tries to define 2-knot invariants in terms of their cobordisms involving violent un-knottings.
Despite the di↵erence in approaches it is very useful to try to find the counterparts of this
approach in quantum TGD since this would allow to gain new insights to quantum TGD
itself as almost topological QFT identified as symplectic theory for 2-knots, braids and braid
cobordisms.

An essentially unique identification of string world sheets and therefore also of the braids
whose ends carry quantum numbers of many particle states at partonic 2-surfaces emerges
if one identifies the string word sheets as singular surfaces in the same manner as is done in
Witten’s approach [A63] .

Also a physical interpretation of the operators Q, F , and P of Khovanov homology emerges.
P would correspond to instanton number and F to the fermion number assignable to right
handed neutrinos. The breaking of M4 chiral invariance makes possible to realize Q physi-
cally. The finding that the generalizations of Wilson loops can be identified in terms of the
gerbe fluxes

R
HAJ supports the conjecture that TGD as almost topological QFT corresponds

essentially to a symplectic theory for braids and 2-knots.

9.6.1 Intersection form and space-time topology

The violent unknotting corresponds to a sequence of steps in which braid or knot becomes
trivial and this very process defines braid invariants in TGD approach in nice concordance
with the basic recipe for the construction of Jones polynomial. The topological invariant
characterizing this process as a dynamics of 2-D string like objects defined by braid strands
becomes knot invariant or more generally, invariant depending on the initial and final braids.

The process is describable in terms of string interaction vertices and also involves crossings
of braid strands identifiable as self-intersections of the string world sheet. Hence the inter-
section form for the 2-surfaces defining braid strand orbits becomes a braid invariant. This
intersection form is also a central invariant of 4-D manifolds and Donaldson’s theorem [A5]
says that for this invariant characterizes simply connected smooth 4-manifold completely.
Rank, signature, and parity of this form in the basis defined by the generators of 2-homology
(excluding torsion elements) characterize smooth closed and orientable 4-manifold. It is pos-
sible to diagonalize this form for smoothable 4-surfaces. Although the situation in the recent
case di↵ers from that in Donaldson theory in that the 4-surfaces have boundary and even
fail to be manifolds, there are reasons to believe that the theory of braid cobordisms and
2-knots becomes part of the theory of topological invariants of 4-surfaces just as knot theory
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becomes part of the theory of 3-manifolds. The representation of 4-manifolds as space-time
surfaces might also bring in physical insights.

This picture leads to ideas about string theory in 4-D space-time as a topological QFT. The
string world sheets define the generators of second relative homology group. ”Relative” means
that closed surfaces are replaced with surfaces with boundaries at wormhole throats and ends
of CD. These string world sheets, if one can fix them uniquely, would define a natural basis
for homology group defining the intersection form in terms of violent unbraiding operations
(note that also reconnections are involved).

Quantum classical correspondence encourages to ask whether also physical states must be
restricted in such a manner that only this minimum number of strings carrying quantum
numbers at their ends ending to wormhole throats should be allowed. One might hope that
there exists a unique identification of the topological strings implying the same for braids
and allowing to identify various symplectic invariants as Hamiltonian fluxes for the string
world sheets.

9.6.2 Framing anomaly

In 3-D approach to knot theory the framing of links and knots represents an unavoidable
technical problem [A63] . Framing means a slight shift of the link so that one can define
self-linking number as a linking number for the link and its shift. The problem is that this
framing of the link - or trivialization of its normal bundle in more technical terms- is not
topological invariant and one obtains a large number of framings. For links in S3 the framing
giving vanishing self-linking number is the unique option and Atyiah has shown that also in
more general case it is possible to identify a unique framing.

For 2-D surfaces self-linking is replaced with self-intersection. This is well-defined notion even
without framing and indeed a key invariant. One might hope that framing is not needed also
for string world sheets. If needed, this framing would induce the framing at the space-like
and light-like 3-surfaces. The restriction of the section of the normal bundle of string world
sheet to the 3-surfaces must lie in the tangent space of 3-surfaces. It is not clear whether
this is enough to resolve the non-uniqueness problem.

9.6.3 Khovanov homology briefly

Khovanov homology involves three charges Q, F , and P . Q is analogous to super charge and
satisfies Q2 = 0 for the elements of homology. The basic commutation relations between the
charges are [F,Q] = Q and [P,Q] = 0. One can show that the Khovanov homology (L) for
link can be expressed as a bi-graded direct sum of the eigen-spaces Vm,n of F and P , which
have integer valued spectra. Obviously Q increases the eigenvalue of F and maps Vm,n to
Vm+1,n just as exterior derivative in de-Rham comology increases the degree of di↵erential
form. P acts as a symmetry allowing to label the elements of the homology by an integer
valued charge n.

Jones polynomial can be expressed as an index assignable to Khovanov homology:

J (q|L) = Tr((�1)F qP . (9.6.1)

Here q defining the argument of Jones polynomial is root of unity in Chern-Simons theory but
can be extended to complex numbers by extending the positive integer valued Chern-Simons
coupling k to a complex number. The coe�cients of the resulting Laurent polynomial are
integers: this result does not follow from Chern-Simons approach alone. Jones polynomial
depends on the spectrum of F only modulo 2 so that a lot of information is lost as the
homology is replaced with the polynomial.
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Both the need to have a more detailed characterization of links and the need to understand
why the Wilson loop expectation is Laurent polynomial with integer coe�cients serve as
motivations of Witten for searching a physical approach to Khovanov polynomial.

The replacement of D = 2 in braid group approach to Jones polynomial with D = 3 for
Chern-Simons approach replaced by something new in D = 4 would naturally correspond
to the dimensional hierarchy of TGD in which partonic 2-surfaces plus their 2-D tangent
space data fix the physics. One cannot quite do with partonic 2-surfaces and the inclusion of
2-D tangent space-data leads to holography and unique space time surfaces and perhaps also
unique string world sheets serving as duals for partonic 2-surfaces. This would realize the
weak form of electric magnetic duality at the level of homology much like Poincare duality
relates cohomology and homology.

9.6.4 Surface operators and the choice of the preferred 2-surfaces

The choice of preferred 2-surfaces and the identification of surface operators in N = 4 YM
theory is discussed in [A52]. The intuitive picture is that preferred 2-surfaces- now string
world sheets defining braid cobordisms and 2-knots- correspond to singularities of classical
gauge fields. Surface operator can be said to create this singularity. In functional integral
this means the presence of the exponent defining the analog of Wilson loop.

(a) In [A52] the 2-D singular surfaces are identified as poles for the magnitude r of the Higgs
field. One can assign to the 2-surface fractional magnetic charges defined for the Cartan
algebra part AC of the gauge connection as circulations

H
AC around a small circle

around the axis of singularity at r = 1. What happens that 3-D r = constant surface
reduces to a 2-D surface at r = 1 whereas AC and entire gauge potential behaves as
A = AC = ↵d� near singularity. Here � is coordinate analogous to angle of cylindrical
coordinates when t-z plane represents the singular 2-surface. ↵ is a linear combination
of Cartan algebra generators.

(b) The phase factor assignable to the circulation is essentially exp(i2⇡↵) and for non-
fractional magnetic charges it di↵ers from unity. One might perhaps say that string
word sheets correspond to singularities for the slicing of space-time surface with 3-
surfaces at which 3-surfaces reduce to 2-surfaces.

Consider now the situation in TGD framwork.

(a) The gauge group is color gauge group and gauge color gauge potentials correspond to
the quantities HAJ . One can also consider a generalization by allowing all Hamiltonians
generating symplectic transformations of CP2. Kähler gauge potential is in essential role
since color gauge field is proportional to Kähler form.

(b) The singularities of color gauge fields can be identified by studing the theory locally
as a field theory from CP2 to M4. It is quite possible to have space-time surfaces for
which M4 coordinates are many-valued functions of CP2 coordinates so that one has a
covering of CP2 locally. For singular 2-surfaces this covering becomes singular in the
sense that separate sheets coincide. These coverings do not seem to correspond to those
assignable to the hierarchy of Planck constants implied by the many-valuedness of the
time derivatives of the imbedding space coordinates as functions of canonical momentum
densities but one must be very cautious in making too strong conclusions here.

(c) To proceed introduce the Eguchi-Hanson coordinates

(⇠1, ⇠2) = [rcos(✓/2)exp(i( + �)/2), rsin(✓/2)exp(i(� + �)/2]

for CP2 with the defining property that the coordinates transform linearly under U(2) ⇢
SU(3). In QFT context these coordinates would be identified as Higgs fields. The choice
of these coordinates is unique apart from the choice of the U(2) subgroup and rotation
by element of U(2) once this choice has been made. In TGD framework the definition of
CD involves the fixing of these coordinates and the interpretation is in terms of quantum
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classical correspondence realizing the choice of quantization axes of color at the level of
the WCW geometry.
r has a natural identification as the magnitude of Higgs field invariant under U(2) ⇢
SU(3). The SU(2) ⇥ U(1) invariant 3-sphere reduces to a homologically non-trivial
geodesic 2-sphere at r = 1 so that for this choice of coordinates this surface defines
in very natural manner the counterpart of singular 2-surface in CP2 geometry. At this
sphere the second phase associated with CP2 coordinates- � - becomes a redundant
coordinate just like the angle � at the poles of sphere. There are two other similar
spheres and these three spheres are completely analogous to North and South poles of
2-sphere.

(d) One possibility is that the singular surfaces correspond to the inverse images for the pro-
jection of the imbedding map to r = 1 geodesic sphere of CP2 for a CD corresponding
to a given choice of quantization axes. Also the inverse images of all homological non-
trivial geodesic spheres defining the three poles of CP2 can be considered. The inverse
images of this geodesic 2-sphere under the imbedding-projection map would naturally
correspond to 2-D string world sheets for the preferred extremals for a generic space-
time surface. For cosmic strings and massless extremals the inverse image would be
4-dimensional but this problem can be circumvented easily. The identification turned
out to be somewhat ad hoc and later a much more convincing unique identification of
string world sheets emerged and will be discussed in the sequel. Despite this the general
aspects of the proposal deserves a discussion.

(e) The existence of dual slicings of space-time surface by 3-surfaces and lines on one hand
and by string world sheets Y 2 and 2-surfaces X2 with Euclidian signature of metric on
one hand, is one of the basic conjectures about the properties of preferred extremals
of Kähler action. A stronger conjecture is that partonic 2-surfaces represent particular
instances of X2. The proposed picture suggests an amazingly simple and physically
attractive identification of these slicings.

i. The slicing induced by the slicing of CP2 by r = constant surfaces defines an ex-
cellent candidate for the slicing by 3-surfaces. Physical the slices would correspond
to equivalence classes of choices of the quantization axes for color group related
by U(2). In gauge theory context they would correspond to di↵erent breakings of
SU(3) symmetry labelled by the vacuum expectation of the Higgs field r which
would be dynamical for CP2 projections and play the role of time coordinate.

ii. The slicing by string world sheets would naturally correspond to the slicing induced
by the 2-D space of homologically non-trivial geodesic spheres (or triplets of them)
and could be called ”CP2/S2”. One has clearly bundle structure with S2 as base
space and ”CP2/S2” as fiber. Partonic 2-surfaces could be seen locally as sections
of this bundle like structure assigning a point of ”CP2/S2” to each point of S2.
Globally this does not make sense for partonic 2-surfaces with genus larger than
g = 0.

(f) In TGD framework the Cartan algebra of color gauge group is the natural identification
for the Cartan algebra involved and the fluxes defining surface operators would be
the classical fluxes

R
HAJ over the 2-surfaces in question restricted to Cartan algebra.

What would be new is the interpretation as gerbe gauge potentials so that flux becomes
completely analogous to Abelian circulation.
If one accepts the extension of the gauge algebra to a symplectic algebra, one would
have the Cartan algebra of the symplectic algebra. This algebra is defined by generators
which depend on the second half Pi or Qi of Darboux coordinates. If Pi are chosen to
be functions of the coordinates (r, ✓) of CP2 coordinates whose Poisson brackets with
color isospin and hyper charge generators inducing rotations of phases ( ,�) of CP2

complex coordinates vanish, the symplectic Cartan algebra would correspond to color
neutral Hamiltonians. The spherical harmonics with non-vanishing angular momentum
vanish at poles and one expects that same happens for CP2 spherical harmonics at the
three poles of CP2. Therefore Cartan algebra is selected automatically for gauge fluxes.
This subgroup leaves the ends of the points of braids at partonic 2-surfaces invariant so
that symplectic transformations do not induce braiding.
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If this picture -resulting as a rather straightforward translation of the picture applied in
QFT context- is correct, TGD would predict uniquely the preferred 2-surfaces and therefore
also the braids as inverse images of CP2 geodesic sphere for the imbedding of space-time
surface to CD ⇥ CP2. Also the conjecture slicings by 3-surfaces and string world sheets
could be identified. The identification of braids and slicings has been indeed one of the basic
challenges in quantum TGD since in quantum theory one does not have anymore the luxury
of topological invariance and I have proposed several identifications. If one accepts only these
space-time sheets then the stringy content for a given space-time surface would be uniquely
fixed.

The assignment of singularities to the homologically non-trivial geodesic sphere suggests that
the homologically non-trivial space-time sheets could be seen as 1-dimensional idealizations
of magnetic flux tubes carrying Kähler magnetic flux playing key role also in applications of
TGD, in particular biological applications such as DNA as topological quantum computer
and bio-control and catalysis.

9.6.5 The identification of charges Q, P and F of Khovanov homol-
ogy

The challenge is to identify physically the three operators Q, F , and P appearing in Khovanov
homology. Taking seriously the proposal of Witten [A63] and looking for its direct counterpart
in TGD leads to the identification and physical interpretation of these charges in TGD
framework.

(a) In Witten’s approach P corresponds to instanton number assignable to the classical
gauge field configuration in space-time. In TGD framework the instanton number would
naturally correspond to that assignable to CP2 Kähler form. One could consider the
possibility of assigning this charge to the deformed CP2 type vacuum extremals assigned
to the space-like regions of space-time representing the lines of generalized Feynman
diagrams having elementary particle interpretation. P would be or at least contain the
sum of unit instanton numbers assignable to the lines of generalized Feynman diagrams
with sign of the instanton number depending on the orientation of CP2 type vacuum
extremal and perhaps telling whether the line corresponds to positive or negative energy
state. Note that only pieces of vacuum extremals defined by the wormhole contacts are
in question and it is somewhat questionable whether the rest of them in Minkowskian
regions is included.

(b) F corresponds to U(1) charge assignable to R-symmetry of N = 4 SUSY in Witten’s
theory. The proposed generalization of twistorial approach in TGD framework suggests
strongly that this identification generalizes to TGD. In TGD framework all solutions of
modified Dirac equation at wormhole throats define super-symmetry generators but the
supersymmetry is badly broken. The covariantly constant right handed neutrino defines
the minimally broken supersymmetry since there are no direct couplings to gauge fields.
This symmetry is however broken by the mixing of right and left handed M4 chiralities
present for both Dirac actions for induced gamma matrices and for modified Dirac equa-
tions defined by Kähler action and Chern-Simons action at parton orbits. It is caused
by the fact that both the induced and modified gamma matrices are combinations of
M4 and CP2 gamma matrices. F would therefore correspond to the net fermion number
assignable to right handed neutrinos and antineutrinos. F is not conserved because of
the chirality mixing and electroweak interactions respecting only the conservation of
lepton number.

Note that the mixing of M4 chiralities in sub-manifold geometry is a phenomenon
characteristic for TGD and also a direct signature of particle massivation and SUSY
breaking. It would be nice if it would allow the physical realization of Q operator of
Khovanov homology.

(c) Witten proposes an explicit formula for Q in terms of 5-dimensional time evolutions
interpolating between two 4-D instantons and involving sum of sign factors assignable to
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Dirac determinants. In TGD framework the operator Q should increase the right handed
neutrino number by one unit and therefore transform one right-handed neutrino to a left
handed one in the minimal situation. In zero energy ontology Q should relate to a time
evolution either between ends of CD or between the ends of single line of generalized
Feynman diagram. If instanton number can be assigned solely to the wormhole contacts,
this evolution should increase the number of CP2 type extremals by one unit. 3-particle
vertex in which right handed neutrino assignable to a partonic 2-surface transforms to
a left handed one is thus a natural candidate for defining the action of Q.

(d) Note that the almost topological QFT property of TGD together with the weak form of
electric-magnetic duality implies that Kähler action reduces to Abelian Chern-Simons
term. Ordinary Chern-Simons theory involves imaginary exponent of this term but
in TGD the exponent would be real. Should one replace the real exponent of Kähler
function with imaginary exponent? If so, TGD would be very near to topological QFT
also in this respect. This would also force the quantization of the coupling parameter k
in Chern-Simons action. On the other hand, the Chern-Simons theory makes sense also
for purely imaginary k [A63] .

9.6.6 What does the replacement of topological invariance with
symplectic invariance mean?

One interpretation for the symplectic invariance is as an analog of di↵eo-invariance. This
would imply color confinement. Another interpretation would be based on the identification
of symplectic group as a color group. Maybe the first interpretation is the proper restriction
when one calculates invariants of braids and 2-knots.

The replacement of topological symmetry with symplectic invariance means that TGD based
invariants for braids carry much more refined information than topological invariants. In
TGD approach M4 di↵eomorphisms act freely on partonic 2-surfaces and 4-D tangent space
data but the action in CP2 degrees of freedom reduces to symplectic transformations. One
could of course consider also the restriction to symplectic transformations of the light-cone
boundary and this would give additional refinements.

It is is easy to see what symplectic invariance means by looking what it means for the ends
of braids at a given partonic 2-surface.

(a) Symplectic transformations respect the Kähler magnetic fluxes assignable to the tri-
angles defined by the finite number of braid points so that these fluxes defining sym-
plectic areas define some minimum number of coordinates parametrizing the moduli
space in question. For topological invariance all n-point configurations obtained by
continuous or smooth transformations are equivalent braid end configurations. These
finite-dimensional moduli spaces would be contracted with point in topological QFT.

(b) This picture led to a proposal of what I call symplectic QFT [K8] in which the associa-
tivity condition for symplectic fusion rules leads the hierarchy of algebras assigned with
symplectic triangulations and forming a structures known as operad in category theory.
The ends of braids at partonic 2-surfaces would would define unique triangulation of
this kind if one accepts the identification of string like 2-surfaces as inverse images of
homologically non-trivial geodesic sphere.

Note that both di↵eomorphisms and symplectic transformations can in principle induce braid-
ing of the braid strands connecting two partonic 2-surfaces. Should one consider the possi-
bility that the allow transformations are restricted so that they do not induce braiding?

(a) These transformations induce a transformation of the space-time surface which however
is not a symplectic transformation in the interior in general. An attractive conjec-
ture is that for the preferred extremals this is the case at the inverse images of the
homologically non-trivial geodesic sphere. This would conform with the proposed du-
ality between partonic 2-surfaces and string world sheets inspired by holography and
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also with quantum classical correspondence suggesting that at string world sheets the
transformations induced by symplectic transformations at partonic 2-surfaces act like
symplectic transformations.

(b) If one allows only the symplectic transformations in Cartan algebra leaving the homolog-
ically non-trivial geodesic sphere invariant, the infinitesimal symplectic transformations
would a↵ect neither the string word sheets nor braidings but would modify the partonic
2-surfaces at all points except at the intersections with string world sheets.

9.7 Algebraic braids, sub-manifold braid theory, and gen-
eralized Feynman diagrams

Ulla send me a link to an article by Sam Nelson about very interesting new-to-me notion
known as algebraic knots [A53, A34], which has initiated a revolution in knot theory. This
notion was introduced 1996 by Louis Kau↵mann [A48] so that it is already 15 year old
concept. While reading the article I realized that this notion fits perfectly the needs of TGD
and leads to a progress in attempts to articulate more precisely what generalized Feynman
diagrams are.

In the following I will summarize briefly the vision about generalized Feynman diagrams,
introduce the notion of algebraic knot, and after than discuss in more detail how the notion of
algebraic knot could be applied to generalized Feynman diagrams. The algebraic structrures
kei, quandle, rack, and biquandle and their algebraic modifications as such are not enough.
The lines of Feynman graphs are replaced by braids and in vertices braid strands redistribute.
This poses several challenges: the crossing associated with braiding and crossing occurring
in non-planar Feynman diagrams should be integrated to a more general notion; braids are
replaced with sub-manifold braids; braids of braids ....of braids are possible; the redistribution
of braid strands in vertices should be algebraized. In the following I try to abstract the basic
operations which should be algebraized in the case of generalized Feynman diagrams.

One should be also able to concretely identify braids and 2-braids (string world sheets) as
well as partonic 2-surfaces and I have discussed several identifications during last years. Leg-
endrian braids turn out to be very natural candidates for braids and their duals for the
partonic 2-surfaces. String world sheets in turn could correspond to the analogs of La-
grangian sub-manifolds or to minimal surfaces of space-time surface satisfying the weak form
of electric-magnetic duality. The latter option turns out to be more plausible. Finite mea-
surement resolution would be realized as symplectic invariance with respect to the subgroup
of the symplectic group leaving the end points of braid strands invariant. In accordance
with the general vision TGD as almost topological QFT would mean symplectic QFT. The
identification of braids, partonic 2-surfaces and string world sheets - if correct - would solve
quantum TGD explicitly at string world sheet level in other words in finite measurement
resolution.

Irrespective of whether the algebraic knots are needed, the natural question is what general-
ized Feynman diagrams are. It seems that the basic building bricks can be identified so that
one can write rather explicit Feynman rules already now. Of course, the rules are still far
from something to be burned into the spine of the first year graduate student.

9.7.1 Generalized Feynman diagrams, Feynman diagrams, and braid
diagrams

How knots and braids a la TGD di↵er from standard knots and braids?

TGD approach to knots and braids di↵ers from the knot and braid theories in given abstract 3-
manifold (4-manifold in case of 2-knots and 2-braids) is that space-time is in TGD framework
identified as 4-D surface in M4 ⇥ CP2 and preferred 3-surfaces correspond to light-like 3-
surfaces defined by wormhole throats and space-like 3-surfaces defined by the ends of space-
time sheets at the two light-like boundaries of causal diamond CD.

http://www.ams.org/notices/201111/rtx111101553p.pdf
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The notion of finite measurement resolution e↵ectively replaces 3-surfaces of both kinds
with braids and space-time surface with string world sheets having braids strands as their
ends. The 4-dimensionality of space-time implies that string world sheets can be knotted
and intersect at discrete points (counterpart of linking for ordinary knots). Also space-time
surface can have self-intersections consisting of discrete points.

The ordinary knot theory in E3 involves projection to a preferred 2-plane E2 and one assigns
to the crossing points of the projection an index distinguishing between two cases which
are transformed to each other by violently taking the first piece of strand through another
piece of strand. In TGD one must identify some physically preferred 2-dimensional manifold
in imbedding space to which the braid strands are projected. There are many possibilities
even when one requires maximal symmetries. An obvious requirement is however that this
2-manifold is large enough.

(a) For the braids at the ends of space-time surface the 2-manifold could be large enough
sphere S2 of light-cone boundary in coordinates in which the line connecting the tips of
CD defines a preferred time direction and therefore unique light-like radial coordinate.
In very small knots it could be also the geodesic sphere of CP2 (apart from the action
of isometries there are two geodesic spheres in CP2).

(b) For light-like braids the preferred plane would be naturally M2 for which time direction
corresponds to the line connecting the tips of CD and spatial direction to the quanti-
zation axis of spin. Note that these axes are fixed uniquely and the choices of M2 are
labelled by the points of projective sphere P 2 telling the direction of space-like axis. Pre-
ferred plane M2 emerges naturally also from number theoretic vision and corresponds
in octonionic pictures to hyper-complex plane of hyper-octonions. It is also forced by
the condition that the choice of quantization axes has a geometric correlate both at the
level of imbedding space geometry and the geometry of the ”world of classical worlds”.

The braid theory in TGD framework could be called sub-manifold braid theory and certainly
di↵ers from the standard one.

(a) If the first homology group of the 3-surface is non-trivial as it when the light-like 3-
surfaces represents an orbit of partonic 2-surface with genus larger than zero, the winding
of the braid strand (wrapping of branes in M-theory) meaning that it represents a
homologically non-trivial curve brings in new e↵ects not described by the ordinary knot
theory. A typical new situation is the one in which 3-surface is locally a product of
higher genus 2-surface and line segment so that knot strand can wind around the 2-
surface. This gives rise to what are called non-planar braid diagrams for which the
projection to plane produces non-standard crossings.

(b) In the case of 2-knots similar exotic e↵ects could be due to the non-trivial 2-homology
of space-time surface. Wormhole throats assigned with elementary particle wormhole
throats are homologically non-trivial 2-surfaces and might make this kind of e↵ects
possible for 2-knots if they are possible.

The challenge is to find a generalization of the usual knot and braid theories so that they
apply in the case of braids (2-braids) imbedded in 3-D (4-D) surfaces with preferred highly
symmetry sub-manifold of M4 ⇥ CP2 defining the analog of plane to which the knots are
projected. A proper description of exotic crossings due to non-trivial homology of 3-surface
(4-surface) is needed.

Basic questions

The questions are following.

(a) How the mathematical framework of standard knot theory should be modified in order
to cope with the situation encountered in TGD? To my surprise I found that this
kind of mathematical framework exists: so called algebraic knots [A53, A34] define a
generalization of knot theory very probably able to cope with this kind of situation.
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(b) Second question is whether the generalized Feynman diagrams could be regarded as
braid diagrams in generalized sense. Generalized Feynman diagrams are generalizations
of ordinary Feynman diagrams. The lines of generalized Feynman diagrams correspond
to the orbits of wormhole throats and of wormhole contacts with throats carrying ele-
mentary particle quantum numbers.

The lines meet at vertices which are partonic 2-surfaces. Single wormhole throat can
describe fermion whereas bosons have wormhole contacts with fermion and anti-fermion
at the opposite throats as building bricks. It seems however that all fermions carry
Kähler magnetic charge so that physical particles are string like objects with magnetic
charges at their ends.

The short range of weak interactions results from the screening of the axial isospin
by neutrinos at the other end of string like object and also color confinement could
be understood in this manner. One cannot exclude the possibility that the length of
magnetic flux tube is of order Compton length.

(c) Vertices of the generalized Feynman diagrams correspond to the partonic 2-surfaces
along which light-like 3-surfaces meet and this is certainly a challenge for the required
generalization of braid theory. The basic objection against the reduction to algebraic
braid diagrams is that reaction vertices for particles cannot be described by ordinary
braid theory: the splitting of braid strands is needed.

The notion of bosonic emergence [K36] however suggests that 3-vertex and possible
higher vertices correspond to the splitting of braids rather than braid strands. By
allowing braids which come from both past and future and identifying free fermions as
wormhole throats and bosons as wormhole contacts consisting of a pair of wormhole
throats carrying fermion and anti-fermion number, one can understand boson excanges
as recombinations without anyneed to have splitting of braid strands. Strictly and
technically speaking, one would have tangles like objects instead of braids. This would
be an enormous simplification since n > 2-vertices which are the source of divergences
in QFT:s would be absent.

(d) Non-planar Feynman diagrams are the curse of the twistor approach and I have already
earlier proposed that the generalized Feynman amplitudes and perhaps even twistorial
amplitudes could be constructed as analogs of knot invariants by recursively trans-
forming non-planar Feynman diagrams to planar ones for which one can write twistor
amplitudes. This forces to answer two questions.

i. Does the non-nonplanarity of Feynman diagrams - completely combinatorial objects
identified as diagrams in plane - have anything to do with the non-planarity of alge-
braic knot diagrams and with the non-planarity of generalized Feynman diagrams
which are purely geometric objects?

ii. Could these two kind of non-planarities be fused to together by identifying the
projection 2-plane as preferred M2 ⇢ M4. This would mean that non-planarity
in QFT sense is defined for entire braids: braid A can have virtual crossing with
B. Non-planarity in the sense of knot theory would be defined for braid strands
inside the braids. At vertices braid strands are redistributed between incoming
lines and the analog of virtual crossing be identifiable as an exchange of braid
strand between braids. Several kinds of non-planarities would be present and the
idea about gradual unknotting of a non-planar diagram so that a planar diagram
results as the final outcome might make sense and allow to generalize the recursion
recipe for the twistorial amplitudes.

iii. One might consider the possibility that inside orbits of wormhole throats defining
the lines of Feynman diagrams the R-matrix for integrable QFT inM2 (only permu-
tations of momenta are allowed) describes the dynamics so that one obtains just a
permutation of momenta assigned to the braid strands. Ordinary braiding would be
described by existing braid theories. The core problem would be the representation
of the exchange of a strand between braids algebraically.

It has become clear that there is di↵erent and much simpler general approach to the
non-planarity problem. In twistor Grassmannian approach [K44] generalized Feynman
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diagrams correspond to TGD variants of stringy diagrams. In stringy approach one gets
rid of non-planarity problem altogether.

9.7.2 Brief summary of algebraic knot theory

Basic ideas of algebraic knot theory

In ordinary knot theory one takes as a starting point the representation of knots of E3

by their plane plane projections to which one attach a ”color” to each crossing telling
whether the strand goes over or under the strand it crosses in planar projection. These
numbers are fixed uniquely as one traverses through the entire knot in given direction.

The so called Reidermeister moves are the fundamental modifications of knot leaving its
isotopy equivalence class unchanged and correspond to continuous deformations of the
knot. Any algebraic invariant assignable to the knot must remain una↵ected under these
moves. Reidermeister moves as such look completely trivial and the non-trivial point is
that they represent the minimum number of independent moves which are represented
algebraically.

In algebraic knot theory topological knots are replaced by typographical knots resulting
as planar projections. This is a mapping of topology to algebra. It turns out that the
existing knot invariants generalize and ordinary knot theory can be seen as a special
case of the algebraic knot theory. In a loose sense one can say that the algebraic knots
are to the classical knot theory what algebraic numbers are to rational numbers.

Virtual crossing is the key notion of the algebraic knot theory. Virtual crossing and
their rules of interaction were introduced 1996 by Louis Kau↵man as basic notions [A1].
For instance, a strand with only virtual crossings should be replaceable by any strand
with the same number of virtual crossings and same end points. Reidermeister moves
generalize to virtual moves. One can say that in this case crossing is self-intersection
rather than going under or above. I cannot be eliminated by a small deformation of
the knot. There are actually several kinds of non-standard crossings: examples listed in
figure 7 of [A53]) are virtual, flat, singular, and twist bar crossings.

Algebraic knots have a concrete geometric interpretation.

i. Virtual knots are obtained if one replaces E3 as imbedding space with a space
which has non-trivial first homology group. This implies that knot can represent
a homologically non-trivial curve giving an additional flavor to the unknottedness
since homologically non-trivial curve cannot be transformed to a curve which is
homologically non-trivial by any continuous deformation.

ii. The violent projection to plane leads to the emergence of virtual crossings. The
product (S1 ⇥ S1)⇥D, where (S1 ⇥ S1) is torus D is finite line segment, provides
the simplest example. Torus can be identified as a rectangle with opposite sides
identified and homologically non-trivial knots correspond to curves winding n1 times
around the first S1 and n2 times around the second S1. These curves are not
continuous in the representation where S1 ⇥ S1 is rectangle in plane.

iii. A simple geometric visualization of virtual crossing is obtained by adding to the
plane a handle along which the second strand traverses and in this manner avoids
intersection. This visualization allows to understand the geometric motivation for
the the virtual moves.

This geometric interpretation is natural in TGD framework where the plane to which
the projection occurs corresponds to M2 ⇢ M4 or is replaced with the sphere at the
boundary of S2 and 3-surfaces can have arbitrary topology and partonic 2-surfaces
defining as their orbits light-like 3-surfaces can have arbitrary genus.

In TGD framework the situation is however more general than represented by sub-
manifold braid theory. Single braid represents the line of generalized Feynman diagram.
Vertices represent something new: in the vertex the lines meet and the braid strands
are redistributed but do not disappear or pop up from anywhere. That the braid
strands can come both from the future and past is also an important generalization.
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There are physical argments suggesting that there are only 3-vertices for braids but not
higher ones [K11]. The challenge is to represent algebraically the vertices of generalized
Feynman diagrams.

Algebraic knots

The basic idea in the algebraization of knots is rather simple. If x and y are the crossing
portions of knot, the basic algebraic operation is binary operation giving ”the result of
x going under y”, call it x . y telling what happens to x. ”Portion of knot” means the
piece of knot between two crossings and x . y denotes the portion of knot next to x.
The definition is asymmetrical in x and y and the dual of the operation would be y / x
would be ”the result of y going above x”. One can of course ask, why not to define the
outcome of the operation as a pair (x / y, y . x). This operation would be bi-local in
a well-defined sense. One can of course do this: in this case one has binary operation
from X ⇥X ! X ⇥X mapping pairs of portions to pairs of portions. In the first case
one has binary operation X ⇥X ! X.

The idea is to abstract this basic idea and replace X with a set endowed with operation
. or / or both and formukate the Reidermeister conditions given as conditions satisfied
by the algebra. One ends up to four basic algebraic structures kei, quandle, rack, and
biquandle.

i. In the case of non-oriented knots the kei is the algebraic structure. Kei - or invontary
quandle-is a set X with a map X ⇥X ! X satisfying the conditions

A. x . x = x (idenpotency, one of the Reidemeister moves)

B. (x . y) . y =x (operation is its own right inverse having also interpretation as
Reidemeister move)

C. (x . y) . z = (x . z) . (y . z) (self-distributivity)

Z([t])/(t2) module with x . y = tx+ (1� t)y is a kei.

ii. For orientable knot diagram there is preferred direction of travel along knot and one
can distinguish between . and its right inverse .�1. This gives quandle satisfying
the axios

A. x . x = x

B. (x . y) .�1 y = (x .�1 y) . y = x

C. (x . y) . z = (x . z) . (y . z)

Z[t±1] nodule with x . y = tx+ (1� t)y is a quandle.

iii. One can also introduce framed knots: intuitively one attaches to a knot very near
to it. More precise formulation in terms of a section of normal bundle of the knot.
This makes possible to speak about self-linking. Reidermeister moves must be
modified appropriately. In this case rack is the appropriate structure. It satisfied
the axioms of quandle except the first axiom since corresponding operation is not
a move anymore. Rack axioms are eqivalent with the requirement that functions
fy : X ! X defined by fy(x)x . y) are automorphisms of the structure. Therefore
the elements of rack represent its morphisms. The modules over Z[t±1, s]/s(t+s�1)
are racks. Coxeter racks are inner product spaces with x . y obtained by reflecting
x across y.

iv. Biquandle consists of arcs connecting the subsequent crossings (both under- and
over-) of oriented knot diagram. Biquandle operation is a map B : X⇥X ! X⇥X
of order pairs satisfying certain invertibility conditions together with set theoretic
Yang-Baxter equation:

(B ⇥ I)(I ⇥B)(B ⇥ I) = (I ⇥B)(B ⇥ I)(I ⇥B) .

Here I : X ! X is the identity map. The three conditions to which Yang-Baxter
equation decomposes gives the counterparts of the above discussed axioms. Alexan-
der biquandle is the module Z(t±1, s±1 with B(x, y) = (ty + (1 � ts)x, sx) where
one has s 6= 1. If one includes virtual, flat and singular crossings one obtains
virtual/singular aundles and semiquandles.
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9.7.3 Generalized Feynman diagrams as generalized braid dia-
grams?

Zero energy ontology suggests the interpretation of the generalized Feynman diagrams
as generalized braid diagrams so that there would be no need for vertices at the fun-
damental braid strand level. The notion of algebraic braid (or tangle) might allow to
formulate this idea more precisely.

Could one fuse the notions of braid diagram and Feynman diagram?

The challenge is to fuse the notions of braid diagram and Feynman diagram having
quite di↵erent origin.

i. All generalized Feynman diagrams are reduced to sub-manifold braid diagrams at
microscopic level by bosonic emergence (bosons as pairs of fermionic wormhole
throats). Three-vertices appear only for entire braids and are purely topological
whereas braid strands carrying quantum numbers are just re-distributed in vertices.
No 3-vertices at the really microscopic level! This is an additional nail to the co�n
of divergences in TGD Universe.

ii. By projecting the braid strands of generalized Feynman diagrams to preferred plane
M2 ⇢ M4 (or rather 2-D causal diamond), one could achieve a unified description
of non-planar Feynman diagrams and braid diagrams. For Feynman diagrams the
intersections have a purely combinatorial origin coming from representations as 2-D
diagrams.
For braid diagrams the intersections have di↵erent origin and non-planarity has
di↵erent meaning. The crossings of entire braids analogous to those appearing in
non-planar Feynman diagrams should define one particular exotic crossing besides
virtual crossings of braid strands due to non-trivial first homology of 3-surfaces.

iii. The necessity to choose preferred plane M2 looks strange from QFT point of view.
In TGD framework it is forced by the number theoretic vision in which M2 rep-
resents hyper-complex plane of sub-space of hyper-octonions which is subspace of
complexified octonions. The choice of M2 is also forced by the condition that the
choice of quantization axes has a geometric correlate both at the level of imbedding
space geometry and the geometry of the ”world of classical worlds”.

iv. Also 2-braid diagrams defined as projections of string world sheets are suggestive
and would be defined by a projections to the 3-D boundary of CD or to M3 ⇢ M4.
They would provide a more concrete stringy illustration about generalized Feynman
diagram as analog of string diagram. Another attractive illustration is in terms of
dance metaphor with the boundary of CD defining the 3-D space-like parquette.
The duality between space-like and light-like braids is expected to be of importance.

The obvious conjecture is that Feynman amplitudes are a analogous to knot invariants
constructible by gradually reducing non-planar Feynman diagrams to planar ones after
which the already existing twistor theoretical machinery of N = 4 SYMs would apply
[K59].

Does 2-D integrable QFT dictate the scattering inside the lines of generalized
Feynman diagrams

The preferred plane M2 (more precisely, 2-D causal diamond having also interpretation
as Penrose diagram) plays a key role as also the preferred sphere S2 at the boundary of
CD. It is perhaps not accident that a generalization of braiding was discovered in inte-
grable quantum field theories in M2. The S-matrix of this theory is rather trivial look-
ing: particle moving with di↵erent velocities cross each other and su↵er a phase lag and
permutation of 2-momenta which has physical e↵ects only in the case of non-identical
particles. The R-matrix describing this process reduces to the R-matrix describing the
basic braiding operation in braid theories at the static limit.



340 Chapter 9. Knots and TGD

I have already earlier conjectured that this kind of integrable QFT is part of quantum
TGD [K13]. The natural guess is that it describes what happens for the projections of
4-momenta in M2 in scattering process inside lines of generalized Feynman diagrams.
If integrable theories in M2 control this scattering, it would cause only phase changes
and permutation of the M2 projections of the 4-momenta. The most plausible guess is
that M2 QFT characterized by R-matrix describes what happens to the braid momenta
during the free propagation and the remaining challenge would be to understand what
happens in the vertices defined by 2-D partonic surfaces at which re-distribution of braid
strands takes place.

How quantum TGD as almost topological QFT di↵ers from topological QFT
for braids and 3-manifolds

One must distinguish between two topological QFTs. These correspond to topological
QFT defining braid invariants and invariants of 3-manifolds respectively. The reason
is that knots are an essential element in the procedure yielding 3-manifolds. Both 3-
manifold invariants and knot invariants would be defined as Wilson loops involving path
integral over gauge connections for a given 3-manifold with exponent o non-Abelkian f
Chern-Simons action defining the weight.

i. In TGD framework the topological QFT producing braid invariants for a given 3-
manifold is replaced with sub-manifold braid theory. Kähler action reduces Chern-
Simons terms for preferred extremals and only these contribute to the functional
integral. What is the counterpart of topological invariance in this framework?
Are general isotopies allowed or should one allow only sub-group of symplectic
group of CD boundary leaving the end points of braids invariant? For this option
Reidermeister moves are undetectable in the finite measurement resolution defined
by the subgroup of the symplectic group. Symplectic transformations would not
a↵ect 3-surfaces as the analogs of abstract contact manifold since induced Kähler
form would not be a↵ected and only the imbedding would be changed.
In the approach based on inclusions of HFFs gauge invariance or its generalizations
would represent finite measurement resolution (the action of included algebra would
generate states not distiguishable from the original one).

ii. There is also ordinary topological QFT allowing to construct topological invariants
for 3-manifold. In TGD framework the analog of topological QFT is defined by
Chern-Simons-Kähler action in the space of preferred 3-surfaces. Now one sums over
small deformations of 3-surface instead of gauge potentials. If extremals of Chern-
Simons-Kähler action are in question, symplectic invariance is the most that one can
hope for and this might be the situation quite generally. If all light-like 3-surfaces
are allowed so that only weak form of electric-magnetic duality at them would bring
metric into the theory, it might be possible to have topological invariance at 3-D
level but not at 4-D level. It however seems that symplectic invariance with respect
to subgroup leaving end points of braids invariant is the realistic expectation.

Could the allowed braids define Legendrian sub-manifolds of contact mani-
folds?

The basic questions concern the identification of braids and 2-braids. In quantum TGD
they cannot be arbitrary but determined by dynamics providing space-time correlates
for quantum dynamics. The deformations of braids should mean also deformations of
3-surfaces which as topological manifolds would however remain as such. Therefore
topological QFT for given 3-manifold with path integral over gauge connections would
in TGD correspond to functional integral of 3-surfaces corresponding to same topology
even symplectic structure. The quantum fluctuating degrees of freedom indeed corre-
spond to symplectic group divided by its subgroup defining measurement resolution.

What is the dynamics defining the braids strands? What selects them? I have considered
this problem several times. Just two examples is enough here.
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i. Could they be some special light-like curves? Could the condition that the end
points of the curves correspond to rational points in some preferred coordinates
allow to select these light-like curves? But what about light-like curves associated
with the ends of the space-time surface?

ii. The solutions of modified Dirac equation [K18] are localized to curves by using
the analog of periodic boundary conditions: the length of the curve is quantized
in the e↵ective metric defined by the modified gamma matrices. Here one however
introcuced a coordinate along light-like 3-surface and it is not clear how one should
fix this preferred coordinate.

1. Legendrian and Lagrangian sub-manifolds

A hint about what is missing comes from the observation that a non-vanishing Chern-
Simons-Kähler form A defines a contact structure [A4] at light-like 3-surfaces if one
has A ^ dA 6= 0. This condition states complete non-intebrability of the distribution of
2-planes defined by the condition Aµtµ = 0, where t is tangent vector in the tangent
bundle of light-like 3-surface. It also states that the flow lines of A do not define global
coordinate varying along them.

i. It is however possible to have 1-dimensional curves for which Aµtµ = 0 holds true at
each point. These curves are known as Legendrian sub-manifolds to be distinguished
from Lagrangian manifolds for which the projection of symplectic form expressible
locally as J = dA vanishes. The set of this curves is discrete so that one obtains
braids. Legendrian knots are the simplest example of Legendrian sub-manifolds
and the question is whether braid strands could be identified as Legendrian knots.
For Legendrian braids symplectic invariance replaces topological invariance and
Legendrian knots and braids can be trivial in topological sense. In some situations
the property of being Legendrian implies un-knottedness.

ii. For Legendrian braid strands the Kähler gauge potential vanishes. Since the solu-
tions of the modified Dirac equation are localized to braid strands, this means that
the coupling to Kähler gauge potential vanishes. From physics point of view a gen-
eralization of Legendre braid strand by allowing gauge transformations A ! A+d�
looks natural since it means that the coupling of induced spinors is pure gauge terms
and can be eliminated by a gauge transformation.

2. 2-D duals of Legendrian sub-manifolds

One can consider also what might be called 2-dimensional duals of Legendrian sub-
manifolds.

i. Also the one-form obtained from the dual of Kähler magnetic field defined as Bµ =
✏µ⌫�J⌫⌫ defines a distribution of 2-planes. This vector field is ill-defined for light-
like surfaces since contravariant metric is ill-defined. One can however multiply B
with the square root of metric determining formally so that metric would disappear
completely just as it disappears from Chern-Simons action. This looks however
somewhat tricky mathematically. At the 3-D space-like ends of space-time sheets
at boundaries of CD Bµ is however well-defined as such.

ii. The distribution of 2-planes is integrable if one has B^dB = 0 stating that one has
Beltrami field: physically the conditions states that the current dB feels no Lorentz
force. The geometric content is that B defines a global coordinate varying along
its flow lines. For the preferred extremals of Kähler action Beltrami condition is
satisfied by isometry currents and Kähler current in the interior of space-time sheets.
If this condition holds at 3-surfaces, one would have an global time coordinate and
integrable distribution of 2-planes defining a slicing of the 2-surface. This would
realize the conjecture that space-time surface has a slicing by partonic 2-surfaces.
One could say that the 2-surfaces defined by the distribution are orthogonal to B.
This need not however mean that the projection of J to these 2-surfaces vanishes.
The condition B^dB = 0 on the space-like 3-surfaces could be interpreted in terms
of e↵ective 2-dimensionality. The simplest option posing no additional conditions
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would allow two types of braids at space-like 3-surfaces and only Legendrian braids
at light-like 3-surfaces.

These observations inspire a question. Could it be that the conjectured dual slicings of
space-time sheets by space-like partonic 2-surfaces and by string world sheets are defined
by Aµ and Bµ respectively associated with slicings by light-like 3-surfaces and space-
like 3-surfaces? Could partonic 2-surfaces be identified as 2-D duals of 1-D Legendrian
sub-manifolds?

The identification of braids as Legendrian braids for light-like 3-surfaces and with Legen-
drian braids or their duals for space-like 3-surfaces would in turn imply that topological
braid theory is replaced with a symplectic braid theory in accordance with the view
about TGD as almost topological QFT. If finite measurement resolution corresponds
to the replacement of symplectic group with the coset space obtained by dividing by
a subgroup, symplectic subgroup would take the role of isotopies in knot theory. This
symplectic subgroup could be simply the symplectic group leaving the end points of
braids invariant.

An attempt to identify the constraints on the braid algebra

The basic problems in understanding of quantum TGD are conceptual. One must
proceed by trying to define various concepts precisely to remove the many possible
sources of confusion. With this in mind I try collect essential points about generalized
Feynman diagrams and their relation to braid diagrams and Feynman diagrams and
discuss also the most obvious constraints on algebraization.

Let us first summarize what generalized Feynman diagrams are.

i. Generalized Feynman diagrams are 3-D (or 4-D, depends on taste) objects inside
CD⇥CP2. Ordinary Feynman diagrams are in plane. If finite measurement resolu-
tion has as a space-time correlate discretization at the level of partonic 2-surfaces,
both space-like and light-like 3-surfaces reduce to braids and the lines of general-
ized Feynman diagrams correspond to braids. It is possible to obtain the analogs
of ordinary Feynman diagrams by projection to M2 ⇢ M4 defined uniquely for
given CD. The resulting apparent intersections would represent ne particular kind
of exotic intersection.

ii. Light-like 3-surfaces define the lines of generalized Feynman diagrams and the braid-
ing results naturally. Non-trivial first homology for the orbits of partonic 2-surfaces
with genus g > 0 could be called homological virtual intersections.

iii. It zero energy ontology braids must be characterized by time orientation. Also
it seems that one must distinguish in zero energy ontology between on mass shell
braids and o↵mass shell braid pairs which decompose to pairs of braids with positive
and negative energy massless on mass shell states. In order to avoid confusion one
should perhaps speak about tangles insie CD rather than braids. The operations
of the algebra are same except that the braids can end either to the upper or lower
light-like boundary of CD. The projection to M2 e↵ectively reduces the CD to a
2-dimensional causal diamond.

iv. The vertices of generalized Feynman diagrams are partonic 2-surfaces at which the
light-like 3-surfaces meet. This is a new element. If the notion of bosonic emergence
is accepted no n > 2-vertices are needed so that braid strands are redistributed
in the reaction vertices. The redistribution of braid strands in vertices must be
introduced as an additional operation somewhat analogous to . and the challenge is
to reduce this operation to something simple. Perhaps the basic operation reduces
to an exchange of braid strand between braids. The process can be seen as a
decay of of braid with the conservation of braid strands with strands from future
and past having opposite strand numbers. Also for this operation the analogs
of Reidermeister moves should be identified. In dance metaphor this operation
corresponds to a situation in which the dancer leaves the group to which it belongs
and goes to a new one.
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v. A fusion of Feynman diagrammatic non-planarity and braid theoretic non-planarity
is needed and the projection to M2 could provide this fusion when at least two kinds
of virtual crossings are allowed. The choice ofM2 could be global. An open question
is whether the choice of M2 could characterize separately each line of generalized
Feynman diagram characterized by the four-momentum associated with it in the
rest system defined by the tips of CD. Somehow the theory should be able to fuse
the braiding matrix for integrable QFT in M2 applying to entire braids with the
braiding matrix for braid theory applying at the level of single braid.

Both integral QFTs in M2 and braid theories suggest that biquandle structure is the
structure that one should try to generalized.

i. The representations of resulting bi-quandle like structure could allow abstract inter-
esting information about generalized Feynman diagrams themselves but the dream
is to construct generalized Feynman diagrams as analogs of knot invariants by a
recursive procedure analogous to un-knotting of a knot.

ii. The analog of bi-quandle algebra should have a hierarchical structure containing
braid strands at the lowest level, braids at next level, and braids of braids...of
braids at higher levels. The notion of operad would be ideal for formulating this
hierarchy and I have already proposed that this notion must be essential for the
generalized Feynman diagrammatics. An essential element is the vanishing of total
strand number in the vertex (completely analogous to conserved charged such as
fermion number). Again a convenient visualization is in terms of dancers forming
dynamical groups, forming groups of groups forming .....
I have already earlier suggested [K13] that the notion of operad [A18] relying on
permutation group and its subgroups acting in tensor products of linear spaces is
central for understanding generalized Feynman diagrams. n ! n1+n2 decay vertex
for n-braid would correspond to ”symmetry breaking” Sn ! Sn1⇥Sn2 . Braid group
represents the covering of permutation group so that braid group and its subgroups
permuting braids would suggest itself as the basic group theoretical notion. One
could assign to each strand of n-braid decaying to n1 and n2 braids a two-valued
color telling whether it becomes a strand of n1-braid or n2-braid. Could also this
”color” be interpreted as a particular kind of exotic crossing?

iii. What could be the analogs of Reidermaster moves for braid strands?

A. If the braid strands are dynamically determined, arbitrary deformations are
not possible. If however all isotopy classes are allowed, the interpretation would
be that a kind of gauge choice selecting one preferred representation of strand
among all possible ones obtained by continuous deformations is in question.

B. Second option is that braid strands are dynamically determined within finite
measurement resolution so that one would have braid theory in given length
scale resolution.

C. Third option is that topological QFT is replaced with symplectic QFT: this
option is suggested by the possibility to identify braid strands as Legendrian
knots or their duals. Subgroup of the symplectic group leaving the end points of
braids invariant would act as the analog of continous transformations and play
also the role of gauge group. The new element is that symplectic transformations
a↵ect partonic 2-surfaces and space-time surfaces except at the end points of
braid.

iv. Also 2-braids and perhaps also 2-knots could be useful and would provide string
theory like approach to TGD. In this case the projections could be performed to
the ends of CD or to M3, which can be identified uniquely for a given CD.

v. There are of course many additional subtleties involved. One should not forget
loop corrections, which naturally correspond to sub-CDs. The hierarchy of Planck
constants and number theoretical universality bring in additional complexities.

All this looks perhaps hopelessly complex but the Universe around is complex even if
the basic principles could be very simple.
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9.7.4 About string world sheets, partonic 2-surfaces, and two-
knots

String world sheets and partonic 2-surfaces provide a beatiful visualization of generalized
Feynman diagrams as braids and also support for the duality of string world sheets and
partonic 2-surfaces as duality of light-like and space-like braids. Dance metaphor is very
helpful here.

i. The projection of string world sheets and partonic 2-surfaces to 3-D space replaces
knot projection. In TGD context this 3-D of space could correspond to the 3-D
light-like boundary of CD and 2-knot projection would correspond to the projection
of the braids associated with the lines of generalized Feynman diagram. Another
identification would be as M1⇥E2, where M1 is the line connecting the tips of CD
and E2 the orthogonal complement of M2.

ii. Using dance metaphor for light-like braiding, braids assignable to the lines of gen-
eralized Feynman diagrams would correspond to groups of dancers. At vertices
the dancing groups would exchange members and completely new groups would be
formed by the dancers . The number of dancers (negative for those dancing in the
reverse time direction) would be conserved. Dancers would be connected by threads
representing strings having braid points at their ends. During the dance the light-
like braiding would induce space-like braiding as the threads connecting the dancers
would get entangled. This would suggest that the light-like braids and space-like
braidings are equivalent in accordance with the conjectured duality between string-
world sheets and partonic 2-surfaces. The presence of genuine 2-knottedness could
spoil this equivalence unless it is completely local.

Can string world sheets and partonic 2-surfaces get knotted?

i. Since partonic 2-surfaces (wormhole throats) are imbedded in light-cone boundary,
the preferred 3-D manifolds to which one can project them is light-cone boundary
(boundary of CD). Since the projection reduces to inclusion these surfaces cannot
get knotted. Only if the partonic 2-surfaces contains in its interior the tip of the
light-cone something non-trivial identifiable as virtual 2-knottedness is obtained.

ii. One might argue that the conjectured duality between the descriptions provided by
partonic 2-surfaces and string world sheets requires that also string world sheets
represent trivial 2-braids. I have shown earlier that nontrivial local knots glued to
the string world sheet require that M4 time coordinate has a local maximum. Does
this mean that 2-knots are excluded? This is not obvious: TGD allows also regions
of space-time surface with Euclidian signature and generalized Feynman graphs as
4-D space-time regions are indeed Euclidian. In these regions string world sheets
could get knotted.

What happens for knot diagrams when the dimension of knot is increased to two? Ac-
cording to the articles of Nelson [A53] and Carter [A34] the crossings for the projections
of braid strands are replaced with more complex singularities for the projections of 2-
knots. One can decompose the 2-knots to regions surrounded by boxes. Box can contain
just single piece of 2-D surface; it can contain two intersection pieces of 2-surfaces as
the counterpart of intersecting knot strands and one can tell which of them is above
which; the box can contain also a discrete point in the intersection of projections of
three disjoint regions of knot which consists of discrete points; and there is also a box
containing so called cone point. Unfortunately, I failed to understand the meaning of
the cone point.

For 2-knots Reidemeister moves are replaced with Roseman moves. The generalization
would allow virtual self intersections for the projection and induced by the non-trivial
second homology of 4-D imbedding space. In TGD framework elementary particles
have homologically non-trivial partonic 2-surfaces (magnetic monpoles) as their building
bricks so that even if 2-knotting in standard sense might be not allowed, virtual 2-
knotting would be possible. In TGD framework one works with a subgroup of symplectic
transformations defining measurement resolution instead of isotopies and this might
reduce the number of allowed mov

http://www.ams.org/notices/201111/rtx111101553p.pdf
http://arxiv.org/pdf/1002.4429v2
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The dynamics of string world sheets and the expression for Kähler action

The dynamics of string world sheets is an open question. E↵ective 2-dimensionality
suggests that Kähler action for the preferred extremal should be expressible using 2-D
data but there are several guesses for what the explicit expression could be, and one
can only make only guesses at this moment and apply internal consistency conditions
in attempts to kill various options.

1. Could weak form of electric-magnetic duality hold true for string world sheets?

If one believes on duality between string world sheets and partonic 2-surfaces, one can
argue that string world sheets are most naturally 2-surfaces at which the weak form
of electric magnetic duality holds true. One can even consider the possibility that the
weak form of electric-magnetic duality holds true only at the the string world sheets
and partonic 2-surfaces but not at the preferred 3-surfaces.

i. The weak form of electric magnetic duality would mean that induced Kähler form
is non-vanishing at them and Kähler magnetic flux over string world sheet is pro-
portional to Kähler electric flux.

ii. The flux of the induced Kähler form of CP2 over string world sheet would define
a dimensionless ”area”. Could Kähler action for preferred extremals reduces to
this flux apart from a proportionality constant. This ”area” would have trivially
extremum with respect to symplectic variations if the braid strands are Legendrian
sub-manifolds since in this case the projection of Kähler gauge potential on them
vanishes. This is a highly non-trivial point and favors weak form of electric-magnetic
duality and the identification of Kähler action as Kähler magnetic flux. This option
is also in spirit with the vision about TGD as almost topological QFT meaning that
induced metric appears in the theory only via electric-magnetic duality.

iii. Kähler magnetic flux over string world sheet has a continuous spectrum so that
the identification as Kähler action could make sense. For partonic 2-surfaces the
magnetic flux would be quantized and give constant term to the action perhaps
identifiable as the contribution of CP2 type vacuum extremals giving this kind of
contribution.

The change of space-time orientation by changing the sign of permutation symbol would
change the sign in electric-magnetic duality condition and would not be a symmetry. For
a given magnetic charge the sign of electric charge changes when orientation is changed.
The value of Kähler action does not depend on space-time orientation but weak form of
electric-magnetic duality as boundary condition implies dependence of the Kähler action
on space-time orientation. The change of the sign of Kähler electric charge suggests the
interpretation of orientation change as one aspect of charge conjugation. Could this
orientation dependence be responsible for matter antimatter asymmetry?

2. Could string world sheets be Lagrangian sub-manifolds in generalized sense?

Legendrian sub-manifolds can be lifted to Lagrangian sub-manifolds [A4] Could one
generalize this by replacing Lagrangian sub-manifold with 2-D sub-manifold of space-
times surface for which the projection of the induced Kähler form vanishes? Could
string world sheets be Lagrangian sub-manifolds?

I have also proposed that the inverse image of homologically non-trivial sphere of CP2

under imbedding map could define counterparts of string world sheets or partonic 2-
surfaces. This conjecture does not work as such for cosmic strings, massless extremals
having 2-D projection since the inverse image is in this case 4-dimensional. The option
based on homologically non-trivial geodesic sphere is not consistent with the identifi-
cation as analog of Lagrangian manifold but the identification as the inverse image of
homologically trivial geodesic sphere is.

The most general option suggested is that string world sheet is mapped to 2-D La-
grangian sub-manifold of CP2 in the imbedding map. This would mean that theory is
exactly solvable at string world sheet level. Vacuum extremals with a vanishing induced
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Kähler form would be exceptional in this framework since they would be mapped as
a whole to Lagrangian sub-manifolds of CP2. The boundary condition would be that
the boundaries of string world sheets defined by braids at preferred 3-surfaces are Leg-
endrian sub-manifolds. The generalization would mean that Legendrian braid strands
could be continued to Lagrangian string world sheets for which induced Kähler form
vanishes. The physical interpretation would be that if particle moves along this kind of
string world sheet, it feels no covariant Lorentz-Kähler force and contra variant Lorentz
forces is orthogonal to the string world sheet.

There are however serious objections.

i. This proposal does not respect the proposed duality between string world sheets
and partonic 2-surfaces which as carries of Kähler magnetic charges cannot be
Lagrangian 2-manifolds.

ii. One loses the elegant identification of Kähler action as Kähler magnetic flux since
Kähler magnetic flux vanishes. Apart from proportionality constant Kähler electric
flux Z

Y 2

⇤J

is as a dimensionless scaling invariant a natural candidate for Kähler action but
need not be extremum if braids are Legendrian sub-manifolds whereas for Kähler
magnetic flux this is the case. There is however an explicit dependence on metric
which does not conform with the idea that almost topological QFT is symplectic
QFT.

iii. The sign factor of the dual flux which depends on the orientation of the string world
sheet and thus changes sign when the orientation of space-time sheet is changed by
changing that of the string world sheet. This is in conflict with the independence
of Kähler action on orientation. One can however argue that the orientation makes
itself actually physically visible via the weak form of electric-magnetic duality. If
the above discussed duality holds true, the net contribution to Kähler action would
vanish as the total Kähler magnetic flux for partonic 2-surfaces. Therefore the
duality cannot hold true if Kähler action reduces to dual flux.

iv. There is also a purely formal counter argument. The inverse images of Lagrangian
sub-manifolds of CP2 can be 4-dimensional (cosmic strings and massless extremals)
whereas string world sheets are 2-dimensonal.

String world sheets as minimal surfaces

E↵ective 2-dimensionality suggests a reduction of Kähler action to Chern-Simons terms
to the area of minimal surfaces defined by string world sheets holds true [K22]. Skeptic
could argue that the expressibility of Kähler action involving no dimensional parameters
except CP2 scaled does not favor this proposal. The connection of minimal surface
property with holomorphy and conformal invariance however forces to take the proposal
seriously and it is easy to imagine how string tension emerges since the size scale of CP2

appears in the induced metric [K22].

One can ask whether the mimimal surface property conforms with the proposal that
string worlds sheets obey the weak form of electric-magnetic duality and with the pro-
posal that they are generalized Lagrangian sub-manifolds.

i. The basic answer is simple: minimal surface property and possible additional con-
ditions (Lagrangian sub-manifold property or the weak form of electric magnetic
duality) poses only additional conditions forcing the space-time sheet to be such that
the imbedded string world sheet is a minimal surface of space-time surface: min-
imal surface property is a condition on space-time sheet rather than string world
sheet. The weak form of electric-magnetic duality is favored because it poses condi-
tions on the first derivatives in the normal direction unlike Lagrangian sub-manifold
property.

http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#kahler%20
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ii. Any proposal for 2-D expression of Kähler action should be consistent with the
proposed real-octonion analytic solution ansatz for the preferred extremals [K5].
The ansatz is based on real-octonion analytic map of imbedding space to itself ob-
tained by algebraically continuing real-complex analytic map of 2-D sub-manifold
of imbedding space to another such 2-D sub-manifold. Space-time surface is ob-
tained by requiring that the ”imaginary” part of the map vanishes so that image
point is hyper-quaternion valued. Wick rotation allows to formulate the conditions
using octonions and quaternions. Minimal surfaces (of space-time surface) are in-
deed objects for which the imbedding maps are holomorphic and the real-octonion
analyticity could be perhaps seen as algebraic continuation of this property.

iii. Does Kähler action for the preferred exremals reduce to the area of the string
world sheet or to Kähler magnetic flux or are the representations equivalent so
that the induced Kähler form would e↵ectively define area form? If the Kähler
form form associated with the induced metric on string world sheet is proportional
to the induced Kähler form the Kähler magnetic flux is proportional to the area
and Kähler action reduces to genuine area. Could one pose this condition as an
additional constraint on string world sheets? For Lagrangian sub-manifolds Kähler
electric field should be proportional to the area form and the condition involves
information about space-time surface and is therefore more complex and does not
look plausible.

Explicit conditions expressing the minimal surface property of the string
world sheet

It is instructive to write explicitly the condition for the minimal surface property of the
string world sheet and for the reduction of the area Kähler form to the induced Kähler
form. For string world sheets with Minkowskian signature of the induced metric Kähler
structure must be replaced by its hyper-complex analog involving hyper-complex unit e
satisfying e2 = 1 but replaced with real unit at the level hyper-complex coordinates. e
can be represented as antisymmetric Kähler form Jg associated with the induced metric
but now one has J2

g = g instead of J2
g = �g. The condition that the signed area reduces

to Kähler electric flux means that Jg must be proportional to the induced Kähler form:
Jg = kJ , k = constant in a given space-time region.

One should make an educated guess for the imbedding of the string world sheet into a
preferred extremal of Kähler action. To achieve this it is natural to interpret the minimal
surface property as a condition for the preferred Kähler extremal in the vicinity of the
string world sheet guaranteeing that the sheet is a minimal surface satisfying Jg = kJ .
By the weak form of electric-magnetic duality partonic 2-surfaces represent both electric
and magnetic monopoles. The weak form of electric-magnetic duality requires for string
world sheets that the Kähler magnetic field at string world sheet is proportional to the
component of the Kähler electric field parallel to the string world sheet. Kähler electric
field is assumed to have component only in the direction of string world sheet.

1. Minkowskian string world sheets

Let us try to formulate explicitly the conditions for the reduction of the signed area to
Kähler electric flux in the case of Minkowskian string world sheets.

i. Let us assume that the space-time surface in Minkowskian regions has coordinates
coordinates (u, v, w, w) [K5]. The pair (u, v) defines light-like coordinates at the
string world sheet having identification as hyper-complex coordinates with hyper-
complex unit satisfying e = 1. u and v need not - nor cannot as it turns out - be
light-like with respect to the metric of the space-time surface. One can use (u, v) as
coordinates for string world sheet and assume that w = x1+ ix2 and w are constant
for the string world sheet. Without a loss of generality one can assume w = w = 0
at string world sheet.

ii. The induced Kähler structure must be consistent with the metric. This implies that
the induced metric satisfies the conditions
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guu = gvv = 0 . (9.7.1)

The analogs of these conditions in regions with Euclidian signature would be gzz =
gzz = 0.

iii. Assume that the imbedding map for space-time surface has the form

sm = sm(u, v) + fm(u, v, xm)klx
kxl , (9.7.2)

so that the conditions

@lks
m = 0 , @k@us

m = 0, @k@vs
m = 0 (9.7.3)

are satisfies at string world sheet. These conditions imply that the only non-
vanishing components of the induced CP2 Kähler form at string world sheet are
Juv and Jww. Same applies to the induced metric if the metric of M4 satisfies these
conditions (no non-vanishing components of form muk or mvk).

iv. Also the following conditions hold true for the induced metric of the space-time
surface

@kguv = 0 , @ugkv = 0 , @vgku = 0 . (9.7.4)

at string world sheet as is easy to see by using the ansatz.

Consider now the minimal surface conditions stating that the trace of the four compo-
nents of the second fundamental form whose components are labelled by the coordinates
{x↵} ⌘ (u, v, w, w) vanish for string world sheet.

i. Since only guv is non-vanishing, only the componentsHk
uv of the second fundamental

form appear in the minimal surface equations. They are given by the general formula

H↵
uv = H�P↵

� ,

H↵ = (@u@vx
↵ +

�
↵

� �

�
@ux

�@vx
�) . (9.7.5)

Here P↵
� is the projector to the normal space of the string world sheet. Formula

contains also Christo↵el symbols ( ↵
� � ).

ii. Since the imbedding map is simply (u, v) ! (u, v, 0, 0) all second derivatives in the
formula vanish. Also Hk = 0,k 2 {w,w} holds true. One has also @ux↵ = �↵u and
@vx� = ��v . This gives

H↵ = ( ↵
u v ) . (9.7.6)

All these Christo↵el symbols however vanish if the assumption guu = gvv = 0 and
the assumptions about imbedding ansatz hold true. Hence a minimal surface is in
question.

Consider now the conditions on the induced metric of the string world sheet

i. The conditions reduce to

guu = gvv = 0 . (9.7.7)

The conditions on the diagonal components of the metric are the analogs of Virasoro
conditions fixing the coordinate choices in string models. The conditions state that
the coordinate lines for u and v are light-like curves in the induced metric.

ii. The conditions can be expressed directly in terms of the induced metric and read

muu + skl@us
k@us

l = 0 ,

mvv + skl@vs
k@vs

l = 0 . (9.7.8)

The CP2 contribution is negative for both equations. The conditions make sense
only for (muu > 0,mvv > 0). Note that the determinant condition muumvv �
muvmvu < 0 expresses the Minkowskian signature of the (u, v) coordinate plane in
M4.
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The additional condition states

Jg
uv = kJuv . (9.7.9)

It reduces signed area to Kähler electric flux. If the weak form of electric-magnetic
duality holds true one can interpret the area as magnetic flux defined as the flux of
the dual of induced Kähler form over space-like surface and defining electric charge. A
further condition is that the boundary of string world sheet is Legendrean manifold so
that the flux and thus area is extremized also at the boundaries.

2.Conditions for the Euclidian string world sheets

One can do the same calculation for string world sheet with Euclidian signature. The
only di↵erence is that (u, v) is replaced with (z, z). The imbedding map has the
same form assuming that space-time sheet with Euclidian signature allows coordinates
(z, z, w,w) and the local conditions on the imbedding are a direct generalization of the
above described conditions. In this case the vanishing for the diagonal components of
the string world sheet metric reads as

hkl@zs
k@zs

l = 0 ,

hkl@zs
k@zs

l = 0 . (9.7.10)

The natural ansatz is that complex CP2 coordinates are holomorphic functions of the
complex coordinates of the space-time sheet.

3. Wick rotation for Minkowskian string world sheets leads to a more detailed solution
ansatz

Wick rotation is a standard trick used in string models to map Minkowskian string world
sheets to Euclidian ones. Wick rotation indeed allows to define what one means with
real-octonion analyticity. Could one identify string world sheets in Minkowskian regions
by using Wick rotation and does this give the same result as the direct approach?

Wick rotation transforms space-time surfaces in M4 ⇥ CP2 to those in E4 ⇥ CP2. In
E4 ⇥ CP2 octonion real-analyticity is a well-defined notion and one can identify the
space-time surfaces surfaces at which the imaginary part of of octonion real-analytic
function vanishes: imaginary part is defined via the decomposition of octonion to two
quaternions as o = q1+Iq2 where I is a preferred octonion unit. The reverse of the Wick
rotation maps the quaternionic surfaces to what might be called hyper-quaternionic
surfaces in M4 ⇥ CP2.

In this picture string world sheets would be hyper-complex surfaces defined as inverse
imagines of complex surfaces of quaternionic space-time surface obtained by the inverse
of Wick rotation. For this approach to be equivalent with the above one it seems neces-
sary to require that the the treatment of the conditions on metric should be equivalent
to that for which hyper-complex unit e is not put equal to 1. This would mean that
the conditions reduce to independent conditions for the real and imaginary parts of the
real number formally represented as hyper-complex number with e = 1.

Wick rotation allows to guess the form of the ansatz for CP2 coordinates as functions
of space-time coordinates In Euclidian context holomorphich functions of space-time
coordinates are the natural ansatz. Therefore the natural guess is that one can map
the hypercomplex number t ± ez to complex coordinate t ± iz by the analog of Wick
rotation and assume that CP2 complex coordinates are analytic functions of the complex
space-time coordinates obtained in this manner.

The resulting induced metric could be obtained directly using real coordinates (t, z) for
string world sheet or by calculating the induced metric in complex coordinates t±iz and
by mapping the expressions to hyper-complex numbers by Wick rotation (by replacing
i with e = 1). If the diagonal components of the induced metric vanish for t ± iz they
vanish also for hyper-complex coordinates so that this approach seem to make sense.
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Electric-magnetic duality for flux Hamiltonians and the existence of Wilson
sheets

One must distinguish between two conjectured dualities. The weak form of electric-
magnetic duality and the duality between string world sheets and partonic 2-surfaces.
Could the first duality imply equivalence of not only electric and magnetic flux Hamil-
tonians but also electric and magnetic Wilson sheets? Could the latter duality allow
two di↵erent representations of flux Hamiltonians?

i. For electric-magnetic duality holding true at string world sheets one would have
non-vanishing Kähler form and the fluxes would be non-vanishing. The Hamiltonian
fluxes

Qm,A =

Z
X2

JHAdx
1dx2 =

Z
X2

HAJ↵�dx
↵ ^ dx� (9.7.11)

for partonic 2-surfaces X2 define WCW Hamiltonians playing a key role in the defi-
nition of WCW Kähler geometry. They have also interpretation as a generalization
of Wilson loops to Wilson 2-surfaces.

ii. Weak form of electric magnetic duality would imply both at partonic 2-surfaces and
string world sheets the proportionality

Qm,A =

Z
X2

JHAdx
1 ^ dx2 / Q⇤

m,A =

Z
X2

HA ⇤ J↵�dx↵ ^ dx� . (9.7.12)

Therefore the electric-magnetic duality would have a concrete meaning also at the
level of WCW geometry.

iii. If string world sheets are Lagrangian sub-manifolds Hamiltonian fluxes would vanish
identically so that the identification as Wilson sheets does not make sense. One
would lose electric-magnetic duality for flux sheets. The dual fluxes

⇤QA =

Z
Y 2

⇤JHAdx
1 ^ dx2 =

Z
Y 2

✏ ��
↵� J�� =

Z
Y 2

p
det(g4)

det(g?2 )
J?
34dx

1 ^ dx2

for string world sheets Y 2 are however non-vanishing. Unlike fluxes, the dual fluxes
depend on the induced metric although they are scaling invariant.

Under what conditions the conjectured duality between partonic 2-surface and string
world sheets hold true at the level of WCW Hamiltonians?

i. For the weak form of electric-magnetic duality at string world sheets the duality
would mean that the sum of the fluxes for partonic 2-surfaces and sum of the fluxes
for string world sheets are identical apart from a proportionality constant:X

i

QA(X
2
i ) /

X
i

QA(Y
2
i ) . (9.7.13)

Note that in zero ontology it seems necessary to sum over all the partonic surfaces
(at both ends of the space-time sheet) and over all string world sheets.

ii. For Lagrangian sub-manifold option the duality can hold true only in the formX
i

QA(X
2
i ) /

X
i

Q⇤
A(Y

2
i ) . (9.7.14)

Obviously this option is less symmetric and elegant.

Summary

There are several arguments favoring weak form of electric-magnetic duality for both
string world sheets and partonic 2-surfaces. Legendrian sub-manifold property for braid
strands follows from the assumption that Kähler action for preferred extremals is propor-
tional to the Kähler magnetic flux associated with preferred 2-surfaces and is stationary
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with respect to the variations of the boundary. What is especially nice is that Legen-
drian sub-manifold property implies automatically unique braids. The minimal option
favored by the idea that 3-surfaces are basic dynamical objects is the one for which weak
form of electric-magnetic duality holds true only at partonic 2-surfaces and string world
sheets. A stronger option assumes it at preferred 3-surfaces. Duality between string
world sheets and partonic 2-surfaces suggests that WCW Hamiltonians can be defined
as sums of Kähler magnetic fluxes for either partonic 2-surfaces or string world sheets.

9.7.5 What generalized Feynman rules could be?

After all these explanations the skeptic reader might ask whether this lengthy discussion
gives any idea about what the generalized Feynman rules might look like. The attempt
to answer this question is a good manner to make a map about what is understood and
what is not understood. The basic questions are simple. What constraints does zero
energy ontology (ZEO) pose? What does the necessity to projecti the four-momenta
to a preferred plane M2 mean? What mathematical expressions one should assign to
the propagator lines and vertices? How does one perform the functional integral over 3-
surfaces in finite measurement resolution? The following represents tentatative answers
to these questions but does not say much about exact role of algebraic knots.

Zero energy ontology

Zero energy ontology (ZEO) poses very powerful constraints on generalized Feynman
diagrams and gives hopes that both UV and IR divergences cancel.

i. ZEO predicts that the fermions assigned with braid strands associated with the
virtual particles are on mass shell massless particles for which the sign of energy
can be also negative: in the case of wormhole throats this can give rise to a tachyonic
exchange.

ii. The on mass shell conditions for each wormhole throat in the diagram involving
loops are very stringent and expected to eliminate very large classes of diagrams. If
however given diagonal diagram leading from n-particle state to the same n-particle
state -completely analogous to self energy diagram- is possible then the ladders
form by these diagrams are also possible and one one obtains infinite of this kind of
diagrams as generalized self energy correction and is excellent hopes that geometric
series gives a closed algebraic function.

iii. IR divergences plaguing massless theories are cancelled if the incoming and outgoing
particles are massive bound states of massless on mass shell particles. In the simplest
manner this is achieved when the 3-momenta are in opposite direction. For internal
lines the massive on-mass shell-condition is not needed at all. Therefore there is an
almost complete separation of the problem how bound state masses are determined
from the problem of constructing the scattering amplitudes.

iv. What looks like a problematic aspect ZEO is that the massless on-mass-shell propa-
gators would diverge for wormhole throats. The solution comes from the projection
of 4-momenta to M2. In the generic the projection is time-like and one avoids the
singularity. The study of solutions of the modified Dirac equation [K18] and num-
ber theoretic vision [K50] indeed suggests that the four-momenta are obtained by
rotating massless M2 momenta and their projections to M2 are in general integer
multiples of hyper-complex primes or light-like. The light-like momenta would be
treated like in the case of ordinary Feynman diagrams using i✏-prescription of the
propagator and would also give a finite contributions corresponding to integral over
physical on mass shell states. This guarantees also the vanishing of the possible IR
divergences coming from the summation over di↵erent M2 momenta.
There is a strong temptation to identify - or at least relate - the M2 momenta
labeling the solutions of the modified Dirac equation with the region momenta of
twistor approach [K61]. The reduction of the region momenta toM2 momenta could
dramatically simplify the twistorial description. It does not seem however plausible
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that N = 4 super-symmetric gauge theory could allow the identification of M2

projections of 4-momenta as region momenta. On the other hand, there is no reason
to expect the reduction of TGD certainly to a gauge theory containing QCD as part.
For instance, color magnetic flux tubes in many-sheeted space-time are central for
understanding jets, quark gluon plasma, hadronization and fragmentation [L11] but
cannot be deduced from QCD. Note also that the splitting of parton momenta to
their M2 projections and transversal parts is an ad hoc assumption motivated by
parton model rather than first principle implication of QCD: in TGD framework
this splitting would emerge from first principles.

v. ZEO strongly suggests that all particles (including photons, gluons, and gravitons)
have mass which can be arbitrarily small and could be perhaps seen as being due
to the fact that particle ”eats” Higgs like states giving it the otherwise lacking
polarization states. This would mean a generalization of the notion of Higgs particle
to a Higgs like particle with spin. It would also mean rearrangmenet of massless
states at wormhole throat level to massives physical states. The slight massication
of photon by p-adic thermodynamics does not however mean disappearance of Higgs
from spectrum, and one can indeed construct a model for Higgs like states [K65].
The projection of the momenta to M2 is consistent with this vision. The natural
generalization of the gauge condition p · ✏ = 0 is obtained by replacing p with the
projection of the total momentum of the boson to M2 and ✏ with its polarization so
that one has p|| · ✏. If the projection to M2 is light-like, three polarization states are
possible in the generic case, so that massivation is required by internal consistency.
Note that if intermediate states in the unitary condition were states with light-like
M2-momentum one could have a problematic situation.

vi. A further assumption vulnerable to criticism is that the M2 projections of all mo-
menta assignable to braid strands are parallel. Only the projections of the momenta
to the orthogonal complement E2 of M2 can be non-parallel and for massive worm-
hole throats they must be non-parallel. This assumption does not break Lorentz
invariance since in the full amplitude one must integrate over possible choices of
M2. It also interpret the gauge conditions either at the level of braid strands or of
partons. Quantum classical correspondence in strong form would actually suggests
that quantum 4-momenta should co-incide with the classical ones. The restric-
tion to M2 projections is however necessary and seems also natural. For instance,
for massless extremals only M2 projection of wave-vector can be well-defined: in
transversal degrees of freedom there is a superposition over Fourier components
with di↵rent transversal wave-vectors. Also the partonic description of hadrons
gives for the M2 projections of the parton momenta a preferred role. It is highly
encouraging that this picture emerged first from the modified Dirac equation and
purely number theoretic vision based on the identification of M2 momenta in terms
of hyper-complex primes.
The number theoretical approach also suggests a number theoretical quantization
of the transversal parts of the momenta [K50]: four-momenta would be obtained
by rotating massless M2 momenta in M4 in such a manner that the components
of the resulting 3-momenta are integer valued. This leads to a classical problem
of number theory which is to deduce the number of 3-vectors of fixed length with
integer valued components. One encounters the n-dimensional generalization of this
problem in the construction of discrete analogs of quantum groups (these ”classical”
groups are analogous to Bohr orbits) and emerge in quantum arithmetics [K64],
which is a deformation of ordinary arithmetics characterized by p-adic prime and
giving rigorous justification for the notion of canonical identification mapping p-adic
numbers to reals.

vii. The real beauty of Feynman rules is that they guarantee unitarity automatically.
In fact, unitarity reduces to Cutkosky rules which can be formulated in terms of cut
obtained by putting certain subset of interal lines on mass shell so that it represents
on mass shell state. Cut analyticity implies the usual iDisc(T ) = TT †. In the recent
context the cutting of the internal lines by putting them on-mass-shell requires a
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generalization.

A. The first guess is that on mass shell property means that M2 projection for the
momenta is light-like. This would mean that also these momenta contribute to
the amplitude but the contribution is finite just like in the usual case. In this
formulation the real particles would be the massless wormhole throats.

B. Second possibility is that the internal lines on on mass shell states corresponding
to massive on mass-shell-particles. This would correspond to the experimental
meaning of the unitary conditions if real particles are the massive on mass shell
particles. Mathematically it seems possible to pick up from the amplitude the
states which correspond to massive on mass shell states but one should under-
stand why the discontinuity should be associated with physical net masses for
wormhole contacts or many-particle states formed by them. General connection
with unitarity and analyticity might allow to understand this.

viii. CDs are labelled by various moduli and one must integrate over them. Once the tips
of the CD and therefore a preferred M1 is selected, the choice of angular momentum
quantization axis orthogonal to M1 remains: this choice means fixing M2. These
choices are parameterized by sphere S2. It seems that an integration over di↵erent
choices of M2 is needed to achieve Poincare invariance.

How the propagators are determined?

In accordance with previous sections it will be assumed that the braid are Legendrian
braids and therefore completely well-defined. One should assign propagator to the braid.
A good guess is that the propagator reduces to a product of three terms.

i. A multi-particle propagator which is a product of collinear massless propagators for
braid strands with fermionin number F = 0, 1� 1. The constraint on the momenta
is pi = �ip with

P
i �i = 1. So that the fermionic propagator is 1Q

i

�
i

pk�k. If one

gas p = nP , where P is hyper-complex prime, one must sum over combinations of
�i = ni satisfying

P
i ni = n.

ii. A unitary S-matrix for integrable QFT in M2 in which the velocities of particles
assignable to braid strands appear for which fixed by R-matrix defines the basic
2-vertex representing the process in which a particle passes through another one.
For this S-matrix braids are the basic units. To each crossing appearing in non-
planar Feynman diagram one would have an R-matrix representing the e↵ect of a
reconnection the ends of the lines coming to the crossing point. In this manner one
could gradually transform the non-planar diagram to a planar diagram. One can
ask whether a formulation in terms of a suitable R-matrix could allow to generalize
twistor program to apply in the case of non-planar diagrams.

iii. An S-matrix predicted by topological QFT for a given braid. This S-matrix should
be constructible in terms of Chern-Simons term defining a sympletic QFT.

There are several questions about quantum numbers assignable to the braid strands.

i. Can braid strands be only fermionic or can they also carry purely bosonic quantum
numbers corresponding to WCW Hamiltonians and therefore to Hamiltonians of
�M4

± ⇥ CP2? Nothing is lost if one assumes that both purely bosonic and purely
fermionic lines are possible and looks whether this leads to inconsistencies. If virtual
fermions correspond to single wormhole throat they can have only time-like M2-
momenta. If virtual fermions correspond to pairs of wormhole throats with second
throat carrying purely bosonic quantum numbers, also fermionic can have space-like
net momenta. The interpretation would be in terms of topological condensation.
This is however not possible if all strands are fermionic. Situation changes if one
identifies physical fermions wormhole throats at the ends of Kähler magnetic flux
tube as one indeed does: in this case virtual net momentum can be space-like if the
sign of energy is opposite for the ends of the flux tube.

ii. Are the 3-momenta associated with the wormholes of wormhole contact parallel so
that only the sign of energy could distinguish between them for space-like total
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momentum and M2 mass squared would be the same? This assumption simplifies
the situation but is not absolutely necessary.

iii. What about the momentum components orthogonal to M2? Are they restricted
only by the massless mass shell conditions on internal lines and quantization of the
M2 projection of 4-momentum?

iv. What kind of braids do elementary particles correspond? The braids assigned to
the wormhole throat lines can have arbitrary number n of strands and for n = 1, 2
the treatment of braiding is almost trivial. A natural assumption is that propa-
gator is simply a product of massless collinear propagators for M2 projection of
momentum [K19]. Collinearity means that propagator is product of a multifermion
propagator 1

�
i

p
k

�
k

, znd multiboson propagator 1
µ
i

p
k

�
k

,
P

�i+
P

i µi = 1. There are

also quantization conditions on M2 projections of momenta from modified Dirac
equation implying that multiplies of hyper-complex prime are in question in suit-
able units. Note however that it is not clear whether purely bosonic strands are
present.

v. For ordinary elementary particles with propagators behaving like
Q

i �
�1
i 1p�n, only

n  2 is possible. The topologically really interesting states with more than two
braid strands are something else than what we have used to call elementary parti-
cles. The proposed interpretation is in terms of anyonic states [K37]. One important
implication is that N = 1 SUSY generated by right-handed neutrino or its antineu-
trino is SUSY for which all members of the multiplet assigned to a wormhole throat
have braid number smaller than 3. For N = 2 SUSY generated by right-handed
neutrino and its antiparticle the states containing fermion and neutrino-antineutrino
pair have three braid strands and SUSY breaking is expected to be strong.

Vertices

Conformal invariance raises the hope that vertices can be deduced from super-conformal
invariance as n-point functions. Therefore lines would come from integrable QFT in M2

and topological braid theory and vertices from confofmal field theory: both theories are
integrable.

The basic questions is how the vertices are defined by the 2-D partonic surfaces at which
the ends of lines meet. Finite measurement resolution reduces the lines to braids so that
the vertices reduces to the intersection of braid strands with the partonic 2-surface.

i. Conformal invariance is the basic symmetry of quantum TGD. Does this mean that
the vertices can be identified as n-point functions for points of the partonic 2-surface
defined by the incoming and outgoing braid strands? How strong constraints can
one pose on this conformal field theory? Is this field theory free and fixed by anti-
commutation relations of induced spinor fields so that correlation function would
reduce to product of fermionic two points functions with standard operator in the
vertices represented by strand ends. If purely bosonic vertices are present, their
correlation functions must result from the functional integral over WCW.

ii. For the fermionic fields associated with each incoming braid the anti-commutators of
fermions and anti-fermions are trivial just as the usual equal time anti-commutation
relations. This means that the vertex reduces to sum of products of fermionic
correlation functions with arguments belonging to di↵erent incoming and outgoing
lines. How can one calculate the correlators?

A. Should one perform standard second quantization of fermions at light-like 3-
surface allowing infinite number of spinor modes, apply a finite measurement
resolution to obtain braids, for each partonic 2-surface, and use the full fermion
fields to calculate the correlators? In this case braid strands would be dis-
continuous in vertices. A possible problem might be that the cuto↵ in spinor
modes seems to come from the theory itself: finite measurement resolution is a
property of quantum state itself.
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B. Could finite measurement resolution allow to approximate the braid strands
with continuous ones so that the correlators between strands belonging to dif-
ferent lines are given by anti-commutation relations? This would simplify enor-
mously the situation and would conform with the idea of finite measurement
resolution and the vision that interaction vertices reduce to braids. This vision
is encouraged by the previous considerations and would mean that replication
of braid strands analogous to replication of DNA strands can be seen as a fun-
damental process of Nature. This of course represents an important deviation
from the standard picture.

iii. Suppose that one accepts the latter option. What can happen in the vertex, where
line goes from one braid to another one?

A. Can the direction of momentum changed as visual intuition suggests? Is the
total braid momentum conservation the only constraint so that the velocities
assignable braid strands in each line would be constrained by the total momen-
tum of the line.

B. What kind of operators appear in the vertex? To get some idea about this one
can look for the simplest possible vertex, namely FFB vertex which could in
fact be the only fundamental vertex as the arguments of [K11] suggest. The
propagator of spin one boson decomposes to product of a projection operator
to the polarization states divited by p2 factor. The projection operator sum
over products ✏ki �k at both ends where �k acts in the spinor space defined by
fermions. Also fermion lines have spinor and its conjugate at their ends. This
gives rise to pk�k/p2. pk�k is the analog of the bosonic polarization tensor
factorizing into a sum over products of fermionic spinors and their conjugates.
This gives the BFF vertex ✏ki �k slashed between the fermionic propagators which
are e↵ectively 2-dimensional.

C. Note that if H-chiralities are same at the throats of the wormhole contact, only
spin one states are possible. Scalars would be leptoquarks in accordance with
general view about lepton and quark number conservation. One particular im-
plication is that Higgs in the standard sense is not possible in TGD framework.
It can appear only as a state with a polarization which is in CP2 direction. In
any case, Higgs like states would be eaten by massless state so that all particles
would have at least a small mass.

Functional integral over 3-surfaces

The basic question is how one can functionally integrate over light-like 3-surfaces or
space-like 3-surfaces.

i. Does e↵ective 2-dimensionality allow to reduce the functional integration to that
over partonic 2-surfaces assigned with space-time sheet inside CD plus radiative
corrections from the hierarchy of sub-CDs?

ii. Does finite measurement resolution reduce the functional integral to a ordinary
integral over the positions of the end points of braids and could this integral reduce
to a sum? Symplectic group of �M4

± ⇥ CP2 basically parametrizes the quantum
fluctuating degrees of freedom in WCW. Could finite measurement resolution reduce
the symplectic group of �M4

± ⇥ CP2 to a coset space obtained by dividing with
symplectic transformations leaving the end points invariant and could the outcome
be a discrete group as proposed? Functional integral would reduce to sum.

iii. If Kähler action reduces to Chern-Simons-Kähler terms to surface area terms in the
proposed manner, the integration over WCW would be very much analogous to a
functional integral over string world sheets and the wisdom gained in string models
might be of considerable help.
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Summary

What can one conclude from these argument? To my view the situation gives rise to
a considerable optimism. I believe that on basis of the proposed picture it should be
possible to build a concrete mathematical models for the generalized Feynman graphics
and the idea about reduction to generalized braid diagrams having algebraic represen-
tations could pose additional powerful constraints on the construction. Braid invariants
could also be building bricks of the generalized Feynman diagrams. In particular, the
treatment of the non-planarity of Feynman diagrams in terms of M2 braiding matrix
would be something new and therefore can be questioned.

Few years after writing these lines a view about generalized Feynman diagrams as a
stringy generalization of twistor Grassmannian diagrams has emerged [K44]. This ap-
proach relies heavily on the localization of spinor modes on 2-D string world sheets
(covariantly constant right-handed neutrino is an exception) [K69]. This approach can
be regarded as an e↵ective QFT (or rather, e↵ective string theory) approach: all in-
formation about the microscopic character of the fundamental particle like entities has
been integrated out so that a string model type description at the level of imbdding
space emerges. The presence of gigantic symmetries, in particular, the Yangian general-
ization of super-conformal symmetries, raises hopes that this approach could work. The
approach to generalized Feynman diagrams considered above is obviously microscopic.

9.8 Electron as a trefoil or something more general?

The possibility that electron, and also other elementary particles could correspond to
knot is very interesting. The video model [B14] was so fascinating (I admire the skills
of the programmers) that I started to question my belief that all related to knots and
braids represents new physics (say anyons), [K37] and that it is hopeless to try to
reduce standard model quantum numbers with purely group theoretical explanation
(except family replication) to topological quantum numbers.

Electroweak and color quantum numbers should by quantum classical correspondence
have geometric correlates in space-time geometry. Could these correlates be topological?
As a matter of fact, the correlates existing if the present understanding of the situation
is correct but they are not topological.

Despite this, I played with various options and found that in TGD Universe knot invari-
ants do not provide plausible space-time correlates for electroweak quantum numbers.
The knot invariants and many other topological invariants are however present and
mean new physics. As following arguments try to show, elementary particles in TGD
Universe are characterized by extremely rich spectrum of topological quantum num-
bers, in particular those associated with knotting and linking: this is basically due to
the 3-dimensionality of 3-space.

For a representation of trefoil knot by R.W. Gray see
http://www.rwgrayprojects.com/Lynn/Presentation20070926/p008.html. The home-
page of Louis Kau↵man [A8] is a treasure trove for anyone interested in ideas related to
possible applications of knots to physics. One particular knotty idea is discussed in the
article Emergent Braided Matter of Quantum Geometry by Bilson-Thompson, Hackett,
and Kau↵man [B26].

9.8.1 Space-time as 4-surface and the basic argument

Space-time as a 4-surface in M4⇥CP2 is the key postulate. The dynamics of space-time
surfaces is determined by so called Kähler action - essentially Maxwell action for the
Kähler form of CP2 induced to X4 in induced metric. Only so called preferred extremals
are accepted and one can in very loose sense say that general coordinate invariance is
realized by assigning to a given 3-surface a unique 4-surface as a preferred extremal
analogous to Bohr orbit for a particle identified as 3-D surface rather than point-like
object.

http://www.rwgrayprojects.com/Lynn/Presentation20070926/p008.html
http://tgdtheory.com/public_html/paddark/paddark.html#anyontgd
http://www.rwgrayprojects.com/Lynn/Presentation20070926/p008.html
http://homepages.math.uic.edu/~kauffman/
http://arxiv.org/pdf/1109.0080v2.pdf
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One ends up with a radical generalization of space-time concept to what I call many-
sheeted space-time. The sheets of many-sheeted space-time are at distance of CP2 size
scale (104 Planck lengths as it turns out) and can touch each other which means forma-
tion of wormhole contact with wormhole throats as its ends. At throats the signature
of the induced metric changes from Minkowskian to Euclidian. Euclidian regions are
identified as 4-D analogs of lines of generalized Feynman diagrams and the M4 pro-
jection of wormhole contact can be arbitrarily large: macroscopic, even astrophysical.
Macroscopic object as particle like entity means that it is accompanied by Euclidian
region of its size.

Elementary particles are identified as wormhole contacts. The wormhole contacts born
in mere touching are not expected to be stable. The situation changes if there is a
monopole magnetic flux (CP2 carries self dual purely homological monopole Kähler
form defining Maxwell field, this is not Dirac monopole) since one cannot split the
contact. The lines of the Kähler magnetic field must be closed, and this requires that
there is another wormhole contact nearby. The magnetic flux from the upper throat of
contact A travels to the upper throat of contact B along ”upper space-time sheet”, goes
to ”lower” space-time sheet along contact B and returns back to the wormhole contact
A so that closed loop results.

In principle, wormhole throat can have arbitrary orientable topology characterized by
the number g of handles attached to sphere and known as genus. The closed flux tube
corresponds to topology X2

g ⇥ S1, g=0,1,2,... Genus-generation correspondence [K11]
states that electron, muon, and tau lepton and similarly quark generations correspond
to g = 0, 1, 2 in TGD Universe and CKM mixing is induced by topological mixing.

Suppose that one can assign to this flux tube a closed string: this is indeed possible but
I will not bother reader with details yet. What one can say about the topology of this
string?

i. X2
g has homology Z2g and S1 homology S1. The entire homology is Z2g+1 so that

there are 2g + 1 additional integer valued topological quantum numbers besides
genus. Z2g+1 obviously breaks topologically universality stating that fermion gen-
erations are exact copies of each other apart from mass. This would be new physics.
If the size of the flux loop is of order Compton length, the topological excitations
need not be too heavy. One should however know how to excite them.

ii. The circle S1 is imbedded in 3-surface and can get knotted. This means that all
possible knots characterize the topological states of the the fermion. Also this means
extremely rich spectrum of new physics.

9.8.2 What is the origin of strings going around the magnetic
flux tube?

What is then the origin of these knotted strings? The study of the modified Dirac
equation [K69] determining the dynamics of induced spinor fields at space-time surface
led to a considerable insight here. This requires however additional notions such as zero
energy ontology (ZEO), and causal diamond (CD) defined as intersection of future and
past directed light-cones (double 4-pyramid is the M4 projection. Note that CD has
CP2 as Cartesian factor and is analogous to Penrose diagram.

i. ZEO means the assumption that space-time surfaces for a particular sub-WCW
(”world of classical worlds”) are contained inside given CD identifiable as a the cor-
relate for the ”spotlight of consciousness” in TGD inspired theory of consciousness.
The space-time surface has ends at the upper and lower light-like boundaries of
CD. The 3-surfaces at the the ends define space-time correlates for the initial and
final states in positive energy ordinary ontology. In ZEO they carry opposite total
quantum numbers.

ii. General coordinate invariance (GCI) requires that once the 3-D ends are known,
space-time surface connecting the ends is fixed (there is not path integral since it
simply fails). This reduces ordinary holography to GCI and makes classical physics

http://tgdtheory.com/public_html/paddark/paddark.html#elvafu
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#dirasvira
http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#dirasvira
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defined by preferred extremals an exact part of quantum theory, actually a key
element in the definition of Kähler geometry of WCW.
Strong form of GCI is also possible. One can require that 3-D light-like orbits of
wormhole throats at which the induced metric changes its signature, and space-
like 3-surfaces at the ends of CD give equivalent descriptions. This implies that
quantum physics is coded by the their intersections which I call partonic 2-surfaces
- wormhole throats - plus the 4-D tangent spaces of X4 associated with them. One
has strong form of holography. Physics is almost 2-D but not quite: 4-D tangent
space data is needed.

iii. The study of the modified Dirac equation [K69] leads to further results. The mere
conservation of electromagnetic charge defined group theoretically for the induced
spinors of M4 ⇥CP2 carrying spin and electroweak quantum numbers implies that
for all other fermion states except right handed neutrino (, which does not couple
at all all to electroweak fields), are localized at 2-D string world sheets and partonic
2-surfaces.
String world sheets intersect the light-like orbits of wormhole throats along 1-D
curves having interpretation as time-like braid strands (a convenient metaphor:
braiding in time direction si created by dancers in the parquette).
One can say that dynamics automatically implies e↵ective discretization: the ends
of time like braid strands at partonic 2-surfaces at the ends of CD define a collection
of discrete points to each of which one can assign fermionic quantum numbers.

iv. Both throats of the wormhole contact can carry many fermion state and known
fermions correspond to states for which either throat carries single braid strand.
Known bosons correspond to states for which throats carry fermion and anti-fermion
number.

v. Partonic 2-surface is replaced with discrete set of points e↵ectively. The inter-
pretation is in terms of a space-time correlate for finite measurement resolution.
Quantum correlate would be the inclusion of hyperfinite factors of type II1.

This interpretation brings in even more topology!

i. String world sheets - present both in Euclidian and Minkowskian regions - intersect
the 3-surfaces at the ends of CD along curves - one could speak of strings. These
strings give rise to the closed curves that I discussed above. These strings can be
homologically non-trivial - in string models this corresponds to wrapping of branes.

ii. For known bosons one has two closed loop but these loops could fuse to single.
Space-like 2-braiding (including linking) becomes possible besides knotting.

iii. When the partonic 2-surface contains several fermionic braid ends one obtains even
more complex situation than above when one has only single braid end. The loops
associated with the braid ends and going around the monopole flux tube can form
space-like N-braids. The states containing several braid ends at either throat cor-
respond to exotic particles not identifiable as ordinary elementary particles.

9.8.3 How elementary particles interact as knots?

Elementary particles could reveal their knotted and even braided character via the
topological interactions of knots. There are two basic interactions.

i. The basic interaction for single string is by self-touching and this can give to a local
connected sum or a reconnection. In both cases the knot invariants can change and
it is possible to achieve knotting or unknotting of the string by this mechanism.
String can also split into two pieces but this might well be excluded in the recent
case.
The space-time dynamics for these interactions is that of closed string model with
4-D target space. The first guess would be topological string model describing only
the dynamics of knots. Note that string world sheets define 2-knots and braids.

ii. The basic interaction vertex for generalized Feynman diagrams (lines are 4-D space-
time regions with Euclidian signature) is join along 3-D boundaries for the three

http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#dirasvira
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particles involved: this is just like ordinary 3-vertex for Feynman diagrams and is
not encountered in string models. The ends of lines must have same genus g. In
this interaction vertex the homology charges in Z2g+1 is conserved so that these
charges are analogous to U(1) gauge charges. The strings associated with the two
particles can touch each other and connected sum or reconnection is the outcome.

Consider now in more detail connected sum and reconnection vertices responsible for
knotting and un-knotting.

i. The first interaction is connected sum of knots [A3]. A little mental exercise demon-
strates that a local connected sum for the pieces of knot for which planar projections
cross, can lead to a change in knotted-ness. Local connected sum is actually used
to un-knot the knot in the construction of knot invariants.
In dimension 3 knots form a module with respect to the connected sum. One can
identify unique prime knots and construct all knots as products of prime knots
with product defined as a connected sum of knots. In particular, one cannot have a
situation on which a product of two non-trivial knots is un-knot so that one could
speak about the inverse of a knot (indeed, the inverse of ordinary prime is not an
integer!). For higher-dimensional knots the situation changes (string world sheets
at space-time surface could form 2-knots but instead of linking they intersect at
discrete points).
Connected sum in the vertex of generalized Feynman graph (as described above)
can lead to a decay of particle to two particles, which correspond to the summands
in the connected sum as knots. Could one consider a situation in which un-knotted
particle decomposes via the time inverse of the connected sum to a pair of knotted
particles such that the knots are inverses of each other? This is not possible since
knots do not have inverse.

ii. Touching knots can also reconnect. For braids the strands A ! B and C ! D
touch and one obtains strands A ! D and C ! B. If this reaction takes place for
strands whose planar projections cross, it can also change the character of the knot.
One one can transform knot to un-knot by repeatedly applying connected sum and
reconnection for crossing strands (the Alexandrian way).

iii. In the evolution of knots as string world sheets these two vertices corresponds
to closed string vertices. These vertices can lead to topological mixing of knots
leading to a quantum superposition of di↵erent knots for a given elementary particle.
This mixing would be analogous to CKM mixing understood to result from the
topological mixing of fermion genera in TGD framework. It could also imply that
knotted particles decay rapidly to un-knots and make the un-knot the only long-
lived state.
A naive application of Uncertainty Principle suggests that the size scale of string
determines the life time of particular knot configuration. The dependence on the
length scale would however suggest that purely topological string theory cannot
be in question. Zero energy ontology suggests that the size scale of the causal
diamond assignable to elementary particle determines the time scale for the rates
as secondary p-adic time scale: in the case of electron the time scale would be
.1 seconds corresponding to Mersenne prime M127 = 2127 � 1 so that knotting
and unknotting would be very slow processes. For electron the estimate for the
scale of mass di↵erences between di↵erent knotted states would be about 10�19me:
electron mass is known for certain for 9 decimals so that there is no hope of detecting
these mass di↵erences. The pessimistic estimate generalizes to all other elementary
particles: for weak bosons characterized by M89 the mass di↵erence would be of
order 10�13mW .

iv. A natural guess is that p-adic thermodynamics can be applied to the knotting. In
p-adic thermodynamics Boltzmann weights in are of form pH/T (p-adic number)
and the allowed values of the Hamiltonian H are non-negative integer powers of p.
Clearly, H representing a contribution to p-adic valued mass squared must be a non-
negative integer valued invariant additive under connected sum. This guarantees
extremely rapid convergence of the partition function and mass squared expectation

http://en.wikipedia.org/wiki/Connected_sum
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value as the number of prime knots in the decomposition increases.
An example of an knot invariant [A14] additive under connected sum is knot genus
[A13] defined as the minimal genus of 2-surface having the knot as boundary (Seifert
surface). For trefoil and figure eight knot one has g = 1. For torus knot (p, q) ⌘
(q, p) one has g = (p� 1)(q � 1)/2. Genus vanishes for un-knot so that it gives the
dominating contribution to the partition function but a vanishing contribution to
the p-adic mass squared.
p-Adic mass scale could be assumed to correspond to the primary p-adic mass
scale just as in the ordinary p-adic mass calculations. If the p-adic temperature
is T = 1 in natural units (highest possible), and if one has H = 2g, the lowest
order contribution corresponds to the value H = 2 of the knot Hamiltonian, and is
obtained for trefoil and figure eight knot so that the lowest order contribution to the
mass would indeed be about 10�19me for electron. An equivalent interpretation is
that H = g and T = 1/2 as assumed for gauge bosons in p-adic mass calculations.
There is a slight technical complication involved. When the string has a non-trivial
homology in X2

g ⇥ S1 (it always has by construction), it does not allow Seifert
surface in the ordinary sense. One can however modify the definition of Seifert
surface so that it isolates knottedness from homology. One can express the string
as connected sum of homologically non-trivial un-knot carrying all the homology
and of homologically trivial knot carrying all knottedness and in accordance with the
additivity of genus define the genus of the original knot as that for the homologically
trivial knot.

v. If the knots assigned with the elementary particles have large enough size, both
connected sum and reconnection could take place for the knots associated with
di↵erent elementary particles and make the many particle system a single connected
structure. TGD based model for quantum biology is indeed based on this kind
of picture. In this case the braid strands are magnetic flux tubes and connect
bio-molecules to single coherent whole. Could electrons form this kind of stable
connected structures in condensed matter systems? Could this relate to super-
conductivity and Cooper pairs somehow? If one takes p-adic thermodynamics for
knots seriously then knotted and braided magnetic flux tubes are more attractive
alternative in this respect.

What if the thermalization of knot degrees of freedom does not take place? One can
also consider the possibility that knotting contributes only to the vacuum conformal
weight and thus to the mass squared but that no thermalization of ground states takes
place. If the increment �m of inertial mass squared associated with knotting is of from
kgp2, where k is positive integer and g the above described knot genus, one would have
�m/m ' 1/p. This is of order M�1

127 ' 10�38 for electron.

Could the knotting and linking of elementary particles allow topological quantum com-
putation at elementary particle level? The huge number of di↵erent knottings would
give electron a huge ground state degeneracy making possible negentropic entanglement.
For negentropic entanglement probabilities must belong to an algebraic extension of ra-
tionals: this would be the case in the intersection of p-adic and real worlds and there
is a temptation to assign living matter to this intersection. Negentropy Maximization
Principle could stabilize negentropic entanglement and therefore allow to circumvent
the problems due to the fact that the energies involved are extremely tiny and far below
thus thermal energy. In this situation bit would generalize to ”nit” corresponding to N
di↵erent ground states of particle di↵ering by knotting.

A very naive dimensional analysis using Uncertainty Principle would suggest that the
number changes of electron state identifiable as quantum computation acting on q-nits
is of order 1/�t = �m/hbar . More concretely, the minimum duration of the quantum
computation would be of order �t = ~/�m. Single quantum computation would take
an immense amount time: for electron single operation would take time of order 1017

s, which is of the order of the recent age of the Universe. Therefore this quantum
computation would be of rather limited practical value!

http://en.wikipedia.org/wiki/Knot_invariants
http://en.wikipedia.org/wiki/Knot_genus


Chapter 10

Ideas Emerging from TGD

10.1 Introduction

I have gathered to this chapter those ideas related to quantum TGD which are not ab-
solutely central and whose status is not clear in the long run. I have represented earlier
these ideas in chapters and the outcome was a total chaos and reader did not have a
slightest idea what is they real message. I hope that this organization of material makes
it easier for the reader to grasp the topology of TGD correctly. The representation
includes various ideas and notions such as M8 � H duality, hierarchy of Planck con-
stants, and the notion of number theoretic braid. Sections about twistor approach and
octonionic spinors are included as well as considerations related to WCW integration
and about possible topological invariances defined by geometric invariants for preferred
extremals of Kähler action.

The appendix of the book gives a summary about basic concepts of TGD with illustra-
tions. There are concept maps about topics related to the contents of the chapter pre-
pared using CMAP realized as html files. Links to all CMAP files can be found at http:
//www.tgdtheory.fi/cmaphtml.html [L13]. Pdf representation of same files serving as
a kind of glossary can be found at http://www.tgdtheory.fi/tgdglossary.pdf [L14].
The topics relevant to this chapter are given by the following list.

• Quantum theory [L31]

• Emergent ideas and notions [L17]

• Weak form of electric-magnetic duality [L43]

• M8 �H duality [L26]

• Hierarchy of Planck constants [L21]

• Hyperfinite factors and TGD [L23]

• The unique role of twistors in TGD [L38]

• Twistors and TGD [L39]

10.2 Hierarchy of Planck constants and the general-
ization of the notion of imbedding space

In the following the recent view about structure of imbedding space forced by the quan-
tization of Planck constant is summarized. The question is whether it might be possible
in some sense to replace H or its Cartesian factors by their necessarily singular multiple
coverings and factor spaces. One can consider two options: either M4 or the causal
diamond CD. The latter one is the more plausible option from the point of view of
WCW geometry.
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10.2.1 The evolution of physical ideas about hierarchy of Planck
constants

The evolution of the physical ideas related to the hierarchy of Planck constants and
dark matter as a hierarchy of phases of matter with non-standard value of Planck
constants was much faster than the evolution of mathematical ideas and quite a number
of applications have been developed during last five years.

i. The starting point was the proposal of Nottale [E2] that the orbits of inner planets
correspond to Bohr orbits with Planck constant ~gr = GMm/v0 and outer planets
with Planck constant ~gr = 5GMm/v0, v0/c ' 2�11. The basic proposal [K45, K35]
was that ordinary matter condenses around dark matter which is a phase of matter
characterized by a non-standard value of Planck constant whose value is gigantic
for the space-time sheets mediating gravitational interaction. The interpretation of
these space-time sheets could be as magnetic flux quanta or as massless extremals
assignable to gravitons.

ii. Ordinary particles possibly residing at these space-time sheet have enormous value
of Compton length meaning that the density of matter at these space-time sheets
must be very slowly varying. The string tension of string like objects implies e↵ec-
tive negative pressure characterizing dark energy so that the interpretation in terms
of dark energy might make sense [K46] . TGD predicted a one-parameter family
of Robertson-Walker cosmologies with critical or over-critical mass density and the
”pressure” associated with these cosmologies is negative.

iii. The quantization of Planck constant does not make sense unless one modifies the
view about standard space-time is. Particles with di↵erent Planck constant must
belong to di↵erent worlds in the sense local interactions of particles with di↵erent
values of ~ are not possible. This inspires the idea about the book like structure of
the imbedding space obtained by gluing almost copies of H together along common
”back” and partially labeled by di↵erent values of Planck constant.

iv. Darkness is a relative notion in this framework and due to the fact that particles at
di↵erent pages of the book like structure cannot appear in the same vertex of the
generalized Feynman diagram. The phase transitions in which partonic 2-surface
X2 during its travel along X3

l leaks to another page of book are however possible
and change Planck constant. Particle (say photon -) exchanges of this kind allow
particles at di↵erent pages to interact. The interactions are strongly constrained by
charge fractionization and are essentially phase transitions involving many particles.
Classical interactions are also possible. It might be that we are actually observing
dark matter via classical fields all the time and perhaps have even photographed
it [K54] .

v. The realization that non-standard values of Planck constant give rise to charge and
spin fractionization and anyonization led to the precise identification of the prereq-
uisites of anyonic phase. If the partonic 2-surface, which can have even astrophysical
size, surrounds the tip of CD, the matter at the surface is anyonic and particles are
confined at this surface. Dark matter could be confined inside this kind of light-like
3-surfaces around which ordinary matter condenses. If the radii of the basic pieces
of these nearly spherical anyonic surfaces - glued to a connected structure by flux
tubes mediating gravitational interaction - are given by Bohr rules, the findings
of Nottale [E2] can be understood. Dark matter would resemble to a high degree
matter in black holes replaced in TGD framework by light-like partonic 2-surfaces
with a minimum size of order Schwartschild radius rS of order scaled up Planck
length lPl =

p
~grG = GM . Black hole entropy is inversely proportional to ~ and

predicted to be of order unity so that dramatic modification of the picture about
black holes is implied.

vi. Perhaps the most fascinating applications are in biology. The anomalous behavior
ionic currents through cell membrane (low dissipation, quantal character, no change
when the membrane is replaced with artificial one) has a natural explanation in
terms of dark supra currents. This leads to a vision about how dark matter and
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phase transitions changing the value of Planck constant could relate to the basic
functions of cell, functioning of DNA and amino-acids, and to the mysteries of bio-
catalysis. This leads also a model for EEG interpreted as a communication and
control tool of magnetic body containing dark matter and using biological body
as motor instrument and sensory receptor. One especially amazing outcome is the
emergence of genetic code of vertebrates from the model of dark nuclei as nuclear
strings [L2, K54] , [L2] .

10.2.2 The most general option for the generalized imbedding
space

Simple physical arguments pose constraints on the choice of the most general form of
the imbedding space.

i. The fundamental group of the space for which one constructs a non-singular covering
space or factor space should be non-trivial. This is certainly not possible for M4,
CD, CP2, or H. One can however construct singular covering spaces. The fixing
of the quantization axes implies a selection of the sub-space H4 = M2 ⇥ S2 ⇢
M4⇥CP2, where S2 is geodesic sphere of CP2. M̂4 = M4\M2 and ĈP 2 = CP2\S2

have fundamental group Z since the codimension of the excluded sub-manifold is
equal to two and homotopically the situation is like that for a punctured plane. The
exclusion of these sub-manifolds defined by the choice of quantization axes could
naturally give rise to the desired situation.

ii. CP2 allows two geodesic spheres which left invariant by U(2 resp. SO(3). The
first one is homologically non-trivial. For homologically non-trivial geodesic sphere
H4 = M2⇥S2 represents a straight cosmic string which is non-vacuum extremal of
Kähler action (not necessarily preferred extremal). One can argue that the many-
valuedness of ~ is un-acceptable for non-vacuum extremals so that only homologi-
cally trivial geodesic sphere S2 would be acceptable. One could go even further. If
the extremals in M2 ⇥ CP2 can be preferred non-vacuum extremals, the singular
coverings of M4 are not possible. Therefore only the singular coverings and factor
spaces of CP2 over the homologically trivial geodesic sphere S2 would be possible.
This however looks a non-physical outcome.

A. The situation changes if the extremals of type M2 ⇥ Y 2, Y 2 a holomorphic
surface of CP3, fail to be hyperquaternionic. The tangent space M2 represents
hypercomplex sub-space and the product of the modified gamma matrices as-
sociated with the tangent spaces of Y 2 should belong to M2 algebra. This need
not be the case in general.

B. The situation changes also if one reinterprets the gluing procedure by introduc-
ing scaled up coordinates for M4 so that metric is continuous at M2⇥CP2 but
CDs with di↵erent size have di↵erent sizes di↵ering by the ratio of Planck con-
stants and would thus have only piece of lower or upper boundary in common.

iii. For the more general option one would have four di↵erent options corresponding to
the Cartesian products of singular coverings and factor spaces. These options can
be denoted by C �C, C �F , F �C, and F �F , where C (F ) signifies for covering
(factor space) and first (second) letter signifies for CD (CP2) and correspond to the
spaces (ĈD⇥̂Ga) ⇥ ( ˆCP2⇥̂Gb), (ĈD⇥̂Ga) ⇥ ˆCP2/Gb, ĈD/Ga ⇥ ( ˆCP2⇥̂Gb), and
ĈD/Ga ⇥ ˆCP2/Gb.

iv. The groups Gi could correspond to cyclic groups Zn. One can also consider an
extension by replacing M2 and S2 with its orbit under more general group G (say
tetrahedral, octahedral, or icosahedral group). One expects that the discrete sub-
groups of SU(2) emerge naturally in this framework if one allows the action of these
groups on the singular sub-manifolds M2 or S2. This would replace the singular
manifold with a set of its rotated copies in the case that the subgroups have gen-
uinely 3-dimensional action (the subgroups which corresponds to exceptional groups
in the ADE correspondence). For instance, in the case of M2 the quantization axes
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for angular momentum would be replaced by the set of quantization axes going
through the vertices of tetrahedron, octahedron, or icosahedron. This would bring
non-commutative homotopy groups into the picture in a natural manner.

10.2.3 About the phase transitions changing Planck constant

There are several non-trivial questions related to the details of the gluing procedure and
phase transition as motion of partonic 2-surface from one sector of the imbedding space
to another one.

i. How the gluing of copies of imbedding space atM2⇥CP2 takes place? It would seem
that the covariant metric of CD factor proportional to ~2 must be discontinuous
at the singular manifold since only in this manner the idea about di↵erent scaling
factor of CD metric can make sense. On the other hand, one can always scale the
M4 coordinates so that the metric is continuous but the sizes of CDs with di↵erent
Planck constants di↵er by the ratio of the Planck constants.

ii. One might worry whether the phase transition changing Planck constant means an
instantaneous change of the size of partonic 2-surface in M4 degrees of freedom.
This is not the case. Light-likeness in M2 ⇥ S2 makes sense only for surfaces
X1 ⇥ D2 ⇢ M2 ⇥ S2, where X1 is light-like geodesic. The requirement that the
partonic 2-surface X2 moving from one sector of H to another one is light-like at
M2 ⇥ S2 irrespective of the value of Planck constant requires that X2 has single
point of M2 as M2 projection. Hence no sudden change of the size X2 occurs.

iii. A natural question is whether the phase transition changing the value of Planck con-
stant can occur purely classically or whether it is analogous to quantum tunnelling.
Classical non-vacuum extremals of Chern-Simons action have two-dimensional CP2

projection to homologically non-trivial geodesic sphere S2
I . The deformation of the

entire S2
I to homologically trivial geodesic sphere S2

II is not possible so that only
combinations of partonic 2-surfaces with vanishing total homology charge (Kähler
magnetic charge) can in principle move from sector to another one, and this process
involves fusion of these 2-surfaces such that CP2 projection becomes single homo-
logically trivial 2-surface. A piece of a non-trivial geodesic sphere S2

I of CP2 can
be deformed to that of S2

II using 2-dimensional homotopy flattening the piece of S2

to curve. If this homotopy cannot be chosen to be light-like, the phase transitions
changing Planck constant take place only via quantum tunnelling. Obviously the
notions of light-like homotopies (cobordisms) are very relevant for the understand-
ing of phase transitions changing Planck constant.

10.2.4 How one could fix the spectrum of Planck constants?

The question how the observed Planck constant relates to the integers na and nb defin-
ing the covering and factors spaces, is far from trivial and I have considered several
options. The basic physical inputs are the condition that scaling of Planck constant
must correspond to the scaling of the metric of CD (that is Compton lengths) on one
hand and the scaling of the gauge coupling strength g2/4⇡~ on the other hand.

i. One can assign to Planck constant to both CD and CP2 by assuming that it ap-
pears in the commutation relations of corresponding symmetry algebras. Algebraist
would argue that Planck constants ~(CD) and ~(CP2) must define a homomor-
phism respecting multiplication and division (when possible) by Gi. This requires
r(X) = ~(X)~0 = n for covering and r(X) = 1/n for factor space or vice versa.

ii. If one assumes that ~2(X), X = M4, CP2 corresponds to the scaling of the covariant
metric tensor gij and performs an over-all scaling of H-metric allowed by the Weyl
invariance of Kähler action by dividing metric with ~2(CP2), one obtains the scaling
of M4 covariant metric by r2 ⌘ ~2/~20 = ~2(M4)/~2(CP2) whereas CP2 metric is
not scaled at all.
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iii. The condition that ~ scales as na is guaranteed if one has ~(CD) = na~0. This
does not fix the dependence of ~(CP2) on nb and one could have ~(CP2) = nb~0
or ~(CP2) = ~0/nb. The intuitive picture is that nb- fold covering gives in good
approximation rise to nanb sheets and multiplies YM action action by nanb which
is equivalent with the ~ = nanb~0 if one e↵ectively compresses the covering to
CD ⇥ CP2. One would have ~(CP2) = ~0/nb and ~ = nanb~0. Note that the de-
scriptions using ordinary Planck constant and coverings and scaled Planck constant
but contracting the covering would be alternative descriptions.
This gives the following formulas r ⌘ ~/~0 = r(M4)/r(CP2) in various cases.

C � C F � C C � F F � F

r nanb
n
a

n
b

n
b

n
a

1
n
a

n
b

10.2.5 Preferred values of Planck constants

Number theoretic considerations favor the hypothesis that the integers corresponding
to Fermat polygons constructible using only ruler and compass and given as products
nF = 2k

Q
s Fs, where Fs = 22

s

+1 are distinct Fermat primes, are favored. The reason
would be that quantum phase q = exp(i⇡/n) is in this case expressible using only
iterated square root operation by starting from rationals. The known Fermat primes
correspond to s = 0, 1, 2, 3, 4 so that the hypothesis is very strong and predicts that
p-adic length scales have satellite length scales given as multiples of nF of fundamental
p-adic length scale. nF = 211 corresponds in TGD framework to a fundamental constant
expressible as a combination of Kähler coupling strength, CP2 radius and Planck length
appearing in the expression for the tension of cosmic strings, and the powers of 211 seem
to be especially favored as values of na in living matter [K14] .

10.2.6 How Planck constants are visible in Kähler action?

~(M4) and ~(CP2) appear in the commutation and anti-commutation relations of vari-
ous superconformal algebras. Only the ratio of M4 and CP2 Planck constants appears
in Kähler action and is due to the fact that the M4 and CP2 metrics of the imbedding
space sector with given values of Planck constants are proportional to the correspond-
ing Planck constants. This implies that Kähler function codes for radiative corrections
to the classical action, which makes possible to consider the possibility that higher or-
der radiative corrections to functional integral vanish as one might expect at quantum
criticality. For a given p-adic length scale space-time sheets with all allowed values
of Planck constants are possible. Hence the spectrum of quantum critical fluctuations
could in the ideal case correspond to the spectrum of ~ coding for the scaled up values
of Compton lengths and other quantal lengths and times. If so, large ~ phases could
be crucial for understanding of quantum critical superconductors, in particular high Tc

superconductors.

10.2.7 Could the dynamics of Kähler action predict the hierar-
chy of Planck constants?

The original justification for the hierarchy of Planck constants came from the indications
that Planck constant could have large values in both astrophysical systems involving
dark matter and also in biology. The realization of the hierarchy in terms of the singular
coverings and possibly also factor spaces of CD and CP2 emerged from consistency con-
ditions. The formula for the Planck constant involves heuristic guess work and physical
plausibility arguments. There are good arguments in favor of the hypothesis that only
coverings are possible. Only a finite number of pages of the Big Book correspond to
a given value of Planck constant, biological evolution corresponds to a gradual disper-
sion to the pages of the Big Book with larger Planck constant, and a connection with
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the hierarchy of infinite primes and p-adicization program based on the mathematical
realization of finite measurement resolution emerges.

One can however ask whether this hierarchy could emerge directly from the basic quan-
tum TGD rather than as a separate hypothesis. The following arguments suggest that
this might be possible. One finds also a precise geometric interpretation of preferred
extremal property interpreted as criticality in zero energy ontology.

1-1 correspondence between canonical momentum densities and time deriva-
tives fails for Kähler action

The basic motivation for the geometrization program was the observation that canonical
quantization for TGD fails. To see what is involved let us try to perform a canonical
quantization in zero energy ontology at the 3-D surfaces located at the light-like bound-
aries of CD ⇥ CP2.

i. In canonical quantization canonical momentum densities ⇡0
k ⌘ ⇡k = @LK/@(@0hk),

where @0hk denotes the time derivative of imbedding space coordinate, are the
physically natural quantities in terms of which to fix the initial values: once their
value distribution is fixed also conserved charges are fixed. Also the weak form of
electric-magnetic duality given by J03pg4 = 4⇡↵KJ12 and a mild generalization
of this condition to be discussed below can be interpreted as a manner to fix the
values of conserved gauge charges (not Noether charges) to their quantized values
since Kähler magnetic flux equals to the integer giving the homology class of the
(wormhole) throat. This condition alone need not characterize criticality, which
requires an infinite number of deformations of X4 for which the second variation of
the Kähler action vanishes and implies infinite number conserved charges. This in
fact gives hopes of replacing ⇡k with these conserved Noether charges.

ii. Canonical quantization requires that @0hk in the energy is expressed in terms of ⇡k.
The equation defining ⇡k in terms of @0hk is however highly non-linear although al-
gebraic. By taking squares the equations reduces to equations for rational functions
of @0hk. @0hk appears in contravariant and covariant metric at most quadratically
and in the induced Kähler electric field linearly and by multiplying the equations by
det(g4)3 one can transform the equations to a polynomial form so that in principle
@0hk can obtained as a solution of polynomial equations.

iii. One can always eliminate one half of the coordinates by choosing 4 imbedding space
coordinates as the coordinates of the space-time surface so that the initial value
conditions reduce to those for the canonical momentum densities associated with
the remaining four coordinates. For instance, for space-time surfaces representable
as mapM4 ! CP2 M4 coordinates are natural and the time derivatives @0sk of CP2

coordinates are multi-valued. One would obtain four polynomial equations with
@0sk as unknowns. In regions where CP2 projection is 4-dimensional -in particular
for the deformations of CP2 vacuum extremals the natural coordinates are CP2

coordinates and one can regard @0mk as unknowns. For the deformations of cosmic
strings, which are of form X4 = X2 ⇥ Y 2 ⇢ M4 ⇥ CP2, one can use coordinates of
M2⇥S2, where S2 is geodesic sphere as natural coordinates and regard as unknowns
E2 coordinates and remaining CP2 coordinates.

iv. One can imagine solving one of the four polynomials equations for time derivaties
in terms of other obtaining N roots. Then one would substitute these roots to
the remaining 3 conditions to obtain algebraic equations from which one solves
then second variable. Obviously situation is very complex without additional sym-
metries. The criticality of the preferred extremals might however give additional
conditions allowing simplifications. The reasons for giving up the canonical quan-
tization program was following. For the vacuum extremals of Kähler action ⇡k

are however identically vanishing and this means that there is an infinite number
of value distributions for @0hk. For small deformations of vacuum extremals one
might however hope a finite number of solutions to the conditions and thus finite
number of space-time surfaces carrying same conserved charges.
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If one assumes that physics is characterized by the values of the conserved charges one
must treat the the many-valuedness of @0hk. The most obvious guess is that one should
replace the space of space-like 4-surfaces corresponding to di↵erent roots @0hk = F k(⇡l)
with four-surfaces in the covering space of CD⇥CP2 corresponding to di↵erent branches
of the many-valued function @0hk = F (⇡l) co-inciding at the ends of CD.

Do the coverings forces by the many-valuedness of @0hk correspond to the
coverings associated with the hierarchy of Planck constants?

The obvious question is whether this covering space actually corresponds to the cov-
ering spaces associated with the hierarchy of Planck constants. This would conform
with quantum classical correspondence. The hierarchy of Planck constants and hierar-
chy of covering spaces was introduced to cure the failure of the perturbation theory at
quantum level. At classical level the multi-valuedness of @0hk means a failure of pertur-
bative canonical quantization and forces the introduction of the covering spaces. The
interpretation would be that when the density of matter becomes critical the space-time
surface splits to several branches so that the density at each branches is sub-critical. It
is of course not at all obvious whether the proposed structure of the Big Book is really
consistent with this hypothesis and one also consider modifications of this structure if
necessary. The manner to proceed is by making questions.

i. The proposed picture would give only single integer characterizing the covering.
Two integers assignable to CD and CP2 degrees of freedom are however needed.
How these two coverings could emerge?

A. One should fix also the values of ⇡n
k = @LK/@hk

n, where n refers to space-like
normal coordinate at the wormhole throats. If one requires that charges do not
flow between regions with di↵erent signatures of the metric the natural condition
is ⇡n

k = 0 and allows also multi-valued solution. Since wormhole throats carry
magnetic charge and since weak form of electric-magnetic duality is assumed,
one can assume that CP2 projection is four-dimensional so that one can use CP2

coordinates and regard @0mk as un-knows. The basic idea about topological
condensation in turn suggests that M4 projection can be assumed to be 4-D
inside space-like 3-surfaces so that here @0sk are the unknowns. At partonic
2-surfaces one would have conditions for both ⇡0

k and ⇡n
k . One might hope

that the numbers of solutions are finite for preferred extremals because of their
symmetries and given by na for @0mk and by nb for @0sk. The optimistic guess
is that na and nb corresponds to the numbers of sheets for singular coverings
of CD and CP2. The covering could be visualized as replacement of space-time
surfaces with space-time surfaces which have nanb branches. nb branches would
degenerate to single branch at the ends of diagrams of the generaled Feynman
graph and na branches would degenerate to single one at wormhole throats.

B. This picture is not quite correct yet. The fixing of ⇡0
k and ⇡n

k should relate closely
to the e↵ective 2-dimensionality as an additional condition perhaps crucial for
criticality. One could argue that both ⇡0

k and ⇡n
k must be fixed at X3 and X3

l

in order to e↵ectively bring in dynamics in two directions so that X3 could be
interpreted as a an orbit of partonic 2-surface in space-like direction and X3

l

as its orbit in light-like direction. The additional conditions could be seen as
gauge conditions made possible by symplectic and Kac-Moody type conformal
symmetries. The conditions for ⇡k

0 would give nb branches in CP2 degrees of
freedom and the conditions for ⇡n

k would split each of these branches to na

branches.

C. The existence of these two kinds of conserved charges (possibly vanishing for
⇡n
k ) could relate also very closely to the slicing of the space-time sheets by string

world sheets and partonic 2-surfaces.

ii. Should one then treat these branches as separate space-time surfaces or as a single
space-time surface? The treatment as a single surface seems to be the correct thing
to do. Classically the conserved changes would be nanb times larger than for single
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branch. Kähler action need not (but could!) be same for di↵erent branches but
the total action is nanb times the average action and this e↵ectively corresponds
to the replacement of the ~0/g2K factor of the action with ~/g2K , r ⌘ ~/~0 = nanb.
Since the conserved quantum charges are proportional to ~ one could argue that
r = nanb tells only that the charge conserved charge is nanb times larger than
without multi-valuedness. ~ would be only e↵ectively nanb fold. This is of course
poor man’s argument but might catch something essential about the situation.

iii. How could one interpret the condition J03pg4 = 4⇡↵KJ12 and its generalization
to be discussed below in this framework? The first observation is that the total
Kähler electric charge is by ↵K / 1/(nanb) same always. The interpretation would
be in terms of charge fractionization meaning that each branch would carry Kähler
electric charge QK = ngK/nanb. I have indeed suggested explanation of charge
fractionization and quantum Hall e↵ect based on this picture.

iv. The vision about the hierarchy of Planck constants involves also assumptions about
imbedding space metric. The assumption that the M4 covariant metric is propor-
tional to ~2 follows from the physical idea about ~ scaling of quantum lengths as
what Compton length is. One can always introduce scaled M4 coordinates bringing
M4 metric into the standard form by scaling up the M4 size of CD. It is not clear
whether the scaling up of CD size follows automatically from the proposed scenario.
The basic question is why the M4 size scale of the critical extremals must scale like
nanb? This should somehow relate to the weak self-duality conditions implying that
Kähler field at each branch is reduced by a factor 1/r at each branch. Field equa-
tions should posses a dynamical symmetry involving the scaling of CD by integer k
and J0�pg4 and Jn�pg4 by 1/k. The scaling of CD should be due to the scaling
up of the M4 time interval during which the branched light-like 3-surface returns
back to a non-branched one.

v. The proposed view about hierarchy of Planck constants is that the singular cover-
ings reduce to single-sheeted coverings at M2 ⇢ M4 for CD and to S2 ⇢ CP2 for
CP2. Here S2 is any homologically trivial geodesic sphere of CP2 and has vanishing
Kähler form. Weak self-duality condition is indeed consistent with any value of ~
and impies that the vacuum property for the partonic 2-surface implies vacuum
property for the entire space-time sheet as holography indeed requires. This con-
dition however generalizes. In weak self-duality conditions the value of ~ is free for
any 2-D Lagrangian sub-manifold of CP2.
The branching along M2 would mean that the branches of preferred extremals
always collapse to single branch when their M4 projection belongs to M2. Mag-
netically charged light-light-like throats cannot have M4 projection in M2 so that
self-duality conditions for di↵erent values of ~ do not lead to inconsistencies. For
space-like 3-surfaces at the boundaries of CD the condition would mean that the
M4 projection becomes light-like geodesic. Straight cosmic strings would have M2

as M4 projection. Also CP2 type vacuum extremals for which the random light-
like projection in M4 belongs to M2 would represent this of situation. One can
ask whether the degeneration of branches actually takes place along any string like
object X2 ⇥ Y 2, where X2 defines a minimal surface in M4. For these the weak
self-duality condition would imply ~ = 1 at the ends of the string. It is very plau-
sible that string like objects feed their magnetic fluxes to larger space-times sheets
through wormhole contacts so that these conditions are not encountered.

Connection with the criticality of preferred extremals

Also a connection with quantum criticality and the criticality of the preferred extremals
suggests itself. Criticality for the preferred extremals must be a property of space-like
3-surfaces and light-like 3-surfaces with degenerate 4-metric and the degeneration of
the nanb branches of the space-time surface at the its ends and at wormhole throats
is exactly what happens at criticality. For instance, in catastrophe theory roots of the
polynomial equation giving extrema of a potential as function of control parameters
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co-incide at criticality. If this picture is correct the hierarchy of Planck constants would
be an outcome of criticality and of preferred extremal property and preferred extremals
would be just those multi-branched space-time surfaces for which branches co-incide at
the the boundaries of CD ⇥ CP2 and at the throats.

10.2.8 Updated view about the hierarchy of Planck constants

The original hypothesis was that the hierarchy of Planck constants is real. In this formu-
lation the imbedding space was replaced with its covering space assumed to decompose
to a Cartesian product of singular finite-sheeted coverings of M4 and CP2.

Few years ago came the realization that it could be only e↵ective but have same prac-
tical implications. The basic observation was that the e↵ective hierarchy need not be
postulated separately but follows as a prediction from the vacuum degeneracy of Kähler
action. In this formulation Planck constant at fundamental level has its standard value
and its e↵ective values come as its integer multiples so that one should write ~eff = n~
rather than ~ = n~0 as I have done. For most practical purposes the states in question
would behave as if Planck constant were an integer multiple of the ordinary one. In
this formulation the singular covering of the imbedding space became only a conve-
nient auxiliary tool. It is no more necessary to assume that the covering reduces to a
Cartesian product of singular coverings of M4 and CP2 but for some reason I kept this
assumption.

The formulation based on multi-furcations of space-time surfaces to N branches. For
some reason I assumed that they are simultaneously present. This is too restrictive
an assumption. The N branches are very much analogous to single particle states and
second quantization allowing all 0 < n  N -particle states for given N rather than
only N -particle states looks very natural. As a matter fact, this interpretation was the
original one, and led to the very speculative and fuzzy notion of N -atom, which I later
more or less gave up. Quantum multi-furcation could be the root concept implying
the e↵ective hierarchy of Planck constants, anyons and fractional charges, and related
notions- even the notions of N -nuclei, N -atoms, and N -molecules.

Basic physical ideas

The basic phenomenological rules are simple and there is no need to modify them.

i. The phases with non-standard values of e↵ective Planck constant are identified as
dark matter. The motivation comes from the natural assumption that only the
particles with the same value of e↵ective Planck can appear in the same vertex.
One can illustrate the situation in terms of the book metaphor. Imbedding spaces
with di↵erent values of Planck constant form a book like structure and matter can
be transferred between di↵erent pages only through the back of the book where the
pages are glued together. One important implication is that light exotic charged
particles lighter than weak bosons are possible if they have non-standard value
of Planck constant. The standard argument excluding them is based on decay
widths of weak bosons and has led to a neglect of large number of particle physics
anomalies [K55].

ii. Large e↵ective or real value of Planck constant scales up Compton length - or
at least de Broglie wave length - and its geometric correlate at space-time level
identified as size scale of the space-time sheet assignable to the particle. This could
correspond to the Kähler magnetic flux tube for the particle forming consisting of
two flux tubes at parallel space-time sheets and short flux tubes at ends with length
of order CP2 size.
This rule has far reaching implications in quantum biology and neuroscience since
macroscopic quantum phases become possible as the basic criterion stating that
macroscopic quantum phase becomes possible if the density of particles is so high
that particles as Compton length sized objects overlap. Dark matter therefore forms
macroscopic quantum phases. One implication is the explanation of mysterious
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looking quantal e↵ects of ELF radiation in EEG frequency range on vertebrate
brain: E = hf implies that the energies for the ordinary value of Planck constant
are much below the thermal threshold but large value of Planck constant changes
the situation. Also the phase transitions modifying the value of Planck constant
and changing the lengths of flux tubes (by quantum classical correspondence) are
crucial as also reconnections of the flux tubes.
The hierarchy of Planck constants suggests also a new interpretation for FQHE
(fractional quantum Hall e↵ect) [K37] in terms of anyonic phases with non-standard
value of e↵ective Planck constant realized in terms of the e↵ective multi-sheeted
covering of imbedding space: multi-sheeted space-time is to be distinguished from
many-sheeted space-time.

iii. In astrophysics and cosmology the implications are even more dramatic if one be-
lieves that also ~gr corresponds to e↵ective Planck constant interpreted as number
of sheets of multi-furcation. It was Nottale [E2] who first introduced the notion
of gravitational Planck constant as ~gr = GMm/v0, v0 < 1 has interpretation as
velocity light parameter in units c = 1. This would be true for GMm/v0 � 1. The
interpretation of ~gr in TGD framework is as an e↵ective Planck constant associ-
ated with space-time sheets mediating gravitational interaction between masses M
and m. The huge value of ~gr means that the integer ~gr/~0 interpreted as the
number of sheets of covering is gigantic and that Universe possesses gravitational
quantum coherence in super-astronomical scales for masses which are large. This
would suggest that gravitational radiation is emitted as dark gravitons which decay
to pulses of ordinary gravitons replacing continuous flow of gravitational radiation.
It must be however emphasized that the interpretation of ~gr could be di↵erent,
and it will be found that one can develop an argument demonstrating how ~gr with
a correct order of magnitude emerges from the e↵ective space-time metric defined
by the anti-commutators appearing in the modified Dirac equation. Why Nature
would like to have large e↵ective value of Planck constant? A possible answer
relies on the observation that in perturbation theory the expansion takes in powers
of gauge couplings strengths ↵ = g2/4⇡~. If the e↵ective value of ~ replaces its
real value as one might expect to happen for multi-sheeted particles behaving like
single particle, ↵ is scaled down and perturbative expansion converges for the new
particles. One could say that Mother Nature loves theoreticians and comes in rescue
in their attempts to calculate. In quantum gravitation the problem is especially
acute since the dimensionless parameter GMm/~ has gigantic value. Replacing ~
with ~gr = GMm/v0 the coupling strength becomes v0 < 1.

Space-time correlates for the hierarchy of Planck constants

The hierarchy of Planck constants was introduced to TGD originally as an additional
postulate and formulated as the existence of a hierarchy of imbedding spaces defined as
Cartesian products of singular coverings of M4 and CP2 with numbers of sheets given
by integers na and nb and ~ = n~0. n = nanb.
With the advent of zero energy ontology, it became clear that the notion of singular
covering space of the imbedding space could be only a convenient auxiliary notion. Sin-
gular means that the sheets fuse together at the boundary of multi-sheeted region. The
e↵ective covering space emerges naturally from the vacuum degeneracy of Kähler action
meaning that all deformations of canonically imbedded M4 in M4⇥CP2 have vanishing
action up to fourth order in small perturbation. This is clear from the fact that the in-
duced Kähler form is quadratic in the gradients of CP2 coordinates and Kähler action is
essentially Maxwell action for the induced Kähler form. The vacuum degeneracy implies
that the correspondence between canonical momentum currents @LK/@(@↵hk) defining
the modified gamma matrices [K69] and gradients @↵hk is not one-to-one. Same canon-
ical momentum current corresponds to several values of gradients of imbedding space
coordinates. At the partonic 2-surfaces at the light-like boundaries of CD carrying the
elementary particle quantum numbers this implies that the two normal derivatives of
hk are many-valued functions of canonical momentum currents in normal directions.

http://tgdtheory.com/public_html/paddark/paddark.html#anyontgd
http://arxiv.org/abs/astro-ph/0310036
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Multi-furcation is in question and multi-furcations are indeed generic in highly non-linear
systems and Kähler action is an extreme example about non-linear system. What multi-
furcation means in quantum theory? The branches of multi-furcation are obviously
analogous to single particle states. In quantum theory second quantization means that
one constructs not only single particle states but also the many particle states formed
from them. At space-time level single particle states would correspond to N branches
bi of multi-furcation carrying fermion number. Two-particle states would correspond to
2-fold covering consisting of 2 branches bi and bj of multi-furcation. N�particle state
would correspond to N -sheeted covering with all branches present and carrying elemen-
tary particle quantum numbers. The branches co-incide at the partonic 2-surface but
since their normal space data are di↵erent they correspond to di↵erent tensor product
factors of state space. Also now the factorization N = nanb occurs but now na and nb

would relate to branching in the direction of space-like 3-surface and light-like 3-surface
rather than M4 and CP2 as in the original hypothesis.

In light of this the working hypothesis adopted during last years has been too limited:
for some reason I ended up to propose that only N -sheeted covering corresponding to a
situation in which all N branches are present is possible. Before that I quite correctly
considered more general option based on intuition that one has many-particle states in
the multi-sheeted space. The erratic form of the working hypothesis has not been used
in applications.

Multi-furcations relate closely to the quantum criticality of Kähler action. Feigen-
baum bifurcations represent a toy example of a system which via successive bifurcations
approaches chaos. Now more general multi-furcations in which each branch of given
multi-furcation can multi-furcate further, are possible unless on poses any additional
conditions. This allows to identify additional aspect of the geometric arrow of time. Ei-
ther the positive or negative energy part of the zero energy state is ”prepared” meaning
that single n-sub-furcations of N -furcation is selected. The most general state of this
kind involves superposition of various n-sub-furcations.

Basic phenomenological rules of thumb in the new framework

It is important to check whether or not the refreshed view about dark matter is consistent
with existent rules of thumb.

i. The interpretation of quantized multi-furcations as WCW anyons explains also why
the e↵ective hierarchy of Planck constants defines a hierarchy of phases which are
dark relative to each other. This is trivially true since the phases with di↵erent
number of branches in multi-furcation correspond to disjoint regions of WCW so
that the particles with di↵erent e↵ective value of Planck constant cannot appear in
the same vertex.

ii. The phase transitions changing the value of Planck constant are just the multi-
furcations and can be induced by changing the values of the external parameters
controlling the properties of preferred extremals. Situation is very much the same
as in any non-linear system.

iii. In the case of massless particles the scaling of wavelength in the e↵ective scaling of
~ can be understood if dark n-photons consist of n photons with energy E/n and
wavelength n�.

iv. For massive particle it has been assumed that masses for particles and they dark
counterparts are same and Compton wavelength is scaled up. In the new picture
this need not be true. Rather, it would seem that wave length are same as for
ordinary electron.
On the other hand, p-adic thermodynamics predicts that massive elemenetary par-
ticles are massless most of the time. ZEO predicts that even virtual wormhole
throats are massless. Could this mean that the picture applying on massless par-
ticle should apply to them at least at relativistic limit at which mass is negligible.
This might be the case for bosons but for fermions also fermion number should be
fractionalized and this is not possible in the recent picture. If one assumes that the

http://en.wikipedia.org/wiki/Logistic_map
http://en.wikipedia.org/wiki/Logistic_map
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n-electron has same mass as electron, the mass for dark single electron state would
be scaled down by 1/n. This does not look sensible unless the p-adic length defined
by prime is scaled down by this fact in good approximation.
This suggests that for fermions the basic scaling rule does not hold true for Compton
length �c = ~m. Could it however hold for de-Broglie lengths � = ~/p defined in
terms of 3-momentum? The basic overlap rule for the formation of macroscopic
quantum states is indeed formulated for de Broglie wave length. One could argue
that an 1/N -fold reduction of density that takes place in the de-localization of the
single particle states to the N branches of the cover, implies that the volume per
particle increases by a factor N and single particle wave function is de-localized in
a larger region of 3-space. If the particles reside at e↵ectively one-dimensional 3-
surfaces - say magnetic flux tubes - this would increase their de Broglie wave length
in the direction of the flux tube and also the length of the flux tube. This seems to
be enough for various applications.

One important notion in TGD inspired quantum biology is dark cyclotron state.

i. The scaling ~ ! k~ in the formula En = (n + 1/2)~eB/m implies that cyclotron
energies are scaled up for dark cyclotron states. What this means microscopically
has not been obvious but the recent picture gives a rather clearcut answer. One
would have k-particle state formed from cyclotron states in N -fold branched cover of
space-time surface. Each branch would carry magnetic field B and ion or electron.
This would give a total cyclotron energy equal to kEn. These cyclotron states
would be excited by k-photons with total energy E = khf and for large enough
value of k the energies involved would be above thermal threshold. In the case of
Ca++ one has f = 15 Hz in the field Bend = .2 Gauss. This means that the value
of ~ is at least the ratio of thermal energy at room temperature to E = hf . The
thermal frequency is of order 1012 Hz so that one would have k ' 1011. The number
branches would be therefore rather high.

ii. It seems that this kinds of states which I have called cyclotron Bose-Einstein con-
densates could make sense also for fermions. The dark photons involved would be
Bose-Einstein condensates of k photons and wall of them would be simultaneously
absorbed. The biological meaning of this would be that a simultaneous excitation
of large number of atoms or molecules can take place if they are localized at the
branches of N -furcation. This would make possible coherent macroscopic changes.
Note that also Cooper pairs of electrons could be n = 2-particle states associated
with N -furcation.

There are experimental findings suggesting that photosynthesis involves de-localized
excitations of electrons and it is interesting so see whether this could be understood in
this framework.

i. The TGD based model relies on the assumption that cyclotron states are involved
and that dark photons with the energy of visible photons but with much longer
wavelength are involved. Single electron excitations (or single particle excitations
of Cooper pairs) would generate negentropic entanglement automatically.

ii. If cyclotron excitations are the primary ones, it would seem that they could be
induced by dark n-photons exciting all n electrons simultaneously. n-photon should
have energy of a visible photon. The number of cyclotron excited electrons should
be rather large if the total excitation energy is to be above thermal threshold. In this
case one could not speak about cyclotron excitation however. This would require
that solar photons are transformed to n-photons in N -furcation in biosphere.

iii. Second - more realistic looking - possibility is that the incoming photons have energy
of visible photon and are therefore n = 1 dark photons de-localized to the branches
of the N -furcation. They would induce de-localized single electron excitation in
WCW rather than 3-space.
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Charge fractionalization and anyons

It is easy to see how the e↵ective value of Planck constant as an integer multiple of its
standard value emerges for multi-sheeted states in second quantization. At the level
of Kähler action one can assume that in the first approximation the value of Kähler
action for each branch is same so that the total Kähler action is multiplied by n. This
corresponds e↵ectively to the scaling ↵K ! ↵K/n induced by the scaling ~0 ! n~0.
Also e↵ective charge fractionalization and anyons emerge naturally in this framework.

i. In the ordinary charge fractionalization the wave function decomposes into sharply
localized pieces around di↵erent points of 3-space carrying fractional charges sum-
ming up to integer charge. Now the same happens at at the level of WCW (”world
of classical worlds”) rather than 3-space meaning that wave functions in E3 are
replaced with wave functions in the space-time of 3-surfaces (4-surfaces by hologra-
phy implied by General Coordinate Invariance) replacing point-like particles. Single
particle wave function in WCW is a sum of N sharply localized contributions: lo-
calization takes place around one particular branch of the multi-sheeted space time
surface. Each branch carries a fractional charge q/N for teh analogs of plane waves.
Therefore all quantum numbers are additive and fractionalization is only e↵ective
and observable in a localization of wave function to single branch occurring with
probability p = 1/N from which one can deduce that charge is q/N .

ii. The is consistent with the proposed interpretation of dark photons/gravitons since
they could carry large spin and this kind of situation could decay to bunches of
ordinary photons/gravitons. It is also consistent with electromagnetic charge frac-
tionalization and fractionalization of spin.

iii. The original - and it seems wrong - argument suggested what might be interpreted as
a genuine fractionalization for orbital angular momentum and also of color quantum
numbers, which are analogous to orbital angular momentum in TGD framework.
The observation was that a rotation through 2⇡ at space-time level moving the point
along space-time surface leads to a new branch of multi-furcation and N + 1:th
branch corresponds to the original one. This suggests that angular momentum
fractionalization should take place for M4 angle coordinate � because for it 2⇡
rotation could lead to a di↵erent sheet of the e↵ective covering.
The orbital angular momentum eigenstates would correspond to waves exp(i�m/N),
m = 0, 2, ..., N � 1 and the maximum orbital angular momentum would correspond
the sum

PN�1
m=0 m/N = (N �1)/2. The sum of spin and orbital angular momentum

be therefore fractional.
The di↵erent prediction is due to the fact that rotations are now interpreted as
flows rotating the points of 3-surface along 3-surface rather than rotations of the
entire partonic surface in imbedding space. In the latter interpretation the rota-
tion by 2⇡ does nothing for the 3-surface. Hence fractionalization for the total
charge of the single particle states does not take place unless one adopts the flow
interpretation. This view about fractionalization however leads to problems with
fractionalization of electromagnetic charge and spin for which there is evidence from
fractional quantum Hall e↵ect.

What about the relationship of gravitational Planck constant to ordinary
Planck constant?

Gravitational Planck constant is given by the expression ~gr = GMm/v0, where v0 < 1
has interpretation as velocity parameter in the units c = 1. Can one interpret also ~gr as
e↵ective value of Planck constant so that its values would correspond to multi-furcation
with a gigantic number of sheets. This does not look reasonable.
Could one imagine any other interpretation for ~gr? Could the two Planck constants cor-
respond to inertial and gravitational dichotomy for four-momenta making sense also for
angular momentum identified as a four-vector? Could gravitational angular momentum
and the momentum associated with the flux tubes mediating gravitational interaction
be quantized in units of ~gr naturally?

http://en.wikipedia.org/wiki/Fractional_quantum_Hall_effect
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i. Gravitational four-momentum can be defined as a projection of theM4-four-momentum
to space-time surface. It’s length can be naturally defined by the e↵ective metric
g↵�eff defined by the anti-commutators of the modified gamma matrices. Gravita-
tional four-momentum appears as a measurement interaction term in the modified
Dirac action and can be restricted to the space-like boundaries of the space-time
surface at the ends of CD and to the light-like orbits of the wormhole throats and
which induced 4- metric is e↵ectively 3-dimensional.

ii. At the string world sheets and partonic 2-surfaces the e↵ective metric degenerates
to 2-D one. At the ends of braid strands representing their intersection, the metric is
e↵ectively 4-D. Just for definiteness assume that the e↵ective metric is proportional
to the M4 metric or rather - to its M2 projection: gkleff = K2mkl.
One can express the length squared for momentum at the flux tubes mediating the
gravitational interaction between massive objects with masses M and m as

g↵�effp↵p� = g↵�eff@↵h
k@�h

lpkpl ⌘ gkleffpkpl = n2 ~2
L2

. (10.2.1)

Here L would correspond to the length of the flux tube mediating gravitational
interaction and pk would be the momentum flowing in that flux tube. gkleff = K2mkl

would give

p2 =
n2~2
K2L2

.

~gr could be identifed in this simplified situation as ~gr = ~/K.

iii. Nottale’s proposal requires K = GMm/v0 for the space-time sheets mediating
gravitational interacting between massive objects with masses M and m. This
gives the estimate

pgr =
GMm

v0

1

L
. (10.2.2)

For v0 = 1 this is of the same order of magnitude as the exchanged momentum
if gravitational potential gives estimate for its magnitude. v0 is of same order of
magnitude as the rotation velocity of planet around Sun so that the reduction of
v0 to v0 ' 2�11 in the case of inner planets does not mean that the propagation
velocity of gravitons is reduced.

iv. Nottale’s formula requires that the order of magnitude for the components of the
energy momentum tensor at the ends of braid strands at partonic 2-surface should
have value GMm/v0. Einstein’s equations T = G+ ⇤g give a further constraint.
For the vacuum solutions of Einstein’s equations with a vanishing cosmological con-
stant the value of hgr approaches infinity. At the flux tubes mediating gravitational
interaction one expects T to be proportional to the factor GMm simply because
they mediate the gravitational interaction.

v. One can consider similar equation for gravitational angular momentum:

g↵�effL↵L� = gkleffLkLl = l(l + 1)~2 . (10.2.3)

This would give under the same simplifying assumptions

L2 = l(l + 1)
~2
K2

. (10.2.4)

This would justify the Bohr quantization rule for the angular momentum used in
the Bohr quantization of planetary orbits.

Maybe the proposed connection might make sense in some more refined formulation. In
particular the proportionality between mkl

eff = Kmkl could make sense as a quantum
average. Also the fact, that the constant v0 varies, could be understood from the
dynamical character of mkl

eff .
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Could hgr = heff hold true?

The obvious question is whether the gravitational Planck constant deduced from the
Nottale’s considerations and the e↵ective Planck constant heff = nh deduced from ELF
e↵ects on vertebrate brain and explained in terms of non-determinism of Kähler action
could be identical. At first this seems to be non-sensical idea since hgr = GMm/v0 has
gigantic value.

It is however essential to realize that by Equivalence Principle one describe gravita-
tional interaction by reducing it to elementary particle level. For instance, gravitational
Compton lengths do not depend at all on the masses of particles. Also the radii of the
planetary orbits are independent of the mass of particle mass in accordance with Equiv-
alence Principle. For elementary particles the values of hgr are in the same range as in
quantum biological applications. Typically 10 Hz ELF radiation should correspond to
energy E = hefff of UV photon if one assumes that dark ELF photons have energies
of biophotons and transform to them. The order of magnitude for n would be therefore
n ' 1014.

The experiments of M. Tajmar et al [E1, E3] discussed in [K76] provide a support for
this picture. The value of gravimagnetic field needed to explain the findings is 28 orders
of magnitude higher than theoretical value if one extrapolates the model of Meissner
e↵ect to gravimagnetic context. The amazing finding is that if one replaces Planck
constant in the formula of gravimagnetic field with hgr associated with Earth-Cooper
pair system and assumes that the velocity parameter v0 appearing in it corresponds to
the Earth’s rotation velocity around its axis, one obtains correct order of magnitude for
the e↵ect requiring r ' 3.6⇥ 1014.

The most important implications are in quantum biology and Penrose’s vision about
importance of quantum gravitation in biology might be correct.

i. This result allows by Equivalence Principle the identification hgr = heff at elemen-
tary particle level at least so that the two views about hierarchy of Planck constants
would be equivalent. If the identification holds true for larger units it requires that
space-time sheet identifiable as quantum correlates for physical systems are macro-
scopically quantum coherent and gravitation causes this. If the values of Planck
constant are really additive, the number of parallel space-time sheets corresponding
to non-determinism evolution for the flux tube connecting systems with masses M
and m is proportional to the masses M and m using Planck mass as unit. In-
formation theoretic interpretation is suggestive since hierarchy of Planck constants
is assumed to relate to negentropic entanglement very closely in turn providing
physical correlate for the notions of rule and concept.

ii. That gravity would be fundamental for macroscopic quantum coherence would not
be surprising since by EP all particles experience same acceleration in constant grav-
itational field, which therefore has tendency to create coherence unlike other basic
interactions. This in principle allows to consider hierarchy in which the integers
hgr,i are additive but give rise to the same universal dark Compton length.

iii. The model for quantum biology relying on the notions of magnetic body and dark
matter as hierarchy of phases with heff = nh, and biophotons [K72, K71] identified
as decay produces of dark photons. The assumption hgr / m becomes highly
predictable since cyclotron frequencies would be independent of the mass of the
ion.

A. If dark photons with cyclotron frequencies decay to biophotons, one can con-
clude that biophoton spectrum reflects the spectrum of endogenous magnetic
field strengths. In the model of EEG [K14] it has been indeed assumed that this
kind spectrum is there: the inspiration came from music metaphors suggesting
that musical scales are realized in terms of values of magnetic field strength.
The new quantum physics associated with gravitation would also become key
part of quantum biophysics in TGD Universe.

B. For the proposed value of hgr 1 Hz cyclotron frequency associated to DNA
sequences would correspond to ordinary photon frequency f = 3.6 ⇥ 1014 Hz
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and energy 1.2 eV just at the lower limit of visible frequencies. For 10 Hz
alpha band the energy would be 12 eV in UV. This plus the fact that molecular
energies are in eV range suggests very simple realization of biochemical control
by magnetic body. Each ion has its own cyclotron frequency but same energy
for the corresponding biophoton.

C. Biophoton with a given energy would activate transitions in specific bio-molecules
or atoms: ionization energies for atoms except hydrogen have lower bound about
5 eV (http://en.wikipedia.org/wiki/Ionization_energy). The energies of
molecular bonds are in the range 2-10 eV (http://en.wikipedia.org/wiki/
Bond-dissociation_energy). If one replaces v0 with 2v0 in the estimate, DNA
corresponds to .62 eV photon with energy of order metabolic energy currency
and alpha band corresponds to 6 eV energy in the molecular region and also in
the region of ionization energies.
Each ion at its specific magnetic flux tubes with characteristic palette of mag-
netic field strengths would resonantly excite some set of biomolecules.This con-
forms with the earlier vision about dark photon frequencies as passwords.
It could be also that biologically important ions take care of their ionization
self. This would be achieved if the magnetic field strength associated with their
flux tubes is such that dark cyclotron energy equals to ionization energy. EEG
bands labelled by magnetic field strengths could reflect ionization energies for
these ions.

D. The hypothesis means that the scale of energy spectrum of biophotons depends
on the ratio M/v0 of the planet and on the strength of the endogenous mag-
netic field, which is .2 Gauss for Earth (2/5 of the nominal value of the Earth’s
magnetic field). Therefore the astrophysical characteristics of planets should be
tuned for molecular life. Taking v0 to be rotational velocity one obtains for the
ratio M(planet)/v0(planet) using the ratio for Earth as unit the following num-
bers for the planets (Mercury, Venus, Earth, Mars, Jupiter, Saturnus, Uranus,
Neptune): M/v0 = (8.5, 209, 1, .214223, 1613, 6149, 9359). If the energy scale of
biophotons is required to be the same, the scale of endogenous magnetic field
should be divided by this ratio in order to obtain the same situation as in Earth.
For instance, in Mars the magnetic field should be roughly 5 times stronger: in
reality the magnetic field of Mars is much weaker. Just for fun one can notice
that for Sun the ratio is 1.4⇥106 so that magnetic field should be by the inverse
of this factor weaker.

iv. An interesting question is how large systems can behave as coherent units with hgr =
GMm/v0. In living matter one might consider the possibility that entire organism
might be this kind of system. Interestingly, for larger masses the gravitational
quantum coherence would be easier. For particle with mass m hgr/h > 1 requires
larger mass to satisfy M > M2

P /me. The first guess that life has evolved from long
to shorter scales and reached elementary particle last. Planck mass is the critical
mass corresponds to the mass of water blog with volume of size scale of 10�4 m
(big neuron) is the limit.

v. The Universal gravitational Compton wave length of GM/v0 ' 864 meters gives
an idea about largest possible living matter system if Earth is the second body. Of
course, also other large bodies are possible.In the case of solar system this length
is 3⇥ 103 km. The radius of Earth is 6.37 ⇥ 103 km - roughly twice the Compton
length. The radii of Mercury, Venus, Earth, Mars, Jupiter, Saturnus, Uranus,
Neptunus are (.38,.99, .533, 1, 10.6, 8.6, 4.0, 3.9) using Earth radius as unit the
value of hgr is by factor 5 larger than for three inner planets so that the values are
reasonably near to gravitational Compton length or twice it. Does this mean that
dark matter associated with Earth and maybe also other planets is in macroscopic
quantum state at some level of the hierarchy of space-time sheets? Does this mean
that Mother Gaia as conscious entity might make sense. One can of course make
same question in the case of Sun. The universal gravitational Compton length in
Sun would be 18 per cent of the radius of Sun if v0 is taken to be the rotational

http://en.wikipedia.org/wiki/Ionization_energy


10.3. Number theoretic braids and global view about anti-commutations of induced
spinor fields 377

velocity at the surface of Sun. The radius of solar core, where fusion takes place, is
20-25 per cent of solar radius.

vi. There are further interesting numerical co-incidences. One can for a moment forget
the standard hostility of scientist towards horoscopes and ask whether Sun and
Moon could have somehow a↵ect our life via astrocopic quantum coherence. The
gravitational Compton length for particle-Moon or particle-Sun system multiplied
by the natural value of magnetic field is the relevant parameter. For Sun the
parameters in question are mass of Sun, and rotational velocity of Earth with respect
to Sun, plus magnetic fields of Sun at flux tubes associated with solar magnetic field
measured to be about 5 nT at the position of Earth and 100 times stronger than
expected from dipole field behavior. This gives that the range of biophoton energies
is scaled down with factor of 1/4 in good approximation so that Father Sun might
a↵ect terrestrial biology! If one uses for the rotational velocity of particle at surface
of Moon as parameter v0 (particle would be at Moon), biophoton energy scaled
scaled up by factor 1.2.

The general proposal discussed above is testable. In particular, a detailed study of
molecular energies with those associated with resonances of EEG could be highly re-
warding and reveal the speculated spectroscopy of consciousness.

Summary

The hierarchy of Planck constants reduces to second quantization of multi-furcations in
TGD framework and the hierarchy is only e↵ective. Anyonic physics and e↵ective charge
fractionalization are consequences of second quantized multi-furcations. This framework
also provides quantum version for the transition to chaos via quantum multi-furcations
and living matter represents the basic application. The key element of dynamics of TGD
is vacuum degeneracy of Kähler action making possible quantum criticality having the
hierarchy of multi-furcations as basic aspect. The potential problems relate to the
question whether the e↵ective scaling of Planck constant involves scaling of ordinary
wavelength or not. For particles confined inside linear structures such as magnetic flux
tubes this seems to be the case.

There is also an intriguing connection with the vision about physics as generalized
number theory. The conjecture that the preferred extremals of Kähler action consist
of quaternionic or co-quaternionic regions led to a construction of them using iteration
and also led to the hierarchy of multi-furcations [K69]. Therefore it seems that the
dynamics of preferred extremals might indeed reduce to associativity/co-associativity
condition at space-time level , to commutativity/co-commutativity condition at the
level of string world sheets and partonic 2-surfaces, and to reality at the level of stringy
curves (conformal invariance makes stringy curves causal determinants [K61] so that
conformal dynamics represents conformal evolution) [K52].

10.3 Number theoretic braids and global view about
anti-commutations of induced spinor fields

The anti-commutations of the induced spinor fields are reasonably well understood lo-
cally. The basic objects are 3-dimensional light-like 3-surfaces. These surfaces can be
however seen as random light-like orbits of partonic 2-D partonic surface and the ef-
fective 2-dimensionality means that partonic 2-surfaces plus there 4-D tangent space
take the role of fundamental dynamical objects. This is expressed concretely by the
condition that the ends of the space-time surface and wormhole throats are extremals
of Chern-Simons action. Conformal invariance would in turn make the 2-D partons
1-D objects (analogous to Euclidian strings) and braids, which can be regarded as the
ends of string world sheets with Minkowskian signature, in turn would discretize these
Euclidian strings. It must be however noticed that the status of Euclidian strings is
uncertain.

http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#dirasvira
http://tgdtheory.com/public_html/tgdquant/tgdquant.html#Yangian
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Somehow these views should be unifiable into a more global view about the situation
allowing to understand the reduction of e↵ective dimension of the system as one goes
to short scales.

i. The notions of measurement resolution and braid concept indeed provides the
needed physical insights in this respect. The precise definition of the notion of
braid and its number theoretic counterpart has however remained open and I have
considered several alternatives. The topological character of braid indeed allows
flexibility in its definition but it would be nice to have some canonical definition
with a clear physical meaning.

ii. It turned out that the braid concept emerges automatically from the localization of
the modes of Kähler-Dirac action to 2-D surfaces - string world sheets and possibly
also partonic 2-surfaces - with vanishing induced W fields and above weak scale
also induced Z0 fields. The boundaries of string world sheets can be identified as
braids and string world sheets as 2-braids. Hence the identification of braids is
unique although their topological character does not necessitate this. The attribute
”number theoretic” would mean that the intersections of braids with partonic 2-
surfaces corresponds to points with preferred imbedding space coordinates having
values which are algebraic numbers in some extension of rational numbers. This
selects preferred extremals among all extremals and they could perhaps be said to
belong to the intersection of real and p-adic space-time sheets.

10.3.1 Quantization of the modified Dirac action and configura-
tion space geometry

The quantization of the modified Dirac action involves a fusion of various number the-
oretical ideas. The naive approach would be based on standard canonical quantization
of induced spinor fields by posing anti-commutation relations between  and canonical
momentum density @L/@(@t ).

One can imagine two alternative forms of the anti-commutation relations.

i. The standard canonical anti-commutation relations for the induced the spinor fields
would be given by

{ �̂0(x), (y)} = �2x,y . (10.3.1)

The factor that �̂0(x) corresponds to the canonical momentum density associated
with Kähler action. The discrete variant of the anti-commutation relations applying
in the case of non-stringy space-time sheets is

{ �̂0(xi), (xj)} = �i,j . (10.3.2)

where xi and xj label the points of the number theoretic braid. These anti-
commutations are are inconsistent at the limit of vacuum extremal and also ex-
tremely non-linear in the imbedding space coordinates.

ii. The construction of WCW gamma matrices leads to a nonsingular form of anti-
commutation relations given by

{ (x)�0, (x)} = (1 +K)J�x,y . (10.3.3)

Here J denotes the Kähler magnetic flux Jm and Kähler electric flux relates to via
the formula Je = KJm, where K is symplectic invariant. What is nice that at the
limit of vacuum extremals the right hand side vanishes so that spinor fields become
non-dynamical. Therefore this option- actually the original one - seems to be the
only reasonable choice.

For the latter option the super counterparts of local flux Hamiltonians can be written
in the form
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HA,+,n = HA,+,q,n +HA,+,L,n , HA,�,n = HA,�,q,n +HA,�,L,n ,

HA,+,q,n =

I
 JA

+qnd
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qnJ

A
� d

2x ,
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I
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+Lnd
2x ,

HA,+,L,n =

I
LnJ

A
� d

2x ,

JA
+ = jAk�k , JA

� = jAk�k . (10.3.4)

Suppose that there is a one-one correspondence between quark modes and leptonic
modes is satisfied and the label n decomposes as n = (m, i), where n labels a scalar
function basis and i labels spinor components. This would give

qn = qm,i = �mqi ,

Ln = Lm,i = �mLi ,

qi�
0qj = Li�

0Lj = gij . (10.3.5)

Suppose that the inner products gij are constant. The simplest possibility is gij = �ij
Under these assumptions the anti-commutators of the super-symmetric flux Hamiltoni-
ans give flux Hamiltonians.

{HA,+,n, HA,�,n} = gij

I
(1 +K)�m�nHAJd

2x . (10.3.6)

The product of scalar functions can be expressed as

�m�n = c k
mn�k . (10.3.7)

Note that the notion of symplectic QFT led to a scalar function algebra of similar kind
consisting of phase factors and there excellent reasons to consider the possibility that
there is a deep connection with this approach.

One expects that the symplectic algebra is restricted to a direct sum of symplectic
algebras localized to the regions where the induced Kähler form is non-vanishing im-
plying that the algebras associated with di↵erent region form to a direct sum. Also
the contributions to WCW metric are direct sums. The symplectic algebras associ-
ated with di↵erent region can be truncated to finite-dimensional spaces of symplectic
algebras S2 ⇥ S associated with the regions in question. As far as coordinatization of
the reduced configuration space is considered, these symplectic sub-spaces are enough.
These truncated algebras naturally correspond to the hyper-finite factor property of the
Cli↵ord algebra of WCW.

10.3.2 Expressions for WCW super-symplectic generators in fi-
nite measurement resolution

The expressions of WCW Hamiltonians and their super counterparts just discussed were
based on 2-dimensional integrals. This is problematic for several reasons.

i. In p-adic context integrals do not makes sense so that this representation fails in
p-adic context. Sums would be more appropriate if one wants number theoretic
universality at the level of basic formulas.
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ii. The use of sums would also conform with the notion of finite measurement resolution
having discretization in terms of intersections of X2 with number theoretic braids
as a space-time correlate.

iii. Number theoretic duality suggests a unique realization of the discretization in the
sense that only the points of partonic 2-surface X2 whose �M4

± projections com-
mute in hyper-octonionic sense and thus belong to the intersections of the pro-
jection PM4(X2) with radial light-like geodesics M± representing intersections of
M2 ⇢ M4 ⇢ M8 with �M4

± ⇥ CP2 contribute to WCW Hamiltonians and super
Hamiltonians and therefore to the WCW metric.

Clearly, finite measurement resolution seems to be an unavoidable aspect of the ge-
ometrization of WCW as one can expect on basis of the fact that WCW Cli↵ord alge-
bra provides representation for hyper-finite factors of type II1 whose inclusions provide
a representation for the finite measurement resolution. This means that the infinite-
dimensional WCW can be represented as a finite-dimensional space in arbitrary precise
approximation so that also also configuration Cli↵ord algebra and WCW spinor fields
becomes finite-dimensional.

The modification of anti-commutation relations to this case is

{ (xm)�0, (xn)} = (1 +K)J�x
m

,x
n

. (10.3.8)

Note that the constancy of �0 implies a complete symmetry between the two points.
The number of points must be the maximal one consistent with the Kronecker delta
type anti-commutation relations so that information is not lost.

The question arises about the choice of the points xm. This choice should ge general
coordinate invariant. As already described, the localization of the modes of the Kähler-
Dirac action to 2-D surfaces resolves this problem: the points xm correspond to points
of imbedding space which in preferred imbedding space coordinates have values in some
algebraic extension of rationals.

10.3.3 QFT description of particle reactions at the level of braids

The overall view conforms with zero energy ontology in which hierarchy of causal di-
amonds (CDs) within CDs gives rise to a hierarchy of generalized Feynman diagrams
and geometric description of the radiative corrections. Each sub-CD gives also rise to to
zero energy states and thus particle reactions in its own time scale so that improvement
of the time resolution brings in also new physics as it does also in reality.

The natural question is what happens to the braids at vertices.

i. The vision based on infinite primes led to the conclusion that the selection rules
of arithmetic quantum field theory based on the conservation of the total number
theoretic momentum P =

P
nilog(pi) dictate the selection rules at the vertices.

For given pi the momentum nilog(pi) can be shared between the outgoing lines
and this allows several combinations of infinite primes in outgoing lines having
interpretations in terms of singular coverings of CD and CP2.

ii. What happens then to the braid strands? If the bosons and fermions with given
pi are shared between several outgoing particles, does this require that the braid
strands replicate? Or is their number preserved if one regards each braid strand
as having na resp. nb copies at the sheets of the corresponding coverings? This
is required by the conservation of number theoretic momentum if one accepts the
connection between the hierarchy of Planck constants and infinite primes.

iii. The question raised already earlier is whether DNA replication could have a coun-
terpart at the level of fundamental physics. The interpretation of the incoming
lines of generalized Feynman diagram as representations of topological quantum
computations and the virtual particle lines as representations of quantum commu-
nications would support this picture. The no-cloning theorem [B3] would hold true
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since exact copies of quantum states would not be possible by the conservation of
the number theoretical momentum. One could however say that the bosonic occu-
pation number ni means the presence of ni-fold copy of same piece of information
so that the sharing of information by sharing the pages of the singular covering
associated with ni would be possible in the limits posed by the values of ni. Note
again that the identification ni = na or ni = nb (two infinite primes characterize
the quantum state) makes sense only if only one of the p-adic primes associated
with the 3-surface is realized as a physical state since the identification forces the
selection of the covering. The quantum model for DNA based on hierarchy of
Planck constants [K57] inspires the question whether DNA replication could be ac-
tually accompanied by its proposed counterpart at the fundamental level defining
the fundamental information transfer process.

iv. The localization of the quantum numbers to braid strands suggests that braid ends
of a given braid continue to one particular line or more generally, are shared between
several lines. This condition is quite strong since without additional quantization
conditions the ends of the braids of outgoing particles do not co-incide with the
ends of the incoming braid. These kind of quantization conditions would conform
with the generalized Bohr orbit property of light-like 3-surfaces.

v. Without these quantization conditions one meets the challenge of calculating the
anti-commutators of fermionic oscillator operators associated with non-co-inciding
points of the incoming and outgoing braids. This raises the question whether one
should regard the quantizations of induced spinor fields based on the Lmin as one
possible gauge only and allow the variation of Lmin in some limits. If these quanti-
zations are equivalent, the fermionic oscillator operators would be unitarily related.
How to deduce this unitary transformation would be the non-trivial problem and
it seems that the simpler picture is much more attractive.

This picture means that particle reactions occur at several levels which brings in mind
a kind of universal mimicry inspired by Universe as a Universal Computer hypothesis.
Particle reactions in QFT sense correspond to the reactions for the number theoretic
braids inside partons. This level seems to be the simplest one to describe mathematically.
At parton level particle reactions correspond to generalized Feynman diagrams obtained
by gluing partonic 3-surfaces along their ends at vertices. Particle reactions are realized
also at the level of 4-D space-time surfaces. One might hope that this multiple realization
could code the dynamics already at the simple level of single partonic 3-surface.

10.3.4 How do generalized braid diagrams relate to the pertur-
bation theory?

The association of generalized braid diagrams characterized by infinite primes to the
incoming and outgoing partonic legs and internal lines of the generalized Feynman dia-
grams forces to ask whether the generalized braid diagrams could give rise to a counter-
part of perturbation theoretical formalism via the functional integral over configuration
space degrees of freedom.

The basic question is how the functional integral over configuration space degrees of
freedom relates to the generalized braid diagrams.

i. If one believes in perturbation theoretic approach, the basic conjecture motivated
also number theoretically is that radiative corrections in this sense sum up to zero
for critical values of Kähler coupling strength and Kähler function codes radiative
corrections to classical physics via the dependence of the scale of M4 metric on
Planck constant. Cancelation could occur only for critical values of Kähler cou-
pling strength ↵K : for general values of ↵K the cancellation would require separate
vanishing of each term in the sum and does not occur.
In perturbative approach the expression of Kähler function as Chern-Simons action
could be used and propagator would correspond to the inverse of the 1-1 part of
the second variation of the Chern-Simons action with respect to complex WCW
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coordinates evaluated allowing only the extrema of Chern-Simons action for the
ends of space-time surface and for wormhole throats. One would have perturbation
theory for a sum over maxima of Kähler function. From the expression of the Kähler
function as Dirac determinant the maxima would correspond to the local minima
of Lp =

p
pLmin for a given infinite prime. The connection between Chern-Simons

representation and Dirac determinant representation of Kähler function would be
obviously highly desirable.

ii. The possibility to define WCW functional integral in terms of harmonic analysis
for infinite-dimensional spaces leads to a non-perturbative approach to functional
integration allowing also a generalization the p-adic context [K52] . In this approach
there is no need to make additional assumptions.

For both cases the assignment of the collection of braids characterized by pairs of infinite
primes allows to organize the generalized Feynman diagrams into a sum of generalized
Feynman diagrams and for each diagram type the exponent of Kähler function - if given
by the Dirac determinant- would be simply the product

Q
i L

�1
p
i

, Lp =
p
pLmin. One

should perform a sum over di↵erent infinite primes in the internal lines subject to the
conservation of the total number theoretic momenta. The conservation of the incoming
number theoretic momentum would allow only a finite number of configurations for
the intermediate lines. For the approach based on harmonic analysis the expression
of the Kähler function in terms of the Dirac determinant would be optimal since it is
manifestly algebraic function.

Both approaches involve a perturbative summation in the sense of introducing sub-CDs
with time scales coming as 2�n powers of the time scale of CD defining the infrared
cuto↵.

i. The addition of zero energy insertions corresponding to sub-CDs as radiative cor-
rections allows to improve measurement resolution. Hence a connection with QFT
type Feyman diagram expansion would be obtained and Connes tensor product
would have a practical computational realization.

ii. The time scale resolution defined by the temporal distance between the tips of the
causal diamond defined by the future and past light-cones applies to the addition of
zero energy sub-states and one obtains a direct connection with p-adic length scale
evolution of coupling constants since the time scales in question naturally come as
negative powers of two. More precisely, p-adic primes near power of two are very
natural since the coupling constant evolution comes in powers of two of fundamental
2-adic length scale.

10.3.5 How p-adic coupling constant evolution and p-adic length
scale hypothesis emerge?

The condition Tn = 2nT0 would assign to the hierarchy of CDs as hierarchy of time
scales coming as octaves. A weaker condition would be Tp = pT0, p prime, and would
assign all secondary p-adic time scales to the size scale hierarchy of CDs.

One can wonder how this picture relates to the earlier hypothesis that p-adic length
coupling constant evolution. Could the coupling constant evolution in powers of 2
implying time scale hierarchy Tn = 2nT0 induce p-adic coupling constant evolution and
explain why p-adic length scales correspond to Lp / p

pR, p ' 2k, R CP2 length scale?
This looks like an attractive idea but there is a problem. p-Adic length scales come as
powers of

p
2 rather than 2 and the strongly favored values of k are primes and thus

odd so that n = k/2 would be half odd integer. This problem can be solved.

i. The observation that the distance traveled by a Brownian particle during time t
satisfies r2 = Dt suggests a solution to the problem. p-Adic thermodynamics applies
because the partonic 3-surfaces X2 are as 2-D dynamical systems random apart
from light-likeness of their orbit. For CP2 type vacuum extremals the situation
reduces to that for a one-dimensional random light-like curve in M4. The orbits
of Brownian particle would now correspond to light-like geodesics �3 at X3. The
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projection of �3 to a time=constant section X2 ⇢ X3 would define the 2-D path �2
of the Brownian particle. The M4 distance r between the end points of �2 would
be given r2 = Dt. The favored values of t would correspond to Tn = 2nT0 (the full
light-like geodesic). p-Adic length scales would result as L2(k) = DT (k) = D2kT0

for D = R2/T0. Since only CP2 scale is available as a fundamental scale, one would
have T0 = R and D = R and L2(k) = T (k)R.

ii. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale
would not relate to the p-adic length scale via Tp = Lp/c as assumed implicitly
earlier but via Tp = L2

p/R0 =
p
pLp, which corresponds to secondary p-adic length

scale. For instance, in the case of electron with p = M127 one would have T127 = .1
second which defines a fundamental biological rhythm. Neutrinos with mass around
.1 eV would correspond to L(169) ' 5 µm (size of a small cell) and T (169) ' 1.⇥104

years. A deep connection between elementary particle physics and biology becomes
highly suggestive.

iii. In the proposed picture the p-adic prime p ' 2k would characterize the thermody-
namics of the random motion of light-like geodesics of X3 so that p-adic prime p
would indeed be an inherent property of X3. For Tp = pT0 the above argument
is not enough for p-adic length scale hypothesis and p-adic length scale hypothesis
might be seen as an outcome of a process analogous to natural selection. Resonance
like e↵ect favoring octaves of a fundamental frequency might be in question. In this
case, p would a property of CD and all light-like 3-surfaces inside it and also that
corresponding sector of WCW.

10.4 Twistor revolution and TGD

Lubos Motl wrote a nice summary about the talk of Nima Arkani Hamed about twistor
revolution in Strings 2012 and gave also a link to the talk [B7]. It seems that Nima
and collaborators are ending to a picture about scattering amplitudes which strongly
resembles that provided by generalized Feynman diagrammatics in TGD framework

TGD framework is much more general than N = 4 SYM and is to it same as general
relativity for special relativity whereas the latter is completely explicit. Of course, I
cannot hope that TGD view could be taken seriously - at least publicly. One might
hope that these approaches could be combined some day: both have a lot to give for
each other. Below I compare these approaches.

The recent approach below emerges from the study of preferred extremals of Kähler
and solutions of the modified Dirac equations so that it begins directly from basic
TGD whereas the approaches hitherto have been based on general arguments and the
precise role of right-handed neutrino has remained enigmatic. Chapters ”Construction
of quantum TGD: Symmetries” [K13] and ”The recent vision about preferred extremals
and solutions of the modified Dirac equation” [K69] contain section explaining how
super-conformal and Yangian algebras crucial for the Grassmannian approach emerge
from the basic TGD.

10.4.1 The origin of twistor diagrammatics

In TGD framework zero energy ontology forces to replace the idea about continuous
unitary evolution in Minkowski space with something more general assignable to causal
diamonds (CDs), and S-matrix is replaced with a square root of density matrix equal
to a hermitian l square root of density matrix multiplied by unitary S-matrix. Also in
twistor approach unitarity has ceased to be a star actor. In p-Adic context continuous
unitary time evolution fails to make sense also mathematically.

Twistor diagrammatics involves only massless on mass shell particles on both external
and internal lines. Zero energy ontology (ZEO) requires same in TGD: wormhole lines
carry parallelly moving massless fermions and anti-fermions. The mass shell conditions
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at vertices are enormously powerful and imply UV finiteness. Also IR finiteness follows
if external particles are massive.

What one means with mass is however a delicate matter. What does one mean with
mass? I have pondered 35 years this question and the recent view is inspired by p-adic
mass calculations and ZEO, and states that observed mass is in a well-defined sense
expectation value of longitudinal mass squared for all possible choices of M2 ⇢ M4

characterizing the choices of quantization axis for energy and spin at the level of ”world
of classical worlds” (WCW) assignable with given causal diamond CD.

The choice of quantization axis thus becomes part of the geometry of WCW. All worm-
hole throats are massless but develop non-vanishing longitudinal mass squared. Gauge
bosons correspond to wormhole contacts and thus consist of pairs of massless wormhole
throats. Gauge bosons could develop 4-D mass squared but also remain massless in
4-D sense if the throats have parallel massless momenta. Longitudinal mass squared is
however non-vanishing and p-adic thermodynamics predicts it.

10.4.2 The emergence of 2-D sub-dynamics at space-time level

Nima et al introduce ordering of the vertices in 4-D case. Ordering and related braiding
are however essentially 2-D notions. Somehow 2-D theory must be a part of the 4-D
theory also at space-time level, and I understood that understanding this is the challenge
of the twistor approach at this moment.

The twistor amplitude can be represented as sum over the permutations of n external
gluons and all diagrams corresponding to the same permutation are equivalent. Permu-
tations are more like braidings since they carry information about how the permutation
proceeded as a homotopy. Yang-Baxter equation emerges and states associativity of the
braid group. The allowed braidings are minimal braidings in the sense that the repeti-
tions of permutations of two adjacent vertices are not considered to be separate. Minimal
braidings reduce to ordinary permutations. Nima also talks about a�ne braidings which
I interpret as analogs of Kac-Moody algebras meaning that one uses projective represen-
tations which for Kac-Moody algebra mean non-trivial central extension. Perhaps the
condition is that the square of a permutation permuting only two vertices which each
other gives only a non-trivial phase factor. Lubos suggests an alternative interpretation
which would select only special permutations and cannot be therefore correct.

There are rules of identifying the permutation associated with a given diagram involv-
ing only basic 3-gluon vertex with white circle and its conjugate. Lubos explains this
”Mickey Mouse in maze” rule in his posting in detail: to determine the image p(n) of
vertex n in the permutation put a mouse in the maze defined by the diagram and let it
run around obeying single rule: if the vertex is black turn to the right and if the vertex
is white turn to the left. The mouse cannot remain in a loop: if it would do so, the
rule would force it to run back to n after single full loop and one would have a fixed
point: p(n) = n. The reduction in the number of diagrams is enormous: the infinity of
di↵erent diagrams reduces to n! diagrams!

What happens in TGD framework?

i. In TGD framework string world sheets and partonic 2-surfaces (or either or these if
they are dual notions as conjectured) at space-time surface would define the sought
for 2-D theory, and one obtains indeed perturbative expansion with fermionic prop-
agator defined by the inverse of the modified Dirac operator and bosonic propagator
defined by the correlation function for small deformations of the string world sheet.
The vertices of twistor diagrams emerge as braid ends defining the intersections of
string world sheets and partonic 2-surfaces.
String model like description becomes part of TGD and the role of string world
sheets in X4 is highly analogous to that of string world sheets connecting branes in
AdS5 ⇥ S5 of N = 4 SYM. In TGD framework 10-D AdS5 ⇥ S5 is replaced with
4-D space-time surface in M4 ⇥ CP2. The meaning of the analog of AdS5 duality
in TGD framework should be understood. In particular, it could it be that the
descriptions involving string world sheets on one hand and partonic 2-surfaces - or
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3-D orbits of wormhole throats defining the generalized Feynman diagram- on the
other hand are dual to each other. I have conjectured something like this earlier
but it takes some time for this kind of issues to find their natural answer.

ii. As described in the article, string world sheets and partonic 2-surfaces emerge di-
rectly from the construction of the solutions of the modified Dirac equation by
requiring conservation of em charge. This result has been conjectured already
earlier but using other less direct arguments. 2-D ”string world sheets” as sub-
manifolds of the space-time surface make the ordering possible, and guarantee the
finiteness of the perturbation theory involving n-point functions of a conformal QFT
for fermions at wormhole throats and n-point functions for the deformations of the
space-time surface. Conformal invariance should dictate these n-point functions to
a high degree. In TGD framework the fundamental 3-vertex corresponds to join-
ing of light-like orbits of three wormhole contacts along their 2-D ends (partonic
2-surfaces).

10.4.3 The emergence of Yangian symmetry

Yangian symmetry associated with the conformal transformations of M4 is a key sym-
metry of Grassmannian approach. Is it possible to derive it in TGD framework?

i. TGD indeed leads to a concrete representation of Yangian algebra as generalization
of color and electroweak gauge Kac-Moody algebra using general formula discussed
in Witten’s article about Yangian algebras (see the article).

ii. Article discusses also a conjecture about 2-D Hodge duality of quantized YM gauge
potentials assignable to string world sheets with Kac-Moody currents. Quantum
gauge potentials are defined only where they are needed - at string world sheets
rather than entire 4-D space-time.

iii. Conformal scalings of the e↵ective metric defined by the anti-commutators of the
modified gamma matrices emerge as realization of quantum criticality. They are
induced by critical deformations (second variations not changing Kähler action)
of the space-time surface. This algebra can be generalized to Yangian using the
formulas in Witten’s article (see the article).

iv. Critical deformations induce also electroweak gauge transformations and even more
general symmetries for which infinitesimal generators are products of U(n) genera-
tors permuting n modes of the modified Dirac operator and infinitesimal generators
of local electro-weak gauge transformations. These symmetries would relate in a
natural manner to finite measurement resolution realized in terms of inclusions of
hyperfinite factors with included algebra taking the role of gauge group transforming
to each other states not distinguishable from each other.

v. How to end up with Grassmannian picture in TGD framework? This has inspired
some speculations in the past. From Nima’s lecture one however learns that Grass-
mannian picture emerges as a convenient parameterization. One starts from the
basic 3-gluon vertex or its conjugate expressed in terms of twistors. Momentum
conservation implies that with the three twistors �i or their conjugates are propor-
tional to each other (depending on which is the case one assigns white or black dot
with the vertex). This constraint can be expressed as a delta function constraint
by introducing additional integration variables and these integration variables lead
to the emergence of the Grassmannian Gn,k where n is the number of gluons, and
k the number of positive helicity gluons.
Since only momentum conservation is involved, and since twistorial description
works because only massless on mass shell virtual particles are involved, one is
bound to end up with the Grassmannian description also in TGD.

10.4.4 The analog of AdS5 duality in TGD framework

The generalization of AdS5 duality of N = 4 SYMs to TGD framework is highly sug-
gestive and states that string world sheets and partonic 2-surfaces play a dual role in

http://tgdtheory.com/public_html/articles/svira.pdf
http://tgdtheory.com/public_html/articles/svira.pdf
http://arxiv.org/pdf/hep-th/0401243v2.pdf
http://tgdtheory.com/public_html/articles/svira.pdf
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the construction of M-matrices. Some terminology first.

i. Let us agree that string world sheets and partonic 2-surfaces refer to 2-surfaces in
the slicing of space-time region defined by Hermitian structure or Hamilton-Jacobi
structure.

ii. Let us also agree that singular string world sheets and partonic 2-surfaces are sur-
faces at which the e↵ective metric defined by the anti-commutators of the modified
gamma matrices degenerates to e↵ectively 2-D one.

iii. Braid strands at wormhole throats in turn would be loci at which the induced metric
of the string world sheet transforms from Euclidian to Minkowskian as the signature
of induced metric changes from Euclidian to Minkowskian.

AdS5 duality suggest that string world sheets are in the same role as string world sheets
of 10-D space connecting branes in AdS5 duality for N = 4 SYM. What is important
is that there should exist a duality meaning two manners to calculate the amplitudes.
What the duality could mean now?

i. Also in TGD framework the first manner would be string model like description
using string world sheets. The second one would be a generalization of conformal
QFT at light-like 3-surfaces (allowing generalized conformal symmetry) defining the
lines of generalized Feynman diagram. The correlation functions to be calculated
would have points at the intersections of partonic 2-surfaces and string world sheets
and would represent braid ends.

ii. General Coordinate Invariance (GCI) implies that physics should be codable by
3-surfaces. Light-like 3-surfaces define 3-surfaces of this kind and same applies to
space-like 3-surfaces. There are also preferred 3-surfaces of this kind. The orbits
of 2-D wormhole throats at which 4-metric degenerates to 3-dimensional one define
preferred light-like 3-surfaces. Also the space-like 3-surfaces at the ends of space-
time surface at light-like boundaries of causal diamonds (CDs) define preferred
space-like 3-surfaces. Both light-like and space-like 3-surfaces should code for the
same physics and therefore their intersections defining partonic 2-surfaces plus the 4-
D tangent space data at them should be enough to code for physics. This is strong
form of GCI implying e↵ective 2-dimensionality. As a special case one obtains
singular string world sheets at which the e↵ective metric reduces to 2-dimensional
and singular partonic 2-surfaces defining the wormhole throats. For these 2-surfaces
situation could be especially simple mathematically.

iii. The guess inspired by strong GCI is that string world sheet -partonic 2-surface
duality holds true. The functional integrals over the deformations of 2 kinds of
2-surfaces should give the same result so that functional integration over either
kinds of 2-surfaces should be enough. Note that the members of a given pair in the
slicing intersect at discrete set of points and these points define braid ends carrying
fermion number. Discretization and braid picture follow automatically.

iv. Scattering amplitudes in the twistorial approach could be thus calculated by using
any pair in the slicing - or only either member of the pair if the analog of AdS5

duality holds true as argued. The possibility to choose any pair in the slicing means
general coordinate invariance as a symmetry of the Kähler metric of WCW and of
the entire theory suggested already early: Kähler functions for di↵erence choices in
the slicing would di↵er by a real part of holomorphic function and give rise to same
Kähler metric of ”world of classical worlds” (WCW). For a general pair one obtains
functional integral over deformations of space-time surface inducing deformations
of 2-surfaces with only other kind 2-surface contributing to amplitude. This means
the analog of stringy QFT: Minkowskian or Euclidian string theory depending on
choice.

v. For singular string world sheets and partonic 2-surfaces an enormous simplification
results. The propagators for fermions and correlation functions for deformations
reduce to 1-D instead of being 2-D: the propagation takes place only along the
light-like lines at which the string world sheets with Euclidian signature (inside
CP2 like regions) change to those with Minkowskian signature of induced metric.
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The local reduction of space-time dimension would be very real for particles moving
along sub-manifolds at which higher dimensional space-time has reduced metric
dimension: they cannot get out from lower-D sub-manifold. This is like ending down
to 1-D black hole interior and one would obtain the analog of ordinary Feynman
diagrammatics. This kind of Feynman diagrammatics involving only braid strands
is what I have indeed ended up earlier so that it seems that I can trust good intuition
combined with a sloppy mathematics sometimes works;-).
These singular lines represent orbits of point like particles carrying fermion num-
ber at the orbits of wormhole throats. Furthermore, in this representation the
expansions coming from string world sheets and partonic 2-surfaces are identical
automatically. This follows from the fact that only the light-like lines connect-
ing points common to singular string world sheets and singular partonic 2-surfaces
appear as propagator lines!

vi. The TGD analog of AdS5 duality of N = 4 SUSYs would be trivially true as an
identity in this special case, and the good guess is that it is true also generally.
One could indeed use integral over either string world sheets or partonic 2-sheets
to deduce the amplitudes.

What is important to notice that singularities of Feynman diagrams crucial for the
Grassmannian approach of Nima and others would correspond at space-time level 2-D
singularities of the e↵ective metric defined by the modified gamma matrices defined as
contractions of canonical momentum currents for Kähler action with ordinary gamma
matrices of the imbedding space and therefore directly reflecting classical dynamics.

10.4.5 Problems of the twistor approach from TGD point of
view

Twistor approach has also its problems and here TGD suggests how to proceed. Signa-
ture problem is the first problem.

i. Twistor diagrammatics works in a strict mathematical sense only for M2,2 with
metric signature (1,1,-1,-1) rather than M4 with metric signature (1,-1,-1,-1). Met-
ric signature is wrong in the physical case. This is a real problem which must be
solved eventually.

ii. E↵ective metric defined by anti-commutators of the modified gamma matrices (to
be distinguished from the induced gamma matrices) could solve that problem since
it would have the correct signature in TGD framework (see the article). String
world sheets and partonic 2-surfaces would correspond to the 2-D singularities of
this e↵ective metric at which the even-even signature (1,1,1,1) changes to even-even
signature (1,1,-1,-1). Space-time at string world sheet would become locally 2-D
with respect to e↵ective metric just as space-time becomes locally 3-D with respect
to the induced metric at the light-like orbits of wormhole throats. String world
sheets become also locally 1-D at light-like curves at which Euclidian signature of
world sheet in induced metric transforms to Minkowskian.

iii. Twistor amplitudes are indeed singularities and string world sheets implied in TGD
framework by conservation of em charge would represent these singularities at space-
time level. At the end of the talk Nima conjectured about lower-dimensional man-
ifolds of space-time as representation of space-time singularities. Note that string
world sheets and partonic 2-surfaces have been part of TGD for years. TGD is of
course to N = 4 SYM what general relativity is for the special relativity. Space-
time surface is dynamical and possesses induced and e↵ective metrics rather than
being flat.

Second limitation is that twistor diagrammatics works only for planar diagrams. This
is a problem which must be also fixed sooner or later.

i. This perhaps dangerous and blasphemous statement that I will regret it some day
but I will make it;-). Nima and others have not yet discovered that M2 ⇢ M4 must
be there but will discover it when they begin to generalize the results to non-planar

http://tgdtheory.com/public_html/articles/svira.pdf
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diagrams and realize that Feynman diagrams are analogous to knot diagrams in 2-D
plane (with crossings allowed) and that this 2-D plane must correspond to M2 ⇢
M4. The di↵erent choices of causal diamond CD correspond to di↵erent choices of
M2 representing choice of quantization axes 4-momentum and spin. The integral
over these choices guarantees Lorentz invariance. Gauge conditions are modified:
longitudinalM2 projection of massless four-momentum is orthogonal to polarization
so that three polarizations are possible: states are massive in longitudinal sense.

ii. In TGD framework one replaces the lines of Feynman diagrams with the light-like 3-
surfaces defining orbits of wormhole throats. These lines carry many fermion states
defining braid strands at light-like 3-surfaces. There is internal braiding associated
with these braid strands. String world sheets connect fermions at di↵erent wormhole
throats with space-like braid strands. The M2 projections of generalized Feynman
diagrams with 4-D ”lines” replaced with genuine lines define the ordinary Feynman
diagram as the analog of braid diagram. The conjecture is that one can reduce non-
planar diagrams to planar diagrams using a procedure analogous to the construction
of knot invariants by un-knotting the knot in Alexandrian manner by allowing it to
be cut temporarily.

iii. The permutations of string vertices emerge naturally as one constructs diagrams
by adding to the interior of polygon sub-polygons connected to the external ver-
tices. This corresponds to the addition of internal partonic two-surfaces. There
are very many equivalent diagrams of this kind. Only permutations matter and
the permutation associated with a given diagram of this kind can be deduced by
the Mickey-Mouse rule described explicitly by Lubos. A connection with planar
operads is highly suggestive and also conjecture already earlier in TGD framework.

10.4.6 Could N = 2 or N = 4 SYM be a part of TGD after all?

Whether right-handed neutrinos generate a supersymmetry in TGD has been a long
standing open question. N = 1 SUSY is certainly excluded by fermion number con-
servation but already N = 2 defining a ”complexification” of N = 1 SUSY is possible
and could generate right-handed neutrino and its antiparticle. These states should how-
ever possess a non-vanishing light-like momentum since the fully covariantly constant
right-handed neutrino generates zero norm states. So called massless extremals (MEs)
allow massless solutions of the modified Dirac equation for right-handed neutrino in the
interior of space-time surface, and this seems to be case quite generally in Minkowskian
signature for preferred extremals. This suggests that particle represented as magnetic
flux tube structure with two wormhole contacts sliced between two MEs could serve
as a starting point in attempts to understand the role of right handed neutrinos and
how N = 2 or N = 4 SYM emerges at the level of space-time geometry. The following
arguments inspired by the article of Nima Arkani-Hamed et al [B13] about twistorial
scattering amplitudes suggest a more detailed physical interpretation of the possible
SUSY associated with the right-handed neutrinos.

The fact that right handed neutrinos have only gravitational interaction suggests a rad-
ical re-interpretation of SUSY: no SUSY breaking is needed since it is very di�cult
to distinguish between mass degenerate spartners of ordinary particles. In order to
distinguish between di↵erent spartners one must be able to compare the gravitomag-
netic energies of spartners in slowly varying external gravimagnetic field: this e↵ect is
extremely small.

Scattering amplitudes and the positive Grassmannian

The work of Nima Arkani-Hamed and others represents something which makes me very
optimistic and I would be happy if I could understand the horrible technicalities of their
work. The article Scattering Amplitudes and the Positive Grassmannian by Arkani-
Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, and Trnka [B13] summarizes the
recent situation in a form, which should be accessible to ordinary physicist. Lubos has

http://arxiv.org/pdf/1212.5605v1.pdf
http://arxiv.org/pdf/1212.5605v1.pdf
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already discussed the article. The following considerations do not relate much to the
main message of the article (positive Grassmannians) but more to the question how this
approach could be applied in TGD framework.

1. All scattering amplitudes have on shell amplitudes for massless particles as building
bricks

The key idea is that all planar amplitudes can be constructed from on shell amplitudes:
all virtual particles are actually real. In zero energy ontology I ended up with the rep-
resentation of TGD analogs of Feynman diagrams using only mass shell massless states
with both positive and negative energies. The enormous number of kinematic con-
straints eliminates UV and IR divergences and also the description of massive particles
as bound states of massless ones becomes possible.

In TGD framework quantum classical correspondence requires a space-time correlate
for the on mass shell property and it indeed exists. The mathematically ill-defined path
integral over all 4-surfaces is replaced with a superposition of preferred extremals of
Kähler action analogous to Bohr orbits, and one has only a functional integral over the
3-D ends at the light-like boundaries of causal diamond (Euclidian/Minkowskian space-
time regions give real/imaginary Chern-Simons exponent to the vacuum functional).
This would be obviously the deeper principle behind on mass shell representation of
scattering amplitudes that Nima and others are certainly trying to identify. This prin-
ciple in turn reduces to general coordinate invariance at the level of the world of classical
worlds.

Quantum classical correspondence and quantum ergodicity would imply even stronger
condition: the quantal correlation functions should be identical with classical correlation
functions for any preferred extremal in the superposition: all preferred extremals in the
superposition would be statistically equivalent [K69]. 4-D spin glass degeneracy of
Kähler action however suggests that this is is probably too strong a condition applying
only to building bricks of the superposition.

Minimal surface property is the geometric counterpart for masslessness and the preferred
extremals are also minimal surfaces: this property reduces to the generalization of
complex structure at space-time surfaces, which I call Hamilton-Jacobi structure for
the Minkowskian signature of the induced metric. Einstein Maxwell equations with
cosmological term are also satisfied.

2. Massless extremals and twistor approach

The decomposition M4 = M2⇥E2 is fundamental in the formulation of quantum TGD,
in the number theoretical vision about TGD, in the construction of preferred extremals,
and for the vision about generalized Feynman diagrams. It is also fundamental in
the decomposition of the degrees of string to longitudinal and transversal ones. An
additional item to the list is that also the states appearing in thermodynamical ensemble
in p-adic thermodynamics correspond to four-momenta in M2 fixed by the direction
of the Lorentz boost. In twistor approach to TGD the possibility to decompose also
internal lines to massless states at parallel space-time sheets is crucial.

Can one find a concrete identification for M2 ⇥ E2 decomposition at the level of pre-
ferred extremals? Could these preferred extremals be interpreted as the internal lines
of generalized Feynman diagrams carrying massless momenta? Could one identify the
mass of particle predicted by p-adic thermodynamics with the sum of massless classi-
cal momenta assignable to two preferred extremals of this kind connected by wormhole
contacts defining the elementary particle?

Candidates for this kind of preferred extremals indeed exist. Local M2 ⇥ E2 decom-
position and light-like longitudinal massless momentum assignable to M2 characterizes
”massless extremals” (MEs, ”topological light rays”). The simplest MEs correspond to
single space-time sheet carrying a conserved light-like M2 momentum. For several MEs
connected by wormhole contacts the longitudinal massless momenta are not conserved
anymore but their sum defines a time-like conserved four-momentum: one has a bound
states of massless MEs. The stable wormhole contacts binding MEs together possess
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Kähler magnetic charge and serve as building bricks of elementary particles. Particles
are necessary closed magnetic flux tubes having two wormhole contacts at their ends
and connecting the two MEs.

The sum of the classical massless momenta assignable to the pair of MEs is conserved
even when they exchange momentum. Quantum classical correspondence requires that
the conserved classical rest energy of the particle equals to the prediction of p-adic mass
calculations. The massless momenta assignable to MEs would naturally correspond
to the massless momenta propagating along the internal lines of generalized Feynman
diagrams assumed in zero energy ontology. Masslessness of virtual particles makes also
possible twistor approach. This supports the view that MEs are fundamental for the
twistor approach in TGD framework.

3. Scattering amplitudes as representations for braids whose threads can fuse at 3-
vertices

Just a little comment about the content of the article. The main message of the article
is that non-equivalent contributions to a given scattering amplitude in N = 4 SYM
represent elements of the group of permutations of external lines - or to be more precise
- decorated permutations which replace permutation group Sn with n! elements with
its decorated version containing 2nn! elements. Besides 3-vertex the basic dynamical
process is permutation having the exchange of neighboring lines as a generating permu-
tation completely analogous to fundamental braiding. BFCW bridge has interpretation
as a representations for the basic braiding operation.

This supports the TGD inspired proposal (TGD as almost topological QFT) that gener-
alized Feynman diagrams are in some sense also knot or braid diagrams allowing besides
braiding operation also two 3-vertices [K23]. The first 3-vertex generalizes the standard
stringy 3-vertex but with totally di↵erent interpretation having nothing to do with par-
ticle decay: rather particle travels along two paths simultaneously after 1 ! 2 decay.
Second 3-vertex generalizes the 3-vertex of ordinary Feynman diagram (three 4-D lines
of generalized Feynman diagram identified as Euclidian space-time regions meet at this
vertex). The main idea is that in TGD framework knotting and braiding emerges at
two levels.

i. At the level of space-time surface string world sheets at which the induced spinor
fields (except right-handed neutrino [K69]) are localized due to the conservation of
electric charge can form 2-knots and can intersect at discrete points in the generic
case. The boundaries of strings world sheets at light-like wormhole throat orbits and
at space-like 3-surfaces defining the ends of the space-time at light-like boundaries of
causal diamonds can form ordinary 1-knots, and get linked and braided. Elementary
particles themselves correspond to closed loops at the ends of space-time surface
and can also get knotted (possible e↵ects are discussed in [K23]).

ii. One can assign to the lines of generalized Feynman diagrams lines in M2 char-
acterizing given causal diamond. Therefore the 2-D representation of Feynman
diagrams has concrete physical interpretation in TGD. These lines can intersect
and what suggests itself is a description of non-planar diagrams (having this kind
of intersections) in terms of an algebraic knot theory. A natural guess is that it is
this knot theoretic operation which allows to describe also non-planar diagrams by
reducing them to planar ones as one does when one constructs knot invariant by
reducing the knot to a trivial one. Scattering amplitudes would be basically knot
invariants.

”Almost topological” has also a meaning usually not assigned with it. Thurston’s ge-
ometrization conjecture stating that geometric invariants of canonical representation of
manifold as Riemann geometry, defined topological invariants, could generalize some-
how. For instance, the geometric invariants of preferred extremals could be seen as
topological or more refined invariants (symplectic, conformal in the sense of 4-D gen-
eralization of conformal structure). If quantum ergodicity holds true, the statistical
geometric invariants defined by the classical correlation functions of various induced
classical gauge fields for preferred extremals could be regarded as this kind of invariants

http://en.wikipedia.org/wiki/Thurston's_geometrization_conjecture
http://en.wikipedia.org/wiki/Thurston's_geometrization_conjecture
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for sub-manifolds. What would distinguish TGD from standard topological QFT would
be that the invariants in question would involve length scale and thus have a physical
content in the usual sense of the word!

Could N =2 or N = 4 SUSY have something to do with TGD?

N = 4 SYM has been the theoretical laboratory of Nima and others. N = 4 SYM is
definitely a completely exceptional theory, and one cannot avoid the question whether
it could in some sense be part of fundamental physics. In TGD framework right handed
neutrinos have remained a mystery: whether one should assign space-time SUSY to
them or not. Could they give rise to something resembling N = 2 or N = 4 SUSY with
fermion number conservation?

1. Earlier results

My latest view is that fully covariantly constant right-handed neutrinos decouple from
the dynamics completely. I will repeat first the earlier arguments which consider only
fully covariantly constant right-handed neutrinos.

i. N = 1 SUSY is certainly excluded since it would require Majorana property not
possible in TGD framework since it would require superposition of left and right
handed neutrinos and lead to a breaking of lepton number conservation. Could one
imagine SUSY in which both MEs between which particle wormhole contacts reside
have N = 2 SUSY which combine to form an N = 4 SUSY?

ii. Right-handed neutrinos which are covariantly constant right-handed neutrinos in
bothM4 degrees of freedom cannot define a non-trivial theory as shown already ear-
lier. They have no electroweak nor gravitational couplings and carry no momentum,
only spin.
The fully covariantly constant right-handed neutrinos with two possible helicities
at given ME would define representation of SUSY at the limit of vanishing light-
like momentum. At this limit the creation and annihilation operators creating
the states would have vanishing anti-commutator so that the oscillator operators
would generate Grassmann algebra. Since creation and annihilation operators are
hermitian conjugates, the states would have zero norm and the states generated by
oscillator operators would be pure gauge and decouple from physics. This is the
core of the earlier argument demonstrating that N = 1 SUSY is not possible in
TGD framework: LHC has given convincing experimental support for this belief.

2. Could massless right-handed neutrinos covariantly constant in CP2 degrees of freedom
define N = 2 or N = 4 SUSY?

Consider next right-handed neutrinos, which are covariantly constant in CP2 degrees of
freedom but have a light-like four-momentum. In this case fermion number is conserved
but this is consistent with N = 2 SUSY at both MEs with fermion number conservation.
N = 2 SUSYs could emerge from N = 4 SUSY when one half of SUSY generators
annihilate the states, which is a basic phenomenon in supersymmetric theories.

i. At space-time level right-handed neutrinos couple to the space-time geometry -
gravitation - although weak and color interactions are absent. One can say that
this coupling forces them to move with light-like momentum parallel to that of
ME. At the level of space-time surface right-handed neutrinos have a spectrum of
excitations of four-dimensional analogs of conformal spinors at string world sheet
(Hamilton-Jacobi structure).
For MEs one indeed obtains massless solutions depending on longitudinal M2 coor-
dinates only since the induced metric in M2 di↵ers from the light-like metric only
by a contribution which is light-like and contracts to zero with light-like momen-
tum in the same direction. These solutions are analogs of (say) left movers of string
theory. The dependence on E2 degrees of freedom is holomorphic. That left movers
are only possible would suggest that one has only single helicity and conservation of
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fermion number at given space-time sheet rather than 2 helicities and non-conserved
fermion number: two real Majorana spinors combine to single complex Weyl spinor.

ii. At imbedding space level one obtains a tensor product of ordinary representations
of N = 2 SUSY consisting of Weyl spinors with opposite helicities assigned with
the ME. The state content is same as for a reduced N = 4 SUSY with four N =
1 Majorana spinors replaced by two complex N = 2 spinors with fermion number
conservation. This gives 4 states at both space-time sheets constructed from ⌫R
and its antiparticle. Altogether the two MEs give 8 states, which is one half of
the 16 states of N = 4 SUSY so that a degeneration of this symmetry forced by
non-Majorana property is in question.

3. Is the dynamics of N = 2 or N = 4 SYM possible in right-handed neutrino sector?

Could N = 2 or N = 4 SYM be a part of quantum TGD? Could TGD be seen a fusion of
a degenerate N = 4 SYM describing the right-handed neutrino sector and string theory
like theory describing the contribution of string world sheets carrying other leptonic and
quark spinors? Or could one imagine even something simpler?

What is interesting that the net momenta assigned to the right handed neutrinos asso-
ciated with a pair of MEs would correspond to the momenta assignable to the particles
and obtained by p-adic mass calculations. It would seem that right-handed neutrinos
provide a representation of the momenta of the elementary particles represented by
wormhole contact structures. Does this mimicry generalize to a full duality so that all
quantum numbers and even microscopic dynamics of defined by generalized Feynman
diagrams (Euclidian space-time regions) would be represented by right-handed neutri-
nos and MEs? Could a generalization of N = 4 SYM with non-trivial gauge group with
proper choices of the ground states helicities allow to represent the entire microscopic
dynamics?

Irrespective of the answer to this question one can compare the TGD based view about
supersymmetric dynamics with what I have understood about N = 4 SYM.

i. In the scattering of MEs induced by the dynamics of Kähler action the right-handed
neutrinos play a passive role. Modified Dirac equation forces them to adopt the
same direction of four-momentum as the MEs so that the scattering reduces to the
geometric scattering for MEs as one indeed expects on basic of quantum classical
correspondence. In ⌫R sector the basic scattering vertex involves four MEs and
could be a re-sharing of the right-handed neutrino content of the incoming two MEs
between outgoing two MEs respecting fermion number conservation. ThereforeN =
4 SYM with fermion number conservation would represent the scattering of MEs
at quantum level.

ii. N = 4 SUSY would suggest that also in the degenerate case one obtains the full
scattering amplitude as a sum of permutations of external particles followed by
projections to the directions of light-like momenta and that BCFW bridge represents
the analog of fundamental braiding operation. The decoration of permutations
means that each external line is e↵ectively doubled. Could the scattering of MEs
can be interpreted in terms of these decorated permutations? Could the doubling
of permutations by decoration relate to the occurrence of pairs of MEs?
One can also revert these questions. Could one construct massive states in N = 4
SYM using pairs of momenta associated with particle with integer label k and its
decorated copy with label k+n? Massive external particles obtained in this manner
as bound states of massless ones could solve the IR divergence problem of N = 4
SYM.

iii. The description of amplitudes in terms of leading singularities means picking up of
the singular contribution by putting the fermionic propagators on mass shell. In
the recent case it would give the inverse of massless Dirac propagator acting on
the spinor at the end of the internal line annihilating it if it is a solution of Dirac
equation.
The only way out is a kind of cohomology theory in which solutions of Dirac equation
represent exact forms. Dirac operator defines the exterior derivative d and virtual
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lines correspond to non-physical helicities with d 6= 0. Virtual fermions would be
on mass-shell fermions with non-physical polarization satisfying d2 = 0. External
particles would be those with physical polarization satisfying d = 0, and one can
say that the Feynman diagrams containing physical helicities split into products of
Feynman diagrams containing only non-physical helicities in internal lines.

iv. The fermionic states at wormhole contacts should define the ground states of SUSY
representation with helicity +1/2 and -1/2 rather than spin 1 or -1 as in standard
realization of N = 4 SYM used in the article. This would modify the theory but the
twistorial and Grassmannian description would remain more or less as such since it
depends on light-likeneness and momentum conservation only.

4. 3-vertices for sparticles are replaced with 4-vertices for MEs

In N = 4 SYM the basic vertex is on mass-shell 3-vertex which requires that for real
light-like momenta all 3 states are parallel. One must allow complex momenta in order
to satisfy energy conservation and light-likeness conditions. This is strange from the
point of view of physics although number theoretically oriented person might argue that
the extensions of rationals involving also imaginary unit are rather natural.

The complex momenta can be expressed in terms of two light-like momenta in 3-vertex
with one real momentum. For instance, the three light-like momenta can be taken to be
p, k, and p� ka with k = apR. Here p (incoming momentum) and pR are real light-like
momenta satisfying p·pR = 0 but with opposite sign of energy, and a is complex number.
What is remarkable that also the negative sign of energy is necessary also now.

Should one allow complex light-like momenta in TGD framework? One can imagine two
options.

i. Option I: no complex momenta. In zero energy ontology the situation is di↵erent
due to the presence of a pair of MEs meaning replaced of 3-vertices with 4-vertices
or 6-vertices, the allowance of negative energies in internal lines, and the fact that
scattering is of sparticles is induced by that of MEs. In the simplest vertex a massive
external particle with non-parallel MEs carrying non-parallel light-like momenta can
decay to a pair of MEs with light-like momenta. This can be interpreted as 4-ME-
vertex rather than 3-vertex (say) BFF so that complex momenta are not needed.
For an incoming boson identified as wormhole contact the vertex can be seen as
BFF vertex.
To obtain space-like momentum exchanges one must allow negative sign of energy
and one has strong conditions coming from momentum conservation and light-
likeness which allow non-trivial solutions (real momenta in the vertex are not paral-
lel) since basically the vertices are 4-vertices. This reduces dramatically the number
of graphs. Note that one can also consider vertices in which three pairs of MEs join
along their ends so that 6 MEs (analog of 3-boson vertex) would be involved.

ii. Option II: complex momenta are allowed. Proceeding just formally, the
p
g4 factor

in Kähler action density is imaginary in Minkowskian and real in Euclidian regions.
It is now clear that the formal approach is correct: Euclidian regions give rise to
Kähler function and Minkowskian regions to the analog of Morse function. TGD
as almost topological QFT inspires the conjecture about the reduction of Kähler
action to boundary terms proportional to Chern-Simons term. This is guaranteed
if the condition jµKAµ = 0 holds true: for the known extremals this is the case
since Kähler current jK is light-like or vanishing for them. This would seem that
Minkowskian and Euclidian regions provide dual descriptions of physics. If so, it
would not be surprising if the real and complex parts of the four-momentum were
parallel and in constant proportion to each other.
This argument suggests that also the conserved quantities implied by the Noether
theorem have the same structure so that charges would receive an imaginary con-
tribution from Minkowskian regions and a real contribution from Euclidian regions
(or vice versa). Four-momentum would be complex number of form P = PM + iPE .
Generalized light-likeness condition would give P 2

M = P 2
E and PM · PE = 0. Com-

plexified momentum would have 6 free components. A stronger condition would be
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P 2
M = 0 = P 2

E so that one would have two light-like momenta ”orthogonal” to each
other. For both relative signs energy PM and PE would be actually parallel: pa-
rameterization would be in terms of light-like momentum and scaling factor. This
would suggest that complex momenta do not bring in anything new and Option
II reduces e↵ectively to Option I. If one wants a complete analogy with the usual
twistor approach then P 2

M = P 2
E 6= 0 must be allowed.

5. Is SUSY breaking possible or needed?

It is di�cult to imagine the breaking of the proposed kind of SUSY in TGD framework,
and the first guess is that all these 4 super-partners of particle have identical masses.
p-Adic thermodynamics does not distinguish between these states and the only possi-
bility is that the p-adic primes di↵er for the spartners. But is the breaking of SUSY
really necessary? Can one really distinguish between the 8 di↵erent states of a given
elementary particle using the recent day experimental methods?

i. In electroweak and color interactions the spartners behave in an identical manner
classically. The coupling of right-handed neutrinos to space-time geometry however
forces the right-handed neutrinos to adopt the same direction of four-momentum as
MEs has. Could some gravitational e↵ect allow to distinguish between spartners?
This would be trivially the case if the p-adic mass scales of spartners would be
di↵erent. Why this should be the case remains however an open question.

ii. In the case of unbroken SUSY only spin distinguishes between spartners. Spin
determines statistics and the first naive guess would be that bosonic spartners obey
totally di↵erent atomic physics allowing condensation of selectrons to the ground
state. Very probably this is not true: the right-handed neutrinos are de-localized
to 4-D MEs and other fermions correspond to wormhole contact structures and 2-D
string world sheets.
The coupling of the spin to the space-time geometry seems to provide the only pos-
sible manner to distinguish between spartners. Could one imagine a gravimagnetic
e↵ect with energy splitting proportional to the product of gravimagnetic moment
and external gravimagnetic field B? If gravimagnetic moment is proportional to spin
projection in the direction of B, a non-trivial e↵ect would be possible. Needless to
say this kind of e↵ect is extremely small so that the unbroken SUSY might remain
undetected.

iii. If the spin of sparticle be seen in the classical angular momentum of ME as quantum
classical correspondence would suggest then the value of the angular momentum
might allow to distinguish between spartners. Also now the e↵ect is extremely
small.

6. What can one say about scattering amplitudes?

One expect that scattering amplitudes factorize with the only correlation between right-
handed neutrino scattering and ordinary particle scattering coming from the condition
that the four-momentum of the right-handed neutrino is parallel to that of massless
extremal of more general preferred extremal having interpretation as a geometric coun-
terpart of radiation quantum. This momentum is in turn equal to the massless four-
momentum associated with the space-time sheet in question such that the sum of classi-
cal four-momenta associated with the space-time sheets equals to that for all wormhole
throats involved. The right-handed neutrino amplitude itself would be simply constant.
This certainly satisfies the SUSY constraint and it is actually di�cult to find other can-
didates for the amplitude. The dynamics of right-handed neutrinos would be therefore
that of spectator following the leader.
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Right-handed neutrino as inert neutrino?

10.4.7 Right-handed neutrino as inert neutrino?

There is a very interesting posting by Jester in Resonaances with title How many neu-
trinos in the sky? [C1]. Jester tells about the recent 9 years WMAP data [C4] and
compares it with earlier 7 years data. In the earlier data the e↵ective number of neu-
trino types was Neff = 4.34 ± 0.87 and in the recent data it is Neff = 3.26 ± 0.35.
WMAP alone would give Neff = 3.89± 0.67 also in the recent data but also other data
are used to pose constraints on Neff .

To be precise, Neff could include instead of fourth neutrino species also some other
weakly interacting particle. The only criterion for contributing to Neff is that the
particle is in thermal equilibrium with other massless particles and thus contributes to
the density of matter considerably during the radiation dominated epoch.

Jester also refers to the constraints on Neff from nucleosynthesis, which show that
Neff ⇠ 4 us slightly favored although the entire range [3, 5] is consistent with data.

It seems that the e↵ective number of neutrinos could be 4 instead of 3 although latest
WMAP data combined with some other measurements favor 3. Later a corrected version
of the eprint appeared [C4] telling that the original estimate of Neff contained a mistake
and the correct estimate is Neff = 3.84± 0.40.

An interesting question is what Neff = 4 could mean in TGD framework?

i. One poses to the modes of the modified Dirac equation the following condition:
electric charge is conserved in the sense that the time evolution by modified Dirac
equation does not mix a mode with a well-defined em charge with those with di↵er-
ent em charge. The implication is that all modes except pure right handed neutrino
are restricted at string world sheets. The first guess is that string world sheets
are minimal surfaces of space-time surface (rather than those of imbedding space).
One can also consider minimal surfaces of imbedding space but with e↵ective metric
defined by the anti-commutators of the modified gamma matrices. This would give
a direct physical meaning for this somewhat mysterious e↵ective metric.
For the neutrino modes localized at string world sheets mixing of left and right
handed modes takes place and they become massive. If only 3 lowest genera for
partonic 2-surfaces are light, one has 3 neutrinos of this kind. The same applies to
all other fermion species. The argument for why this could be the case relies on
simple observation [K11]: the genera g=0,1,2 have the property that they allow for
all values of conformal moduli Z2 as a conformal symmetry (hyper-ellipticity). For
g > 2 this is not the case. The guess is that this additional conformal symmetry is
the reason for lightness of the three lowest genera.

ii. Only purely right-handed neutrino is completely de-localized in 4-volume so that one
cannot assign to it genus of the partonic 2-surfaces as a topological quantum number
and it e↵ectively gives rise to a fourth neutrino very much analogous to what is called
sterile neutrino. De-localized right-handed neutrinos couple only to gravitation and
in case of massless extremals this forces them to have four-momentum parallel to
that of ME: only massless modes are possible. Very probably this holds true for
all preferred extremals to which one can assign massless longitudinal momentum
direction which can vary with spatial position.

iii. The coupling of ⌫R is to gravitation alone and all electroweak and color couplings are
absent. According to standard wisdom de-localized right-handed neutrinos cannot
be in thermal equilibrium with other particles. This according to standard wisdom.
But what about TGD?
One should be very careful here: de-localized right-handed neutrinos is proposed
to give rise to SUSY (not N = 1 requiring Majorana fermions) and their dynamics
is that of passive spectator who follows the leader. The simplest guess is that
the dynamics of right handed neutrinos at the level of amplitudes is completely
trivial and thus trivially supersymmetric. There are however correlations between
four-momenta.

http://arxiv.org/abs/1212.5226v2
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A. The four-momentum of ⌫R is parallel to the light-like momentum direction
assignable to the massless extremal (or more general preferred extremal). This
direct coupling to the geometry is a special feature of the modified Dirac oper-
ator and thus of sub-manifold gravity.

B. On the other hand, the sum of massless four-momenta of two parallel pieces
of preferred extremals is the - in general massive - four-momentum of the el-
ementary particle defined by the wormhole contact structure connecting the
space-time sheets (which are glued along their boundaries together since this is
seems to be the only manner to get rid of boundary conditions requiring vacuum
extremal property near the boundary). Could this direct coupling of the four-
momentum direction of right-handed neutrino to geometry and four-momentum
directions of other fermions be enough for the right handed neutrinos to be
counted as a fourth neutrino species in thermal equilibrium? This might be the
case!

One cannot of course exclude the coupling of 2-D neutrino at string world sheets to
4-D purely right handed neutrinos analogous to the coupling inducing a mixing of
sterile neutrino with ordinary neutrinos. Also this could help to achieve the thermal
equilibrium with 2-D neutrino species.

Experimental evidence for sterile neutrino?

Many physicists are somewhat disappointed to the results from LHC: the expected dis-
covery of Higgs has been seen as the main achievement of LHC hitherto. Much more
was expected. To my opinion there is no reason for disappointment. The exclusion of
the standard SUSY at expected energy scale is very far reaching negative result. Also
the fact that Higgs mass is too small to be stable without fine tuning is of great theo-
retical importance. The negative results concerning heavy dark matter candidates are
precious guidelines for theoreticians. The non-QCD like behavior in heavy ion colli-
sions and proton-ion collisions is bypassed my mentioning something about AdS/CFT
correspondence and non-perturbative QCD e↵ects. I tend to see these e↵ects as direct
evidence for M89 hadron physics [K29].

In any case, something interesting has emerged quite recently. Resonaances tells that
the recent analysis [C3] of X-ray spectrum of galactic clusters claims the presence of
monochromatic 3.5 keV photon line. The proposed interpretation is as a decay product
of sterile 7 keV neutrino transforming first to a left-handed neutrino and then decaying
to photon and neutrino via a loop involving W boson and electron. This is of course
only one of the many interpretations. Even the existence of line is highly questionable.

One of the poorly understood aspects of TGD is right-handed neutrino, which is obvi-
ously the TGD counterpart of the inert neutrino.

i. The old idea is that covariantly constant right handed neutrino could generate
N = 2 super-symmetry in TGD Universe. In fact, all modes of induced spinor
field would generate superconformal symmetries but electroweak interactions would
break these symmetries for the modes carrying non-vanishing electroweak quantum
numbers: they vanish for ⌫R. This picture is now well-established at the level of
WCW geometry [K80]: super-conformal generators are labelled angular momen-
tum and color representations plus two conformal weights: the conformal weight
assignable to the light-like radial coordinate of light-cone boundary and the confor-
mal weight assignable to string coordinate. It seems that these conformal weights
are independent. The third integer labelling the states would label genuinely Yan-
gian generators: it would tell the poly-locality of the generator with locus defined
by partonic 2-surface: generators acting on single partonic 2-surface, 2 partonic
2-surfaces, ...

ii. It would seem that even the SUSY generated by ⌫R must be badly broken unless
one is able to invent dramatically di↵erent interpretation of SUSY. The scale of
SUSY breaking and thus the value of the mass of right-handed neutrino remains
open also in TGD. In lack of better one could of course argue that the mass scale

http://arxiv.org/abs/1402.2301
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must be CP2 mass scale because right-handed neutrino mixes considerably with the
left-handed neutrino (and thus becomes massive) only in this scale. But why this
argument does not apply also to left handed neutrino which must also mix with the
right-handed one!

iii. One can of course criticize the proposed notion of SUSY: wonder whether fermion +
extremely weakly interacting ⌫R at same wormhole throat (or interior of 3-surface)
can behave as single coherent entity as far spin is considered [K67]?

iv. The condition that the modes of induced spinor field have a well-defined electromag-
netic charge eigenvalue [K69] requires that they are localized at 2-D string world
sheets or partonic 2-surfaces: without this condition classical W boson fields would
mix the em charged and neutral modes with each other. Right-handed neutrino
is an exception since it has no electroweak couplings. Unless right-handed neu-
trino is covariantly constant, the modified gamma matrices can however mix the
right-handed neutrino with the left handed one and this can induce transformation
to charged mode. This does not happen if each modified gamma matrix can be
written as a linear combination of either M4 or CP2 gamma matrices and modified
Dirac equation is satisfied separately by M4 and CP2 parts of the modified Dirac
equation.

v. Is the localization of the modes other than covariantly constant neutrino to string
world sheets a consequence of dynamics or should one assume this as a separate
condition? If one wants similar localization in space-time regions of Euclidian sig-
nature - for which CP2 type vacuum extremal is a good representative - one must
assume it as a separate condition. In number theoretic formulation string world
sheets/partonic 2-surfaces would be commutative/co-commutative sub-manifolds
of space-time surfaces which in turn would be associative or co-associative sub-
manifolds of imbedding space possessing (hyper-)octonionic tangent space struc-
ture. For this option also right-handed neutrino would be localized to string world
sheets. Right-handed neutrino would be covariantly constant only in 2-D sense.
One can consider the possibility that ⌫R is de-localized to the entire 4-D space-time
sheet. This would certainly modify the interpretation of SUSY since the number of
degrees of freedom would be reduced for ⌫R.

vi. Non-covariantly constant right-handed neutrinos could mix with left-handed neutri-
nos but not with charged leptons if the localization to string world sheets is assumed
for modes carrying non-vanishing electroweak quantum numbers. This would make
possible the decay of right-handed to neutrino plus photon, and one cannot exclude
the possibility that ⌫R has mass 7 keV.
Could this imply that particles and their spartners di↵er by this mass only? Could
it be possible that practically unbroken SUSY could be there and we would not
have observed it? Could one imagine that sfermions have annihilated leaving only
states consisting of fundamental fermions? But shouldn’t the total rate for the
annihilation of photons to hadrons be two times the observed one? This option
does not sound plausible.
What if one assumes that given sparticle is charactrized by the same p-adic prime as
corresponding particle but is dark in the sense that it corresponds to non-standard
value of Planck constant. In this case sfermions would not appear in the same
vertex with fermions and one could escape the most obvious contradictions with
experimental facts. This leads to the notion of shadron: shadrons would be [K67]
obtained by replacing quarks with dark squarks with nearly identical masses. I have
asked whether so called X and Y bosons having no natural place in standard model
of hadron could be this kind of creatures.

The interpretation of 3.5 keV photons as decay products of right-handed neutrinos is
of course totally ad hoc. Another TGD inspired interpretation would be as photons
resulting from the decays of excited nuclei to their ground state.

i. Nuclear string model [L2] predicts that nuclei are string like objects formed from
nucleons connected by color magnetic flux tubes having quark and antiquark at
their ends. These flux tubes are long and define the ”magnetic body” of nucleus.
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Quark and antiquark have opposite em charges for ordinary nuclei. When they
have di↵erent charges one obtains exotic state: this predicts entire spectrum of
exotic nuclei for which statistic is di↵erent from what proton and neutron numbers
deduced from em charge and atomic weight would suggest. Exotic nuclei and large
values of Planck constant could make also possible cold fusion [K15].

ii. What the mass di↵erence between these states is, is not of course obvious. There
is however an experimental finding [C5] (see Analysis of Gamma Radiation from a
Radon Source: Indications of a Solar Influence) that nuclear decay rates oscillate
with a period of year and the rates correlate with the distance from Sun. A possible
explanation is that the gamma rays from Sun in few keV range excite the exotic
nuclear states with di↵erent decay rate so that the average decay rate oscillates
[L2]. Note that nuclear excitation energies in keV range would also make possible
interaction of nuclei with atoms and molecules.

iii. This allows to consider the possibility that the decays of exotic nuclei in galactic
clusters generates 3.5 keV photons. The obvious question is why the spectrum would
be concentrated at 3.5 keV in this case (second question is whether the energy is
really concentrated at 3.5 keV: a lot of theory is involved with the analysis of the
experiments). Do the energies of excited states depend on the color bond only
so that they would be essentially same for all nuclei? Or does single excitation
dominate in the spectrum? Or is this due to the fact that the thermal radiation
leaking from the core of stars excites predominantly single state? Could E = 3.5
keV correspond to the maximum intensity for thermal radiation in stellar core? If
so, the temperature of the exciting radiation would be about T ' E/3 ' 1.2⇥ 107

K. This in the temperature around which formation of Helium by nuclear fusion
has begun: the temperature at solar core is around 1.57⇥ 107 K.

10.5 Octo-twistors and twistor space

The basic problem of the twistor approach is that one cannot represent massive mo-
menta in terms of twistors in an elegant manner. One can also consider generalization
of the notion of spinor and twistor. I have proposed a possible representation of massive
states based on the existence of preferred plane of M2 in the basic definition of theory
allowing to express four-momentum as one of two light-like momenta allowing twistor
description. One could however ask whether some more elegant representation of mas-
sive M4 momenta might be possible by generalizing the notion of twistor -perhaps by
starting from the number theoretic vision.

The basic idea is obvious: in quantum TGD massive states in M4 can be regarded as
massless states in M8 and M4 ⇥ CP2 (recall M8 �H duality). One can therefore map
any massive M4 momentum to a light-like M8 momentum and hope that this associa-
tion could be made in a unique manner. One should assign to a massless 8-momentum
an 8-dimensional spinor of fixed chirality. The spinor assigned with the light-like four-
momentum is not unique without additional conditions. The existence of covariantly
constant right-handed neutrino in CP2 degrees generating the super-conformal symme-
tries could allow to eliminate the non-uniqueness. 8-dimensional twistor in M8 would
be a pair of this kind of spinors fixing the momentum of massless particle and the point
through which the corresponding light-geodesic goes through: the set of these points
forms 8-D light-cone and one can assign to each point a spinor. In M4⇥CP2 definitions
makes also in the case of M4⇥CP2 and twistor space would also now be a lifting of the
space of light-like geodesics.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to
define the 8-D counterparts of sigma matrices to hyperoctonions to obtain a represen-
tation of sigma matrix algebra which is not a matrix representation. The mapping of
gamma matrices to this representation allows to define a notion of hyper-quaternionicity
in terms of the modified gamma matrices both in M8 and H.

The basic challenge is to achieve twistorial description of four-momenta or even M4 ⇥

http://arxiv.org/abs/1205.0205
http://arxiv.org/abs/1205.0205
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CP2 quantum numbers: this applies both to the momenta of fundamental fermions at
the lines of generalized Feynman diagrams and to the massive incoming and outcoming
states identified as their composites.

i. A rather attractive way to overcome the problem at the level of fermions propagating
along the braid strands at the light-like orbits of partonic 2-surfaces relies on the
assumption that generalized Feynman diagrammatics e↵ectively reduces to a form
in which all fermions in the propagator lines are massless although they can have
non-physical helicity [K44]. One can use ordinary M4 twistors. This is consistent
with the idea that space-time surfaces are quaternionic sub-manifolds of octonionic
imbedding space.

ii. Incoming and outgoing states are composites of massless fermions and not massless.
They are however massless in 8-D sense. This suggests that they could be described
using generalization of twistor formalism from M4 to M8 and even betterm to
M4 ⇥ CP2.

In the following two possible twistorializations are considered.

10.5.1 Two manners to twistorialize imbedding space

In the following the generalization of twistor formalism for M8 or M4 ⇥ CP2 will be
considered in more detail. There are two options to consider.

i. For the first option one assigns to M4 ⇥ CP2 twistor space as a product of corre-
sponding twistor spaces T (M4) = CP3 and the flag-manifold T (CP2) = SU(3)/U(1)⇥
U(1) parameterizing the choices of quantization axes for SU(3): TH = T (M4) ⇥
T (CP2). Quite remarkably,M4 and CP2 are the only 4-D manifolds allowing twistor
space with Kähler structure. The twistor space is 12-dimensional. The choice of
quantization axis is certainly a physically well-define operation so that T (CP2) has
physical interpretation. If all observable physical states are color singlets situation
becomes more complex. If one assumes QCC for color quantum numbers Y and I3,
then also the choice of color quantization axis is fixed at the level of Kähler action
from the condition that Y and I3 have classically their quantal values.

ii. For the second option one generalizes the usual construction for M8 regarded as
tangent space of M4 ⇥ CP2 (unless one takes M8 �H duality seriously).

The tangent space option looks like follows.

i. One can map the points of M8 to octonions. One can consider 2-component spinors
with octonionic components and map points ofM8 light-cone to linear combinations
of 2⇥ 2 Pauli sigma matrices but with octonionic components. By the same argu-
ments as in the deduction of ordinary twistor space one finds that 7-D light-cone
boundary is mapped to 7+8 D space since the octonionic 2-spinor/its conjugate can
be multiplied/divided by arbitrary octonion without changing the light-like point.
By standard argument this space extends to 8+8-D space. The points of M8 can
be identified as 8-D octonionic planes (analogs of complex sphere CP1 in this space.
An attractive identification is as octonionic projective space OP2. Remarkably,
octonions do not allow higher dimensional projective spaces.

ii. If one assumes that the spinors are quaternionic the twistor space should have di-
mension 7+4+1=12. This dimension is same as for M4⇥CP2. Does this mean that
quaternionicity assumption reduces T (M8) = OP2 to T (H) = CP3⇥SU(3)/U(1)⇥
U(1)? Or does it yield 12-D space G2/U(1)⇥ U(1), which is also natural since G2

has 2-D Cartan algebra? Number theoretical compactification would transform
T (M8) = G2/U(1) ⇥ U(1) to T (H) = CP3 ⇥ SU(3)/U(1) ⇥ U(1). This would not
be surprising since in M8�H-duality CP2 parametrizes (hyper)quaternionic planes
containing preferred plane M2.
Quaternionicity is certainly very natural in TGD framework. Quaternionicity for 8-
momenta does not in general imply that they reduce to the observed M4-momenta
unless one identifies M4 as one particular subspace of M8. In M8 �H duality one
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in principle allows all choices of M4: it is of course unclear whether this makes
any physical di↵erence. Color confinement could be interpreted as a reduction of
M8 momenta to M4 momenta and would also allow the interpretational problems
caused by the fact that CP2 momenta are not possible.

iii. Since octonions can be regarded as complexified quaternions with non-commuting
imaginary unit, one can say that quaternionic spinors in M8 are ”real” and thus
analogous to Majorana spinors. Similar interpretation applies at the level of H.
Could one can interpret the quaternionicity condition for space-time surfaces and
imbedding space spinors as TGD analog of Majorana condition crucial in super
string models? This would also be crucial for understanding supersymmetry in
TGD sense.

10.5.2 Octotwistorialization of M8

Consider first the twistorialization in 4-D case. In M4 one can map light-like momoment
to spinors satisfying massless Dirac equation. General point m of M4 can be mapped
to a pair of massless spinors related by incidence relation defining the point m. The
essential element of this association is that mass squared can be defined as determinant
of the 2⇥ 2 matrix resulting in the assignment. Light-likeness is coded to the vanishing
of the determinant implying that the spinors defining its rows are linearly independent.
The reduction of M4 inner product to determinant occurs because the 2 ⇥ 2 matrix
can be regarded as a matrix representation of complexified quaternion. Massless means
that the norm of a complexified quaternion defined as the product of q and its conjugate
vanishes. Incidence relation s1 = xs2 relating point of M4 and pair of spinors defin-
ing the corresponding twistor, can be interpreted in terms of product for complexified
quaternions.

The generalization to the 8-D situation is straightforward: replace quaternions with
octonions.

i. The transition to M8 means the replacement of quaternions with octonions. Mass-
lessness corresponds to the vanishing norm for complexified octonion (hyper-octonion).

ii. One should assign to a massless 8-momentum an 8-dimensional spinor identifiable as
octonion - or more precisely as hyper-octonion obtained by multiplying the imag-
inary part of ordinary octonion with commuting imaginary unit j and defining
conjugation as a change of sign of j or that of octonionic imaginar units.

iii. This leads to a generalization of the notion of twistor consisting of pair of massless
octonion valued spinors (octonions) related by the incidence relation fixing the
point of M8. The incidence relation for Euclidian octonions says s1 = xs2 and can
be interpreted in terms of triality for SO(8) relating conjugate spinor octet to the
product of vector octed and spinor octet. For Minkowskian subspace of complexified
octonions light-like vectors and s1 and s2 can be taken light-like as octonions. Light
like x can annihilate s2.

The possibility to interpret M8 as hyperoctonionic space suggests also the possibility to
define the 8-D counterparts of sigma matrices to hyperoctonions to obtain a represen-
tation of sigma matrix algebra which is not a matrix representation. The mapping of
gamma matrices to this representation allows to define a notion of hyper-quaternionicity
in terms of the modified gamma matrices both in M8 and H.

10.5.3 Octonionicity, SO(1, 7), G
2

, and non-associative Malcev
group

The symmetries assignable with octonions are rather intricate. First of all, octonions
(their hyper-variants definingM8) have SO(8) (SO(1,7)) as isometries. G2 ⇢ SO(7) acts
as automorphisms of octonions and SO(1, 7) ! G2 clearly means breaking of Lorentz
invariance.
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John Baez has described in a lucid manner G2 geometrically (http://math.ucr.edu/
home/baez/octonions/node14.html). The basic observation is that that quaternionic
sub-space is generated by two linearly independent imaginary units and by their product.
By adding a fourth linearly independent imaginary unit, one can generated all octonions.
From this and the fact that G2 represents subgroup of SO(7), one easily deduces that G2

is 14-dimensional. The Lie algebra ofG2 corresponds to derivations of octonionic algebra
as follows infinitesimally from the condition that the image of product is the product
of images. The entire algebra SO(8) is direct sum of G2 and linear transformations
generated by right and left multiplication by imaginary octonion: this gives 14 + 14 =
28 = D(SO(8)). The subgroup SO(7) acting on imaginary octonsions corresponds to
the direct sum of derivations and adjoint transformations defined by commutation with
imaginary octonions, and has indeed dimension 14 + 7 = 21.

One can identify also a non-associative group-like structure.

i. In the case of octonionic spinors this group like structure is defined by the analog
of phase multiplication of spinor generalizing to a multiplication with octonionic
unit expressible as linear combinations of 8 octonionic imaginary units and defining
7-sphere plays appear as analog of automorphisms o ! uou�1 = uou⇤.
One can associate with these transformations a non-associative Lie group and Lie
algebra like structures by defining the commutators just as in the case of matrices
that is as [a, b] = ab � ba. One 7-D non-associative Lie group like structure with
topology of 7-sphere S7 whereas G2 is 14-dimensional exceptional Lie group (having
S6 as coset space S6 = G2/SU(3)). This group like object might be useful in the
treatment of octonionic twistors. In the case of quaternions one has genuine group
acting as SO(3) rotations.

ii. Octonionic gamma matrices allow to define as their commutators octonionic sigma
matrices:

⌃kl =
i

2
[�k, �l] . (10.5.1)

This algebra is 14-dimensional thanks to the fact that octonionic gamma matrices
are of form �0 = �1⌦ 1, �i = �2⌦ ei. Due to the non-associativity of octonions this
algebra does not satisfy Jacobi identity - as is easy to verify using Fano triangle -
and is therefore not a genuine Lie-algebra. Therefore these sigma matrices do not
define a representation of G2 as I thought first.
This algebra has decomposition g = h + t, [h, t] ⇢ t, [t, t] ⇢ h characterizing for
symmetric spaces. h is the 7-D algebra generated by ⌃ij and identical with the
non-associative Malcev algebra generated by the commutators of octonionic units.
The complement t corresponds to the generators ⌃0i. The algebra is clearly an
octonionic non-associative analog fo SO(1, 7).

10.5.4 Octonionic spinors inM8 and real complexified-quaternionic
spinors in H?

This above observations about the octonionic sigma matrices raise the problem about
the octonionic representation of spinor connection. In M8 = M4 ⇥ E4 the spinor
connection is trivial but for M4 ⇥ CP2 not. There are two options.

i. Assume that octonionic spinor structure makes sense for M8 only and spinor con-
nection is trivial.

ii. An alternative option is to identify M8 as tangent space of M4 ⇥ CP2 possessing
quaternionic structure defined in terms of octonionic variants of gamma matrices.
Should one replace sigma matrices appearing in spinor connection with their oc-
tonionic analogs to get a sigma matrix algebra which is pseudo Lie algebra. Or
should one map the holonomy algebra of CP2 spinor connection to a sub-algebra
of G2 ⇢ SO(7) and define the action of the sigma matrices as ordinary matrix
multiplication of octonions rather than octonionic multiplication? This seems to be
possible formally.

http://math.ucr.edu/home/baez/octonions/node14.html
http://math.ucr.edu/home/baez/octonions/node14.html
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The replacement of sigma matrices with their octonionic counterparts seems to
lead to weird looking results. Octonionic multiplication table implies that the elec-
troweak sigma matrices associated with CP2 tangent space reduce to M4 sigma
matrices so that the spinor connection is quaternionic. Furthermore, left-handed
sigma matrices are mapped to zero so that only the neutral part of spinor connec-
tion is non-vanishing. This supports the view that only M8 gamma matrices make
sense and that Dirac equation in M8 is just free massless Dirac equation leading
naturally also to the octonionic twistorialization.
One might think that distinction between di↵erent H-chiralities is di�cult to make
but it turns out that quarks and leptons can be identified as di↵erent components
of 2-component complexified octonionic spinors.

The natural question is what associativization of octonions gives. This amounts to a
condition putting the associator a(bc)�(ab)c to zero. It is enough to consider octonionic
imaginary units which are di↵erent. By using the decomposition of the octonionic alge-
bra to quaternionic sub-algebra and its complement and general structure of structure
constants, one finds that quaternionic sub-algebra remains as such but the products
of all imaginary units in the complement with di↵erent imaginary units vanish. This
means that the complement behaves e↵ectively as 4-D flat space-gamma matrix algebra
annihilated by the quaternionic sub-algebra whose imaginary part acts like Lie algebra
of SO(3).

10.5.5 What the replacement of SO(7, 1) sigma matrices with
octonionic sigma matrices could mean?

The basic implication of octonionization is the replacement of SO(7, 1) sigma matrices
with octonionic sigma matrices. For M8 this has no consequences since since spinor
connection is trivial.

ForM4⇥CP2 situation would be di↵erent since CP2 spinor connection would be replaced
with its octonionic variant. This has some rather unexpected consequences and suggests
that one should not try to octonionize at the level of M4 ⇥ CP2 but interepret gamma
matrices as tensor products of quaternionic gamma matrices, which can be replaced with
their matrix representations. There are however some rather intriguing observations
which force to keep mind open.

Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of
7-D gamma matrices and 2-D Pauli sigma matrices.

i. The gamma matrices are given by

�0 = 1⇥ �1 , �i = �i ⌦ �2 , i = 1, .., 7 . (10.5.2)

7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by
expressing �7 as

�7)
i+1 = �6)

i , i = 1, ..., 6 , �7)
1 = �6)

7 =
6Y

i=1

�6)
i . (10.5.3)

ii. The octonionic representation is obtained as

�0 = 1⌦ �1 , �i = ei ⌦ �2 . (10.5.4)

where ei are the octonionic units. e2i = �1 guarantees that the M4 signature of the
metric comes out correctly. Note that �7 =

Q
�i is the counterpart for choosing the

preferred octonionic unit and plane M2.

iii. The octonionic sigma matrices are obtained as commutators of gamma matrices:
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⌃0i = jei ⇥ �3 , ⌃ij = jf k
ij ek ⌦ 1 . (10.5.5)

Here j is commuting imaginary unit. These matrices span G2 algebra having dimen-
sion 14 and rank 2 and having imaginary octonion units and their conjugates as the
fundamental representation and its conjugate. The Cartan algebra for the sigma
matrices can be chosen to be ⌃01 and ⌃23 and belong to a quaternionic sub-algebra.

iv. The lower dimension D = 14 of the non-associative version of sigma matrix alge-
bra algebra means that some combinations of sigma matrices vanish. All left or
right handed generators of the algebra are mapped to zero: this explains why the
dimension is halved from 28 to 14. From the octonionic triangle expressing the
multiplication rules for octonion units [A17] one finds e4e5 = e1 and e6e7 = �e1
and analogous expressions for the cyclic permutations of e4, e5, e6, e7. From the
expression of the left handed sigma matrix I3L = �23 + �30 representing left handed
weak isospin (see the Appendix about the geometry of CP2 [L1]) one can conclude
that this particular sigma matrix and left handed sigma matrices in general are
mapped to zero. The quaternionic sub-algebra SU(2)L ⇥ SU(2)R is mapped to
that for the rotation group SO(3) since in the case of Lorentz group one cannot
speak of a decomposition to left and right handed subgroups. The elements of the
complement of the quaternionic sub-algebra are expressible in terms of ⌃ij in the
quaternionic sub-algebra.

Some physical implications of the reduction of SO(7, 1) to its octonionic coun-
terpart

The octonization of spinor connection of CP2 has some weird physical implications
forcing to keep mind to the possibility that the octonionic description even at the level
of H might have something to do with reality.

i. If SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field
survive octonionization. The right handed part is neutral containing only photon
and Z0 so that the gauge field becomes Abelian. Z0 and photon fields become
proportional to each other (Z0 ! sin2(✓W )�) so that classical Z0 field disappears
from the dynamics, and one would obtain just electrodynamics.

ii. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped
to fields in SO(2) ⇢ SU(2) ⇥ U(1) in quaternionic sub-algebra which in a well-
defined sense corresponds toM4 degrees of freedom and gauge group becomes SO(2)
subgroup of rotation group of E3 ⇢ M4. This looks like catastrophe. One might
say that electroweak interactions are transformed to gravimagnetic interactions.

iii. In very optimistic frame of mind one might ask whether this might be a deeper rea-
son for why electrodynamics is an excellent description of low energy physics and of
classical physics. This is consistent with the fact that CP2 coordinates define 4 field
degrees of freedom so that single Abelian gauge field should be enough to describe
classical physics. This would remove also the interpretational problems caused by
the transitions changing the charge state of fermion induced by the classical W
boson fields.

iv. Interestingly, the condition that electromagnetic charge is well-defined quantum
number for the modes of the induced spinor field for X4 ⇢ H leads to the pro-
posal that the solutions of the modified Dirac equation are localized to string world
sheets in Minkowskian regions of space-time surface at least. For CP2 type vac-
uum extremals one has massless Dirac and this allows only covariantly constant
right-handed neutrino as solution. One has however only a piece of CP2 (worm-
hole contact) so that holomorphic solutions annihilated by two complexified gamma
matrices are possible in accordance with the conformal symmetries.

Can one assume non-trivial spinor connection in M8

i. The simplest option encouraged by the requirement of maximal symmetries is that
it is absent. Massless 8-momenta would characterize spinor modes in M8 and this
would give physical justification for the octotwistors.
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ii. If spinor connection is present at all, it reduces essentially to Kähler connection
having di↵erent couplings to quarks and leptons identifiable as components of oc-
tonionic 2-spinors. It should be SO(4) symmetric and since CP2 is instant one
might argue that now one has also instanton that is self-dual U(1) gauge field in
E4 ⇢ M4 ⇥E4 defining Kähler form. One can loosely say that that one has of con-
stant electric and magnetic fields which are parallel to each other. The rotational
symmetry in E4 would break down to SO(2).

iii. Without spinor connection quarks and leptons are in completely symmetric position
at the level of M8: this is somewhat disturbing. The di↵erence between quarks and
leptons in H is made possible by the fact that CP2 does not allow standard spinor
structure. Now this problem is absent. I have also consider the possibility that
only leptonic spinor chirality is allowed and quarks result via a kind of anyonization
process allowing them to have fractional em charges (see http://www.tgdtheory.
fi/public_html/articles/genesis.pdf).

iv. If the solutions of the Kähler Dirac equation in Minkowskian regions are localized
to two surfaces identifiable as integrable distributions of planes M2(x) and charac-
terized by a local light-like direction defining the direction of massless momentum,
they are holomorphic (in the sense of hyper-complex numbers) such that the sec-
ond complexified modified gamma matrix annihilates the solution. Same condition
makes sense also at the level of M8 for solutions restricted to string world sheets
and the presence or absence of spinor connection does not a↵ect the situation.
Does this mean that the di↵erence between quarks and leptons becomes visible only
at the imbedding space level where ground states of super-conformal representations
correspond to to imbedding space spinor harmonics which in CP2 cm degrees are
di↵erent for quarks and leptons?

Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

 L,i = ei

✓
1
0

◆
,

 q,i = ei

✓
0
1

◆
. (10.5.6)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks
to leptons. Note that octospinors can be seen as 2-dimensional spinors with components
which have values in the space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corre-
sponds naturally to the two spin states of the right handed neutrino. In quark sector
this would mean that right handed U quark corresponds to the real unit. The octo-
nions decompose as 1 + 1 + 3 + 3 as representations of SU(3) ⇢ G2. The concrete
representations are given by

{1± ie1} , eR and ⌫R with spin 1/2 ,
{e2 ± ie3} , eR and ⌫L with spin -1/2 ,
{e4 ± ie5} eL and ⌫L with spin 1/2 ,
{e6 ± ie7} eL and ⌫L with spin 1/2 .

(10.5.7)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and
thus of the corresponding sigma matrix) with opposite values for the sign factor ✏ = ±.
The interpretation is in terms of vectorial isospin. States with ✏ = 1 can be interpreted
as charged leptons and D type quarks and those with ✏ = �1 as neutrinos and U
type quarks. The interpretation would be that the states with vanishing color isospin
correspond to right handed fermions and the states with non-vanishing SU(3) isospin

http://www.tgdtheory.fi/public_html/articles/genesis.pdf
http://www.tgdtheory.fi/public_html/articles/genesis.pdf
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(to be not confused with QCD color isospin) and those with non-vanishing SU(3) isospin
to left handed fermions.

The importance of this identification is that it allows a unique map of the candidates for
the solutions of the octonionic modified Dirac equation to those of ordinary one. There
are some delicacies involved due to the possibility to chose the preferred unit e1 so that
the preferred subspace M2 can corresponds to a sub-manifold M2 ⇢ M4.

10.6 About the interpretation of Kähler Dirac equa-
tion

The physical interpretation of Kähler Dirac equation is not at all straightforward. The
following arguments inspired by e↵ective 2-dimensionality suggest that the modified
gamma matrices and corresponding e↵ective metric could allow dual gravitational de-
scription of the physics associated with wormhole throats that is holography. This
applies in particular to condensed matter physics.

10.6.1 Three Dirac equations

To begin with, Dirac equation appears in three forms in TGD.

i. The Dirac equation in world of classical worlds codes (WCW) for the super Vira-
soro conditions for the super Kac-Moody and similar representations formed by the
states of wormhole contacts forming the counterpart of string like objects (throats
correspond to the ends of the string. WCW Dirac operator generalizes the Dirac
operator of 8-D imbedding space by bringing in vibrational degrees of freedom. This
Dirac equation should give as its solutions zero energy states and corresponding M-
matrices generalizing S-matrix and their collection defining the unitary U-matrix
whose natural application appears in consciousness theory as a coder of what Pen-
rose calls U-process. The ground states to which super-conformal algebras act cor-
respond to imbedding space spinor modes in accordance with the idea that point
like limit gives QFT in imbedding space.

ii. The analog of massless Dirac equation at the level of 8-D imbedding space and
satisfied by fermionic ground states of super-conformal representations.

iii. Kähler Dirac equation is satisfied in the interior of space-time. In this equation
the gamma matrices are replaced with modified gamma matrices defined by the
contractions of canonical momentum currents T↵

k = @L/@↵hk with imbedding space
gamma matrices �k. This replacement is required by internal consistency and by
super-conformal symmetries. The well-definedness of em charge implies that the
modes of induced spinor field are localized at 2-D surfaces so that a connection
with string theory type approach emerges.

Kähler-Dirac equation defines Dirac equation at space-time level. Consider first K-D
equation in the interior of space-time surface.

i. The condition that electromagnetic charge operator defined in terms of em charge
expressed in terms of Cli↵ord algebra is well defined for spinor modes (completely
analogous to spin defined in terms of sigma matrices) leads to the proposal that
induced spinor fields are necessarily localized at 2-dimensional string worlds sheets
[K69]. Only the covariantly constant right handed neutrino and its modes assignable
to massless extremals (at least) generating super-symmetry (super-conformal sym-
metries) would form an exception since electroweak couplings would vanish. Note
that the modified gamma matrices possess CP2 and this must vanish in order to
have de-localization.

ii. This picture implies stringy realization of super Kac-Moody symmetry elementary
particles can be identified as string like objects albeit in di↵erent sense than in string
models. At light-like 3-surfaces defining the orbits of partonic 2-surfaces spinor fields
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carrying electroweak quantum numbers would be located at braid strands as also
the notion of finite measurement resolution requires. This picture is also consistent
with the puzzling observation that the solutions of the Chern-Simons Dirac equation
can be localized on light-like curves inside wormhole throat orbits.

iii. Could Kähler Dirac equation provide a first principle justification for the light-
hearted use of e↵ective mass and the analog of Dirac equation in condensed manner
physics? This would conform with the holographic philosophy. Partonic 2-surfaces
with tangent space data and their light-like orbits would give hologram like repre-
sentation of physics and the interior of space-time the 4-D representation of physics.
Holography would have in the recent situation interpretation also as quantum clas-
sical correspondence between representations of physics in terms of quantized spinor
fields at the light-like 3-surfaces on one hand and in terms of classical fields on the
other hand.

iv. The resulting dispersion relation for the square of the Kähler-Dirac operator as-
suming that induced like metric, Kähler field, etc. are very slowly varying contains
quadratic and linear terms in momentum components plus a term corresponding to
magnetic moment coupling. In general massive dispersion relation is obtained as
is also clear from the fact that Kähler Dirac gamma matrices are combinations of
M4 and CP2 gammas so that modified Dirac mixes di↵erent M4 chiralities (basic
signal for massivation). If one takes into account the dependence of the induced
geometric quantities on space-time point dispersion relations become non-local.

v. Sound as a concept is usually assigned with a rather high level of description.
Stringy world sheets could however dramatically raise the status of sound in this
respect. The oscillations of string world sheets connecting wormhole throats de-
scribe non-local 2-particle interactions. Holography suggests that this interaction
just ”gravitational” dual for electroweak and color interactions. Could these os-
cillations inducing the oscillation of the distance between wormhole throats be in-
terpreted at the limit of weak ”gravitational” coupling as analogs of sound waves,
and could sound velocity correspond to maximal signal velocity assignable to the
e↵ective metric?

Various arguments lead to the hypothesis that Kähler-Dirac action contains Chern-
Simons-Dirac action localized at partonic orbits as additional term. This term cannot
present at the space-like ends of the space-time surfaces. Also Kähler action contains
Chern-Simons term and partonic orbits and reduces by field equations to Chern-Simons
terms at the space-like ends of space-time surface.

i. The variation of the Kähler-Dirac action gives rise to a boundary term, which is
essentially contraction of the normal component of the vector �n defined by Kähler-
Dirac gamma matrices. Boundary condition gives

p
g4�n = 0. Therefore the

incoming spinor modes at the boundaries of string world sheets must be massless.
A further assumption is that the action of

p
g4�n equals to that of a massless Dirac

operator. By a suitable choice of coordinates this might be achieved. Thus massless
Dirac equation in M4 would emerge for on mass shell states.

ii. At parton orbits of wormhole one can assume that the spinors are generalized eigen-
states of C-S-D operator reduces to that of massless M4 Dirac operator. C-S-D
Dirac action would give rise to massless Dirac propagator and one would have good
hopes that twistor Grassmannian approach works. In TGD based sringy variant of
twistor Grassmann approach the integrals over virtual momenta as residue integrals
reduce them to 3-D integrals over light-cone subject to momentum conservation con-
straints at vertices. Virtual fermions are massless but have unphysical polarization.
This picture is discussed in detail in [K44].

10.6.2 Does energy metric provide the gravitational dual for
condensed matter systems?

The modified gamma matrices define an e↵ective metric via their anti-commutators
quadratic in components of energy momentum tensor (canonical momentum densities).
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This e↵ective metric vanishes for vacuum extremals. Note that the use of the mod-
ified gamma matrices guarantees among other things internal consistency and super-
conformal symmetries of the theory.

If the above argument is on the right track, this e↵ective metric should have applications
in condensed matter theory. The energy metric has a natural interpretation in terms of
e↵ective light velocities which depend on direction of propagation. One can diagonalize
the energy metric g↵�e (contravariant form results from the anti-commutators) and one
can denote its eigenvalues by (v0, vi) in the case that the signature of the e↵ective metric
is (1,�1,�1,�1). The 3-vector vi/v0 has interpretation as components of e↵ective light
velocity in various directions as becomes clear by thinking the d’Alembert equation for
the energy metric. This velocity field could be interpreted as that of hydrodynamic
flow. The study of the extremals of Kähler action shows that if this flow is actually
Beltrami flow so that the flow parameter associated with the flow lines extends to
global coordinate, Kähler action reduces to a 3-D Chern-Simons action and one obtains
e↵ective topological QFT. The conserved fermion current  �↵e has interpretation as
incompressible hydrodynamical flow.

This would give also a nice analogy with AdS/CFT correspondence allowing to describe
various kinds of physical systems in terms of higher-dimensional gravitation and black
holes are introduced quite routinely to describe condensed matter systems. In TGD
framework one would have an analogous situation but with 10-D space-time replaced
with the interior of 4-D space-time and the boundary of AdS representing Minkowski
space with the light-like 3-surfaces carrying matter. The e↵ective gravitation would
correspond to the ”energy metric”. One can associate with it analogs of curvature
tensor, Ricci tensor and Einstein tensor using standard formulas and identify e↵ective
energy momentum tensor associated as Einstein tensor with e↵ective Newton’s constant
appearing as constant of proportionality. Note however that the besides ordinary metric
and ”energy” metric one would have also the induced classical gauge fields having purely
geometric interpretation and action would be Kähler action. This 4-D holography could
provide a precise, dramatically simpler, and also a very concrete dual description. This
cannot be said about model of graphene based on the introduction of 10-dimensional
black holes, branes, and strings chosen in more or less ad hoc manner.

This raises questions. Could this give a general dual gravitational description of dis-
sipative e↵ects in terms of the ”energy” metric and induced gauge fields? Does one
obtain the analogs of black holes? Do the general theorems of general relativity about
the irreversible evolution leading to black holes generalize to describe analogous fate
of condensed matter systems caused by dissipation? Can one describe non-equilibrium
thermodynamics and self-organization in this manner?

One might argue that the incompressible Beltrami flow defined by the dynamics of the
preferred extremals is dissipationless and viscosity must therefore vanish locally. The
failure of complete determinism for Kähler action however means generation of entropy
since the knowledge about the state decreases gradually. This in turn should have a
phenomenological local description in terms of viscosity, which characterizes the transfer
of energy to shorter scales and eventually to radiation. The deeper description should be
non-local and basically topological and might lead to quantization rules. For instance,
one can imagine the quantization of the ratio ⌘/s of the viscosity to entropy density as
multiples of a basic unit defined by its lower bound (note that this would be analogous
to Quantum Hall e↵ect). For the first M-theory inspired derivation of the lower bound
of ⌘/s [D4] . The lower bound for ⌘/s is satisfied in good approximation by what
should have been QCD plasma but found to be something di↵erent (RHIC and the first
evidence for new physics from LHC [K29] ).

An encouraring sign comes from the observation that for so called massless extremals
representing classically arbitrarily shaped pulses of radiation propagating without dis-
sipation and dispersion along single direction the canonical momentum currents are
light-like. The e↵ective contravariant metric vanishes identically so that fermions can-
not propate in the interior of massless extremals! This is of course the case also for
vacuum extremals. Massless extremals are purely bosonic and represent bosonic radia-
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tion. Many-sheeted space-time decomposes into matter containing regions and radiation
containing regions. Note that when wormhole contact (particle) is glued to a massless
extremal, it is deformed so that CP2 projection becomes 4-D guaranteeing that the weak
form of electric magnetic duality can be satisfied. Therefore massless extremals can be
seen as asymptotic regions. Perhaps one could say that dissipation corresponds to a de-
coherence process creating space-time sheets consisting of matter and radiation. Those
containing matter might be even seen as analogs blackholes as far as energy metric is
considered.

10.6.3 Preferred extremals as perfect fluids

10.6.4 Preferred extremals as perfect fluids

Almost perfect fluids seems to be abundant in Nature. For instance, QCD plasma
was originally thought to behave like gas and therefore have a rather high viscosity to
entropy density ratio x = ⌘/s. Already RHIC found that it however behaves like almost
perfect fluid with x near to the minimum predicted by AdS/CFT. The findings from
LHC gave additional conform the discovery [C2]. Also Fermi gas is predicted on basis of
experimental observations to have at low temperatures a low viscosity roughly 5-6 times
the minimal value [D2] . In the following the argument that the preferred extremals of
Kähler action are perfect fluids apart from the symmetry breaking to space-time sheets
is developed. The argument requires some basic formulas summarized first.

The detailed definition of the viscous part of the stress energy tensor linear in velocity
(oddness in velocity relates directly to second law) can be found in [D1] .

i. The symmetric part of the gradient of velocity gives the viscous part of the stress-
energy tensor as a tensor linear in velocity. Velocity gradient decomposes to a term
traceless tensor term and a term reducing to scalar.

@ivj + @jvi =
2

3
@kv

kgij + (@ivj + @jvi �
2

3
@kv

kgij) . (10.6.1)

The viscous contribution to stress tensor is given in terms of this decomposition as

�visc;ij = ⇣@kv
kgij + ⌘(@ivj + @jvi �

2

3
@kv

kgij) . (10.6.2)

From dF i = T ijSj it is clear that bulk viscosity ⇣ gives to energy momentum tensor
a pressure like contribution having interpretation in terms of friction opposing.
Shear viscosity ⌘ corresponds to the traceless part of the velocity gradient often
called just viscosity. This contribution to the stress tensor is non-diagonal and
corresponds to momentum transfer in directions not parallel to momentum and
makes the flow rotational. This term is essential for the thermal conduction and
thermal conductivity vanishes for ideal fluids.

ii. The 3-D total stress tensor can be written as

�ij = ⇢vivj � pgij + �visc;ij . (10.6.3)

The generalization to a 4-D relativistic situation is simple. One just adds terms
corresponding to energy density and energy flow to obtain

T↵� = (⇢� p)u↵u� + pg↵� � �↵�
visc . (10.6.4)

Here u↵ denotes the local four-velocity satisfying u↵u↵ = 1. The sign factors relate
to the concentrations in the definition of Minkowski metric ((1,�1,�1,�1)).

iii. If the flow is such that the flow parameters associated with the flow lines integrate
to a global flow parameter one can identify new time coordinate t as this flow
parameter. This means a transition to a coordinate system in which fluid is at rest
everywhere (comoving coordinates in cosmology) so that energy momentum tensor
reduces to a diagonal term plus viscous term.



10.6. About the interpretation of Kähler Dirac equation 409

T↵� = (⇢� p)gtt�↵t �
�
t + pg↵� � �↵�

visc . (10.6.5)

In this case the vanishing of the viscous term means that one has perfect fluid in
strong sense.
The existence of a global flow parameter means that one has

vi =  @i� . (10.6.6)

 and � depend on space-time point. The proportionality to a gradient of scalar
� implies that � can be taken as a global time coordinate. If this condition is not
satisfied, the perfect fluid property makes sense only locally.

AdS/CFT correspondence allows to deduce a lower limit for the coe�cient of shear
viscosity as

x =
⌘

s
� ~

4⇡
. (10.6.7)

This formula holds true in units in which one has kB = 1 so that temperature has unit
of energy.

What makes this interesting from TGD view is that in TGD framework perfect fluid
property in appropriately generalized sense indeed characterizes locally the preferred
extremals of Kähler action defining space-time surface.

i. Kähler action is Maxwell action with U(1) gauge field replaced with the projection
of CP2 Kähler form so that the four CP2 coordinates become the dynamical vari-
ables at QFT limit. This means enormous reduction in the number of degrees of
freedom as compared to the ordinary unifications. The field equations for Kähler
action define the dynamics of space-time surfaces and this dynamics reduces to con-
servation laws for the currents assignable to isometries. This means that the system
has a hydrodynamic interpretation. This is a considerable di↵erence to ordinary
Maxwell equations. Notice however that the ”topological” half of Maxwell’s equa-
tions (Faraday’s induction law and the statement that no non-topological magnetic
are possible) is satisfied.

ii. Even more, the resulting hydrodynamical system allows an interpretation in terms
of a perfect fluid. The general ansatz for the preferred extremals of field equations
assumes that various conserved currents are proportional to a vector field character-
ized by so called Beltrami property. The coe�cient of proportionality depends on
space-time point and the conserved current in question. Beltrami fields by definition
is a vector field such that the time parameters assignable to its flow lines integrate
to single global coordinate. This is highly non-trivial and one of the implications
is almost topological QFT property due to the fact that Kähler action reduces to
a boundary term assignable to wormhole throats which are light-like 3-surfaces at
the boundaries of regions of space-time with Euclidian and Minkowskian signatures.
The Euclidian regions (or wormhole throats, depends on one’s tastes ) define what
I identify as generalized Feynman diagrams.
Beltrami property means that if the time coordinate for a space-time sheet is chosen
to be this global flow parameter, all conserved currents have only time component.
In TGD framework energy momentum tensor is replaced with a collection of con-
served currents assignable to various isometries and the analog of energy momentum
tensor complex constructed in this manner has no counterparts of non-diagonal com-
ponents. Hence the preferred extremals allow an interpretation in terms of perfect
fluid without any viscosity.

This argument justifies the expectation that TGD Universe is characterized by the
presence of low-viscosity fluids. Real fluids of course have a non-vanishing albeit small
value of x. What causes the failure of the exact perfect fluid property?
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i. Many-sheetedness of the space-time is the underlying reason. Space-time surface
decomposes into finite-sized space-time sheets containing topologically condensed
smaller space-time sheets containing.... Only within given sheet perfect fluid prop-
erty holds true and fails at wormhole contacts and because the sheet has a finite
size. As a consequence, the global flow parameter exists only in given length and
time scale. At imbedding space level and in zero energy ontology the phrasing of
the same would be in terms of hierarchy of causal diamonds (CDs).

ii. The so called eddy viscosity is caused by eddies (vortices) of the flow. The space-
time sheets glued to a larger one are indeed analogous to eddies so that the reduction
of viscosity to eddy viscosity could make sense quite generally. Also the phase
slippage phenomenon of super-conductivity meaning that the total phase increment
of the super-conducting order parameter is reduced by a multiple of 2⇡ in phase
slippage so that the average velocity proportional to the increment of the phase
along the channel divided by the length of the channel is reduced by a quantized
amount.
The standard arrangement for measuring viscosity involves a lipid layer flowing
along plane. The velocity of flow with respect to the surface increases from v = 0
at the lower boundary to vupper at the upper boundary of the layer: this situation
can be regarded as outcome of the dissipation process and prevails as long as energy
is feeded into the system. The reduction of the velocity in direction orthogonal to
the layer means that the flow becomes rotational during dissipation leading to this
stationary situation.
This suggests that the elementary building block of dissipation process corresponds
to a generation of vortex identifiable as cylindrical space-time sheets parallel to
the plane of the flow and orthogonal to the velocity of flow and carrying quantized
angular momentum. One expects that vortices have a spectrum labelled by quantum
numbers like energy and angular momentum so that dissipation takes in discrete
steps by the generation of vortices which transfer the energy and angular momentum
to environment and in this manner generate the velocity gradient.

iii. The quantization of the parameter x is suggestive in this framework. If entropy
density and viscosity are both proportional to the density n of the eddies, the value
of x would equal to the ratio of the quanta of entropy and kinematic viscosity
⌘/n for single eddy if all eddies are identical. The quantum would be ~/4⇡ in
the units used and the suggestive interpretation is in terms of the quantization
of angular momentum. One of course expects a spectrum of eddies so that this
simple prediction should hold true only at temperatures for which the excitation
energies of vortices are above the thermal energy. The increase of the temperature
would suggest that gradually more and more vortices come into play and that the
ratio increases in a stepwise manner bringing in mind quantum Hall e↵ect. In
TGD Universe the value of ~ can be large in some situations so that the quantal
character of dissipation could become visible even macroscopically. Whether this
a situation with large ~ is encountered even in the case of QCD plasma is an
interesting question.

The following poor man’s argument tries to make the idea about quantization a little
bit more concrete.

i. The vortices transfer momentum parallel to the plane from the flow. Therefore
they must have momentum parallel to the flow given by the total cm momentum
of the vortex. Before continuing some notations are needed. Let the densities of
vortices and absorbed vortices be n and nabs respectively. Denote by vk resp. v?
the components of cm momenta parallel to the main flow resp. perpendicular to the
plane boundary plane. Let m be the mass of the vortex. Denote by S are parallel
to the boundary plane.

ii. The flow of momentum component parallel to the main flow due to the absorbed
at S is

nabsmvkv?S .
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This momentum flow must be equal to the viscous force

Fvisc = ⌘
vk
d

⇥ S .

From this one obtains

⌘ = nabsmv?d .

If the entropy density is due to the vortices, it equals apart from possible numerical
factors to

s = n

so that one has

⌘

s
= mv?d .

This quantity should have lower bound x = ~/4⇡ and perhaps even quantized in
multiples of x, Angular momentum quantization suggests strongly itself as origin of
the quantization.

iii. Local momentum conservation requires that the comoving vortices are created in
pairs with opposite momenta and thus propagating with opposite velocities v?.
Only one half of vortices is absorbed so that one has nabs = n/2. Vortex has quan-
tized angular momentum associated with its internal rotation. Angular momentum
is generated to the flow since the vortices flowing downwards are absorbed at the
boundary surface.
Suppose that the distance of their center of mass lines parallel to plane is D = ✏d,
✏ a numerical constant not too far from unity. The vortices of the pair moving in
opposite direction have same angular momentum mv D/2 relative to their center
of mass line between them. Angular momentum conservation requires that the sum
these relative angular momenta cancels the sum of the angular momenta associated
with the vortices themselves. Quantization for the total angular momentum for the
pair of vortices gives

⌘

s
=

n~
✏

Quantization condition would give

✏ = 4⇡ .

One should understand why D = 4⇡d - four times the circumference for the largest
circle contained by the boundary layer- should define the minimal distance between
the vortices of the pair. This distance is larger than the distance d for maximally
sized vortices of radius d/2 just touching. This distance obviously increases as the
thickness of the boundary layer increases suggesting that also the radius of the
vortices scales like d.

iv. One cannot of course take this detailed model too literally. What is however re-
markable that quantization of angular momentum and dissipation mechanism based
on vortices identified as space-time sheets indeed could explain why the lower bound
for the ratio ⌘/s is so small.

10.6.5 Is the e↵ective metric one- or two-dimensional?

10.6.6 Is the e↵ective metric e↵ectively one- or two-dimensional?

The following argument suggests that the e↵ective metric defined by the anti-commutators
of the modified gamma matrices is e↵ectively one- or two-dimensional. E↵ective one-
dimensionality would conform with the observation that the solutions of the modified
Dirac equations can be localized to one-dimensional world lines in accordance with the
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vision that finite measurement resolution implies discretization reducing partonic many-
particle states to quantum superpositions of braids. This localization to 1-D curves
occurs always at the 3-D orbits of the partonic 2-surfaces.

The argument is based on the following assumptions.

i. The modified gamma matrices for Kähler action are contractions of the canonical
momentum densities T↵

k with the gamma matrices of H.

ii. The strongest assumption is that the isometry currents

JA↵ = T↵
k j

Ak

for the preferred extremals of Kähler action are of form

JA↵ =  A(r�)↵ (10.6.8)

with a common function � guaranteeing that the flow lines of the currents integrate
to coordinate lines of single global coordinate variables (Beltrami property). Index
raising is carried out by using the ordinary induced metric.

iii. A weaker assumption is that one has two functions �1 and �2 assignable to the
isometry currents of M4 and CP2 respectively.:

JA↵
1 =  A

1 (r�1)
↵ ,

JA↵
2 =  A

2 (r�2)
↵ . (10.6.9)

The two functions �1 and �2 could define dual light-like curves spanning string
world sheet. In this case one would have e↵ective 2-dimensionality and decompo-
sition to string world sheets [K23] . Isometry invariance does not allow more that
two independent scalar functions �i.

Consider now the argument.

i. One can multiply both sides of this equation with jAk and sum over the index A
labeling isometry currents for translations of M4 and SU(3) currents for CP2. The
tensor quantity

P
A jAkjAl is invariant under isometries and must therefore satisfyX

A

⌘ABj
AkjAl = hkl , (10.6.10)

where ⌘AB denotes the flat tangent space metric of H. In M4 degrees of freedom
this statement becomes obvious by using linear Minkowski coordinates. In the case
of CP2 one can first consider the simpler case S2 = CP1 = SU(2)/U(1). The
coset space property implies in standard complex coordinate transforming linearly
under U(1) that only the the isometry currents belonging to the complement of
U(1) in the sum contribute at the origin and the identity holds true at the origin
and by the symmetric space property everywhere. Identity can be verified also
directly in standard spherical coordinates. The argument generalizes to the case of
CP2 = SU(3)/U(2) in an obvious manner.

ii. In the most general case one obtains

T↵k
1 =

X
A

 A
1 j

Ak ⇥ (r�1)
↵ ⌘ fk

1 (r�1)
↵ ,

T↵k
2 =

X
A

 A
1 j

Ak ⇥ (r�2)
↵ ⌘ fk

2 (r�2)
↵ . (10.6.11)

iii. The e↵ective metric given by the anti-commutator of the modified gamma matrices
is in turn is given by

G↵� = mklf
k
1 f

l
1(r�1)

↵(r�1)
� + sklf

k
2 f

l
2(r�2)

↵(r�2)
� . (10.6.12)

The covariant form of the e↵ective metric is e↵ectively 1-dimensional for �1 = �2

in the sense that the only non-vanishing component of the covariant metric G↵� is
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diagonal component along the coordinate line defined by � ⌘ �1 = �2. Also the
contravariant metric is e↵ectively 1-dimensional since the index raising does not
a↵ect the rank of the tensor but depends on the other space-time coordinates. This
would correspond to an e↵ective reduction to a dynamics of point-like particles for
given selection of braid points. For �1 6= �2 the metric is e↵ectively 2-dimensional
and would correspond to stringy dynamics.

One can also develop an objection to e↵ective 1- or 2-dimensionality. The proposal for
what preferred extremals of Kähler action as deformations of the known extremals of
Kähler action could be leads to a beautiful ansatz relying on generalization of conformal
invariance and minimal surface equations of string model [K5]. The field equations of
TGD reduce to those of classical string model generalized to 4-D context.

If the proposed picture is correct, field equations reduce to purely algebraically condi-
tions stating that the Maxwellian energy momentum tensor for the Kähler action has no
common index pairs with the second fundamental form. For the deformations of CP2

type vacuum extremals T is a complex tensor of type (1,1) and second fundamental form
Hk a tensor of type (2,0) and (0,2) so that Tr(THk) = is true. This requires that sec-
ond light-like coordinate of M4 is constant so that the M4 projection is 3-dimensional.
For Minkowskian signature of the induced metric Hamilton-Jacobi structure replaces
conformal structure. Here the dependence of CP2 coordinates on second light-like co-
ordinate of M2(m) only plays a fundamental role. Note that now T vv is non-vanishing
(and light-like). This picture generalizes to the deformations of cosmic strings and even
to the case of vacuum extremals.

There is however an important consistency condition involved. The Maxwell energy
momentum tensor for Kähler action must have vanishing covariant divergence. This is
satisfied if it is linear combination of Einstein tensor and metric. This gives Einstein’s
equations with cosmological term in the general case. By the algebraic character of field
equations also minimal surface equations are satisfied and Einstein’s General Relativity
would be exact part of TGD.

In the case of modified Dirac equation the result means that modified gamma matrices
are contractions of linear combination of Einstein tensor and metric tensor with the
induced gamma matrices so that the TGD counterpart of ordinary Dirac equation would
be modified by the addition of a term proportional to Einstein tensor. The condition of
e↵ective 1- or 2-dimensionality seems to pose too strong conditions on this combination.

10.7 How to define generalized Feynman diagrams?

S-matrix codes to a high degree the predictions of quantum theories. The longstanding
challenge of TGD has been to construct or at least demonstrate the mathematical
existence of S-matrix- or actually M-matrix which generalizes this notion in zero energy
ontology (ZEO) [K43] . This work has led to the notion of generalized Feynman diagram
and the challenge is to give a precise mathematical meaning for this object. The attempt
to understand the counterpart of twistors in TGD framework [K59] has inspired several
key ideas in this respect but it turned out that twistors themselves need not be absolutely
necessary in TGD framework.

i. The notion of generalized Feyman diagram defined by replacing lines of ordinary
Feynman diagram with light-like 3-surfaces (elementary particle sized wormhole
contacts with throats carrying quantum numbers) and vertices identified as their 2-
D ends - I call them partonic 2-surfaces is central. Speaking somewhat loosely, gen-
eralized Feynman diagrams (plus background space-time sheets) define the ”world
of classical worlds” (WCW). These diagrams involve the analogs of stringy dia-
grams but the interpretation is di↵erent: the analogs of stringy loop diagrams have
interpretation in terms of particle propagating via two di↵erent routes simultane-
ously (as in the classical double slit experiment) rather than as a decay of particle
to two particles. For stringy diagrams the counterparts of vertices are singular as
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manifolds whereas the entire diagrams are smooth. For generalized Feynman di-
agrams vertices are smooth but entire diagrams represent singular manifolds just
like ordinary Feynman diagrams do. String like objects however emerge in TGD
and even ordinary elementary particles are predicted to be magnetic flux tubes of
length of order weak gauge boson Compton length with monopoles at their ends
as shown in accompanying article. This stringy character should become visible at
LHC energies.

ii. Zero energy ontology (ZEO) and causal diamonds (intersections of future and past
directed light-cones) define second key ingredient. The crucial observation is that
in ZEO it is possible to identify o↵ mass shell particles as pairs of on mass shell
fermions at throats of wormhole contact since both positive and negative signs of
energy are possible and one obtains also space-like total momenta for wormhole
contact behaving as a boson. The localization of fermions to string world sheets
and the fact that super-conformal generator G carries fermion number combined
with twistorial consideration support the view that the propagators at fermionic
lines are of form (1/G)ipk�k(1/G† + h.c. and thus hermitian. In strong models
1/G would serve as a propagator and this requires Majorana condition fixing the
dimension of the target space to 10 or 11.

iii. A powerful constraint is number theoretic universality requiring the existence of
Feynman amplitudes in all number fields when one allows suitable algebraic exten-
sions: roots of unity are certainly required in order to realize p-adic counterparts
of plane waves. Also imbedding space, partonic 2-surfaces and WCW must exist in
all number fields and their extensions. These constraints are enormously powerful
and the attempts to realize this vision have dominated quantum TGD for last two
decades.

iv. Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma
matrices is a further important element as far as twistors are considered [K59] .
Modified gamma matrices at space-time surfaces are quaternionic/associative and
allow a genuine matrix representation. As a matter fact, TGD and WCW could be
formulated as study of associative local sub-algebras of the local Cli↵ord algebra of
8-D imbedding space parameterized by quaternionic space-time surfaces.

v. A central conjecture has been that associative (co-associative) 4-surfaces correspond
to preferred extremals of Kähler action [K9]. It took long time to realize that in zero
energy ontology the notion of preferred extremal might be un-necessary! The reason
is that 3-surfaces are now pairs of 3-surfaces at boundaries of causal diamonds and
for deterministic dynamics the space-time surface connecting them is expected to
be more or less unique. Now the action principle is non-deterministic but the non-
determinism would give rise to additional discrete dynamical degrees of freedom
naturally assignable to the hierarchy of Planck constants heff = n ⇥ h, n the
number of space-time surface with same fixed ends at boundaries of CD and with
same values of Kähler action and of conserved quantities. One must be however
cautions: this leaves the possibility that there is a gauge symmetry present so that
the n sheets correspond to gauge equivalence classes of sheets. Conformal invariance
is associated with criticality and is expected to be present also now.
One can of course also ask whether one can assume that the pairs of 3-surfaces at the
ends of CD are totally un-correlated. If this assumption is not made then preferred
extremal property would make sense also in ZEO and imply additional correlation
between the members of these pairs. This kind of correlations would correspond to
the Bohr orbit property, which is very attractive space-time correlate for quantum
states. This kind of correlates are also expected as space-time counterpart for the
correlations between initial and final state in quantum dynamics.

vi. A further conjecture has been that preferred extremals are in some sense critical
(second variation of Kähler action could vanish for infinite number of deformations
defining a super-conformal algebra). The non-determinism of Kähler action implies
this property for n > 0 in heff = nh. If the criticality is present, it could correspond
to conformal gauge invariance defined by sub-algebras of conformal algebra with
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conformal weights coming as multiples of n and isomorphic to the conformal algebra
itself.

vii. As far as twistors are considered, the first key element is the reduction of the
octonionic twistor structure to quaternionic one at space-time surfaces and giving
e↵ectively 4-D spinor and twistor structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [K18, K59] .

i. The progress was stimulated by the simple observation that on mass shell property
puts enormously strong kinematic restrictions on the loop integrations. With mild
restrictions on the number of parallel fermion lines appearing in vertices (there
can be several since fermionic oscillator operator algebra defining SUSY algebra
generates the parton states)- all loops are manifestly finite and if particles has
always mass -say small p-adic thermal mass also in case of massless particles and
due to IR cuto↵ due to the presence largest CD- the number of diagrams is finite.
Unitarity reduces to Cutkosky rules [B11] automatically satisfied as in the case of
ordinary Feynman diagrams.

ii. Ironically, twistors which stimulated all these development do not seem to be ab-
solutely necessary in this approach although they are of course possible. Situation
changes if one does not assume small p-adically thermal mass due to the presence of
massless particles and one must sum infinite number of diagrams. Here a potential
problem is whether the infinite sum respects the algebraic extension in question.

This is about fermionic and momentum space aspects of Feynman diagrams but not
yet about the functional (not path-) integral over small deformations of the partonic
2-surfaces. The basic challenges are following.

i. One should perform the functional integral over WCW degrees of freedom for fixed
values of on mass shell momenta appearing in the internal lines. After this one
must perform integral or summation over loop momenta. Note that the order is
important since the space-time surface assigned to the line carries information about
the quantum numbers associated with the line by quantum classical correspondence
realized in terms of modified Dirac operator.

ii. One must define the functional integral also in the p-adic context. p-Adic Fourier
analysis relying on algebraic continuation raises hopes in this respect. p-Adicity
suggests strongly that the loop momenta are discretized and ZEO predicts this
kind of discretization naturally.

It indeed seems that the functional integrals over WCW could be carried out at general
level both in real and p-adic context. This is due to the symmetric space property
(maximal number of isometries) of WCW required by the mere mathematical existence
of Kähler geometry [K22] in infinite-dimensional context already in the case of much
simpler loop spaces [A37] .

i. The p-adic generalization of Fourier analysis allows to algebraize integration- the
horrible looking technical challenge of p-adic physics- for symmetric spaces for func-
tions allowing the analog of discrete Fourier decomposition. Symmetric space prop-
erty is indeed essential also for the existence of Kähler geometry for infinite-D spaces
as was learned already from the case of loop spaces. Plane waves and exponential
functions expressible as roots of unity and powers of p multiplied by the direct
analogs of corresponding exponent functions are the basic building bricks and key
functions in harmonic analysis in symmetric spaces. The physically unavoidable
finite measurement resolution corresponds to algebraically unavoidable finite alge-
braic dimension of algebraic extension of p-adics (at least some roots of unity are
needed). The cuto↵ in roots of unity is very reminiscent to that occurring for the
representations of quantum groups and is certainly very closely related to these as
also to the inclusions of hyper-finite factors of type II¡sub¿1¡/sub¿ defining the finite
measurement resolution.

ii. WCW geometrization reduces to that for a single line of the generalized Feynman
diagram defining the basic building brick for WCW. Kähler function decomposes to
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a sum of ”kinetic” terms associated with its ends and interaction term associated
with the line itself. p-Adicization boils down to the condition that Kähler function,
matrix elements of Kähler form, WCW Hamiltonians and their super counterparts,
are rational functions of complex WCW coordinates just as they are for those sym-
metric spaces that I know of. This would allow a continuation to p-adic context.

In the following this vision about generalized Feynman diagrams is discussed in more
detail.

10.7.1 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feyn-
man digrams and the best manner to proceed to to this goal is by making questions.

What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

i. One expects that the algebraic continuation makes sense only for a finite measure-
ment resolution in which case one obtains only finite sums of what one might hope
to be algebraic functions. The finiteness of the algebraic extension would be in fact
equivalent with the finite measurement resolution.

ii. Finite measurement resolution means a discretization in terms of number theoretic
braids. p-Adicization condition suggests that that one must allow only the number
theoretic braids. For these the ends of braid at boundary of CD are algebraic points
of the imbedding space. This would be true at least in the intersection of real and
p-adic worlds.

iii. The question is whether one can localize the points of the braid. The necessity
to use momentum eigenstates to achieve quantum classical correspondence in the
modified Dirac action [K9] suggests however a de-localization of braid points, that
is wave function in space of braid points. In real context one could allow all possible
choices for braid points but in p-adic context only algebraic points are possible if one
wants to replace integrals with sums. This implies finite measurement resolution
analogous to that in lattice. This is also the only possibility in the intersection of
real and p-adic worlds.
A non-trivial prediction giving a strong correlation between the geometry of the
partonic 2-surface and quantum numbers is that the total number nF + nF of
fermions and anti-fermions is bounded above by the number nalg of algebraic points
for a given partonic 2-surface: nF +nF  nalg. Outside the intersection of real and
p-adic worlds the problematic aspect of this definition is that small deformations of
the partonic 2-surface can radically change the number of algebraic points unless
one assumes that the finite measurement resolution means restriction of WCW to
a sub-space of algebraic partonic surfaces.

iv. Braids defining propagator lines for fundamental fermions (to be distinguished from
observer particles) emerges naturally. Braid strands correspond to the boundaries
of string world sheets at which the modes of induced spinor fields are localized from
the condition that em charge is well-defined: induced W field and above weak scale
also Z0 field vanish at them.
In order to obtain non-trivial fermion propagator one must add to Kähler-Dirac
action Chern-Simons Dirac term located at partonic orbits at which the signature
of the induced metric changes. The modes of induced spinor field can be required to
be generalized eigenmodes of C-S-D operator with generalized eigenvalue pk�k with
pk identified as virtual momentum so that massless Dirac propagator is obtained.
pk is discretized by periodic boundary conditions at opposite boundaries of CD and
has IR and UV cuto↵s due to the finite size of CD and finite lower limit for the size
of sub-CDs.
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One has also discretization of the relative position of the second tip of CD at the
hyperboloid isometric with mass shell. Only the number of braid points and their
momenta would matter, not their positions.
By super-symmetry one must add to Kähler action Chern-Simons term located at
partonic orbits and this term must cancel the Chern-Simons term coming from
Kähler action by weak form of electric-magnetic duality so that Kähler action re-
duces to the terms associated with space-like ends of the space-time surface. These
terms reduce to Chern-Simons terms if one poses weak form of electric magnetic du-
ality also here. The boundary condition for Kähler-Dirac equations states �n = 0
so that incoming fundamental fermions are massless and there is a strong tempta-
tion to pose the additional condition �n = pk�k = 0
The quantum numbers characterizing positive and negative energy parts of zero
energy states couple directly to space-time geometry via the measurement interac-
tion terms in Kähler action expressing the equality of classical conserved charges
in Cartan algebra with their quantal counterparts for space-time surfaces in quan-
tum superposition. This makes sense if classical charges parametrize zero modes.
The localization in zero modes in state function reduction would be the WCW
counterpart of state function collapse.

How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.

i. What comes mind first is Gaussian perturbation theory around the maxima of
Kähler function. Gaussian and metric determinants cancel each other and only
algebraic expressions remain. Finiteness is not a problem since the Kähler func-
tion is non-local functional of 3-surface so that no local interaction vertices are
present. One should however assume the vanishing of loops required also by al-
gebraic universality and this assumption look unrealistic when one considers more
general functional integrals than that of vacuum functional since free field theory
is not in question. The construction of the inverse of the WCW metric defining the
propagator is also a very di�cult challenge. Duistermaat-Hecke theorem states that
something like this known as localization might be possible and one can also argue
that something analogous to localization results from a generalization of mean value
theorem.

ii. Symmetric space property is more promising since it might reduce the integrations
to group theory using the generalization of Fourier analysis for group representations
so that there would be no need for perturbation theory in the proposed sense.
In finite measurement resolution the symmetric spaces involved would be finite-
dimensional. Symmetric space structure of WCW could also allow to define p-adic
integration in terms of p-adic Fourier analysis for symmetric spaces. Essentially
algebraic continuation of the integration from the real case would be in question with
additional constraints coming from the fact that only phase factors corresponding to
finite algebraic extensions of rationals are used. Cuto↵ would emerge automatically
from the cuto↵ for the dimension of the algebraic extension.

How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow
both the understanding of WCW integration and p-adicization as algebraic continuation.
In order to get a more realistic view about the problem one must define more precisely
what the calculation of the generalized Feynman diagrams means.

i. WCW integration must be carried out separately for all values of the momenta
associated with the internal lines. The reason is that the spectrum of eigenvalues �i

of the modified Dirac operator D depends on the momentum of line and momentum
conservation in vertices translates to a correlation of the spectra of D at internal
lines.
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ii. For tree diagrams algebraic continuation to the p-adic context if the expression
involves only the replacement of the generalized eigenvalues of D as functions of
momenta with their p-adic counterparts besides vertices. If these functions are
algebraically universal and expressible in terms of harmonics of symmetric space ,
there should be no problems.

iii. If loops are involved, one must integrate/sum over loop momenta. In p-adic context
di�culties are encountered if the spectrum of the momenta is continuous. The
integration over on mass shell loop momenta is analogous to the integration over
sub-CDs, which suggests that internal line corresponds to a sub � CD in which
it is at rest. There are excellent reasons to believe that the moduli space for the
positions of the upper tip is a discrete subset of hyperboloid of future light-cone. If
this is the case, the loop integration indeed reduces to a sum over discrete positions
of the tip. p-Adizication would thus give a further good reason why for zero energy
ontology.

iv. Propagator is expressible in terms of the inverse of generalized eigenvalue and there
is a sum over these for each propagator line. At vertices one has products of
WCW harmonics assignable to the incoming lines. The product must have vanishing
quantum numbers associated with the phase angle variables of WCW. Non-trivial
quantum numbers of the WCW harmonic correspond to WCW quantum numbers
assignable to excitations of ordinary elementary particles. WCW harmonics are
products of functions depending on the ”radial” coordinates and phase factors and
the integral over the angles leaves the product of the first ones analogous to Legendre
polynomials Pl,m, These functions are expected to be rational functions or at least
algebraic functions involving only square roots.

v. In ordinary QFT incoming and outgoing lines correspond to propagator poles. In
the recent case this would mean that incoming stringy lines at the ends of CD cor-
respond to fermions satisfying the stringy mass formula serving as a generalization
of masslessness condition.

10.7.2 Generalized Feynman diagrams at fermionic and momen-
tum space level

Negative energy ontology has already led to the idea of interpreting the virtual particles
as pairs of positive and negative energy wormhole throats. Hitherto I have taken it as
granted that ordinary Feynman diagrammatics generalizes more or less as such. It is
however far from clear what really happens in the verties of the generalized Feynman
diagrams. The safest approach relies on the requirement that unitarity realized in
terms of Cutkosky rules in ordinary Feynman diagrammatics allows a generalization.
This requires loop diagrams. In particular, photon-photon scattering can take place
only via a fermionic square loop so that it seems that loops must be present at least in
the topological sense.

One must be however ready for the possibility that something unexpectedly simple
might emerge. For instance, the vision about algebraic physics allows naturally only
finite sums for diagrams and does not favor infinite perturbative expansions. Hence
the true believer on algebraic physics might dream about finite number of diagrams
for a given reaction type. For simplicity generalized Feynman diagrams without the
complications brought by the magnetic confinement since by the previous arguments
the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram
representing particles are only re-arranged in the vertices. This however does not allow
to get rid of o↵ mass shell momenta. Zero energy ontology encourages to consider a
stronger form of this principle in the sense that the virtual momenta of particles could
correspond to pairs of on mass shell momenta of particles. If also interacting fermions
are pairs of positive and negative energy throats in the interaction region the idea about
reducing the construction of Feynman diagrams to some kind of lego rules might work.
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Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams
are. The direct generalization of Feynman diagrams implies that both wormhole throats
and wormhole contacts join at vertices.

i. A simple intuitive picture about what happens is provided by diagrams obtained
by replacing the points of Feynman diagrams (wormhole contacts) with short lines
and imagining that the throats correspond to the ends of the line. At vertices where
the lines meet the incoming on mass shell quantum numbers would sum up to zero.
This approach leads to a straightforward generalization of Feynman diagrams with
virtual particles replaced with pairs of on mass shell throat states of type ++, ��,
and +�. Incoming lines correspond to ++ type lines and outgoing ones to �� type
lines. The first two line pairs allow only time like net momenta whereas +� line
pairs allow also space-like virtual momenta. The sign assigned to a given throat is
dictated by the the sign of the on mass shell momentum on the line. The condition
that Cutkosky rules generalize as such requires ++ and �� type virtual lines since
the cut of the diagram in Cutkosky rules corresponds to on mass shell outgoing or
incoming states and must therefore correspond to ++ or �� type lines.

ii. The basic di↵erence as compared to the ordinary Feynman diagrammatics is that
loop integrals are integrals over mass shell momenta and that all throats carry
on mass shell momenta. In each vertex of the loop mass incoming on mass shell
momenta must sum up to on mass shell momentum. These constraints improve the
behavior of loop integrals dramatically and give excellent hopes about finiteness.
It does not however seem that only a finite number of diagrams contribute to the
scattering amplitude besides tree diagrams. The point is that if a the reactions
N1 ! N2 and N2 ! N3,, where Ni denote particle numbers, are possible in a
common kinematical region for N2-particle states then also the diagrams N1 !
N2 ! N2 ! N3 are possible. The virtual states N2 include all all states in the
intersection of kinematically allow regions for N1 ! N2 and N2 ! N3. Hence the
dream about finite number possible diagrams is not fulfilled if one allows massless
particles. If all particles are massive then the particle number N2 for given N1 is
limited from above and the dream is realized.

iii. For instance, loops are not possible in the massless case or are highly singular
(bringing in mind twistor diagrams) since the conservation laws at vertices imply
that the momenta are parallel. In the massive case and allowing mass spectrum the
situation is not so simple. As a first example one can consider a loop with three
vertices and thus three internal lines. Three on mass shell conditions are present
so that the four-momentum can vary in 1-D subspace only. For a loop involving
four vertices there are four internal lines and four mass shell conditions so that loop
integrals would reduce to discrete sums. Loops involving more than four vertices
are expected to be impossible.

iv. The proposed replacement of the elementary fermions with bound states of elemen-
tary fermions and monopoles X± brings in the analog of stringy diagrammatics.
The 2-particle wave functions in the momentum degrees of freedom of fermion and
X± might allow more flexibility and allow more loops. Note however that there are
excellent hopes about the finiteness of the theory also in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

i. The simplest situation is obtained if only 3-vertices are allowed. In this case con-
servation of momentum however allows only collinear momenta although the signs
of energy need not be the same. Particle creation and annihilation is possible
and momentum exchange is possible but is always light-like in the massless case.
The scattering matrices of supersymmetric YM theories would suggest something
less trivial and this raises the question whether something is missing. Magnetic
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monopoles are an essential element of also these theories as also massivation and
symmetry breaking and this encourages to think that the formation of massive states
as fermion X± pairs is needed. Of course, in TGD framework one has also high
mass excitations of the massless states making the scattering matrix non-trivial.

ii. In YM theories on mass shell lines would be singular. In TGD framework this is not
the case since the propagator is defined as the inverse of the 3-D dimensional reduc-
tion of the modified Dirac operator D containing also coupling to four-momentum
(this is required by quantum classical correspondence and guarantees stringy prop-
agators),

D = i�̂↵p↵ + �̂↵D↵ ,

p↵ = pk@↵h
k . (10.7.1)

The propagator does not diverge for on mass shell massless momenta and the prop-
agator lines are well-defined. This is of course of essential importance also in general
case. Only for the incoming lines one can consider the possibility that 3-D Dirac
operator annihilates the induced spinor fields. All lines correspond to generalized
eigenstates of the propagator in the sense that one has D3 = �� , where � is
modified gamma matrix in the direction of the stringy coordinate emanating from
light-like surface and D3 is the 3-dimensional dimensional reduction of the 4-D
modified Dirac operator. The eigenvalue � is analogous to energy. Note that the
eigenvalue spectrum depends on 4-momentum as a parameter.

iii. Massless incoming momenta can decay to massless momenta with both signs of
energy. The integration measure d2k/2E reduces to dx/x where x � 0 is the
scaling factor of massless momentum. Only light-like momentum exchanges are
however possible and scattering matrix is essentially trivial. The loop integrals are
finite apart from the possible delicacies related to poles since the loop integrands
for given massless wormhole contact are proportional to dx/x3 for large values of
x.

iv. Irrespective of whether the particles are massless or not, the divergences are ob-
tained only if one allows too high vertices as self energy loops for which the number
of momentum degrees of freedom is 3N � 4 for N -vertex. The construction of
SUSY limit of TGD in [K19] led to the conclusion that the parallelly propagating
N fermions for given wormhole throat correspond to a product of N fermion propa-
gators with same four-momentum so that for fermions and ordinary bosons one has
the standard behavior but for N > 2 non-standard so that these excitations are not
seen as ordinary particles. Higher vertices are finite only if the total number NF of
fermions propagating in the loop satisfies NF > 3N � 4. For instance, a 4-vertex
from which N = 2 states emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic du-
ality [B2] leads to the picture about elementary particles as pairs of magnetic monopoles
inspiring the notions of weak confinement based on magnetic monopole force. Also color
confinement would have magnetic counterpart. This means that elementary particles
would behave like string like objects in weak boson length scale. Therefore one must
also consider the stringy case with wormhole throats replaced with fermion-X± pairs
(X± is electromagnetically neutral and ± refers to the sign of the weak isospin opposite
to that of fermion) and their super partners.

i. The simplest assumption in the stringy case is that fermion-X± pairs behave as
coherent objects, that is scatter elastically. In more general case only their higher
excitations identifiable in terms of stringy degrees of freedom would be created in
vertices. The massivation of these states makes possible non-collinear vertices. An
open question is how the massivation fermion-X± pairs relates to the existing TGD
based description of massivation in terms of Higgs mechanism and modified Dirac
operator.
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ii. Mass renormalization could come from self energy loops with negative energy lines
as also vertex normalization. By very general arguments supersymmetry implies
the cancellation of the self energy loops but would allow non-trivial vertex renor-
malization [K19] .

iii. If only 3-vertices are allowed, the loops containing only positive energy lines are
possible if on mass shell fermion-X± pair (or its superpartner) can decay to a pair
of positive energy pair particles of same kind. Whether this is possible depends
on the masses involved. For ordinary particles these decays are not kinematically
possible below intermediate boson mass scale (the decays F1 ! F2 + � are forbid-
den kinematically or by the absence of flavor changing neutral currents whereas
intermediate gauge bosons can decay to on mass shell fermion-anti-fermion pair).

iv. The introduction of IR cuto↵ for 3-momentum in the rest system associated with the
largest CD (causal diamond) looks natural as scale parameter of coupling constant
evolution and p-adic length scale hypothesis favors the inverse of the size scale of CD
coming in powers of two. This parameter would define the momentum resolution
as a discrete parameter of the p-adic coupling constant evolution. This scale does
not have any counterpart in standard physics. For electron, d quark, and u quark
the proper time distance between the tips of CD corresponds to frequency of 10 Hz,
1280 Hz, and 160 Hz: all these frequencies define fundamental bio-rhythms [K14] .

These considerations have left completely untouched one important aspect of gener-
alized Feynman diagrams: the necessity to perform a functional integral over the de-
formations of the partonic 2-surfaces at the ends of the lines- that is integration over
WCW. Number theoretical universality requires that WCW and these integrals make
sense also p-adically and in the following these aspects of generalized Feynman diagrams
are discussed.

10.7.3 Harmonic analysis in WCW as a manner to calculate
WCW functional integrals

Previous examples suggest that symmetric space property, Kähler and symplectic struc-
ture and the use of symplectic coordinates consisting of canonically conjugate pairs of
phase angles and corresponding ”radial” coordinates are essential for WCW integration
and p-adicization. Kähler function, the components of the metric, and therefore also
metric determinant and Kähler function depend on the ”radial” coordinates only and
the possible generalization involves the identification the counterparts of the ”radial”
coordinates in the case of WCW.

Conditions guaranteeing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the
functional integral over WCW.

i. Each propagator line corresponds to a symmetric space defined as a coset space
G/H of the symplectic group and Kac-Moody group and one might hope that the
proposed p-adicization works for it- at least when one considers the hierarchy of
measurement resolutions forced by the finiteness of algebraic extensions. This coset
space is as a manifold Cartesian product (G/H)⇥(G/H) of symmetric spaces G/H
associated with ends of the line. Kähler metric contains also an interaction term
between the factors of the Cartesian product so that Kähler function can be said
to reduce to a sum of ”kinetic” terms and interaction term.

ii. E↵ective 2-dimensionality and ZEO allow to treat the ends of the propagator line in-
dependently. This means an enormous simplification. Each line contributes besides
propagator a piece to the exponent of Kähler action identifiable as interaction term
in action and depending on the propagator momentum. This contribution should
be expressible in terms of generalized spherical harmonics. Essentially a sum over
the products of pairs of harmonics associated with the ends of the line multiplied by
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coe�cients analogous to 1/(p2 �m2) in the case of the ordinary propagator would
be in question. The optimal situation is that the pairs are harmonics and their
conjugates appear so that one has invariance under G analogous to momentum
conservation for the lines of ordinary Feynman diagrams.

iii. Momentum conservation correlates the eigenvalue spectra of the modified Dirac
operator D at propagator lines [K9] . G-invariance at vertex dictates the vertex as
the singlet part of the product of WCW harmonics associated with the vertex and
one sums over the harmonics for each internal line. p-Adicization means only the
algebraic continuation to real formulas to p-adic context.

iv. The exponent of Kähler function depends on both ends of the line and this means
that the geometries at the ends are correlated in the sense that that Kähler form
contains interaction terms between the line ends. It is however not quite clear
whether it contains separate ”kinetic” or self interaction terms assignable to the
line ends. For Kähler function the kinetic and interaction terms should have the
following general expressions as functions of complex WCW coordinates:

Kkin,i =
X
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
X
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (10.7.2)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would
have what might be called holomorphic factorization suggesting a connection with
conformal field theories.
Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ⌘ fn , g1,n = g2,n ⌘ gn (10.7.3)

such that the products are invariant under the group H appearing in G/H and
therefore have opposite H quantum numbers. The exponent of Kähler function
does not factorize although the terms in its Taylor expansion factorize to products
whose factors are products of holomorphic and antiholomorphic functions.

v. If one assumes that the exponent of Kähler function reduces to a product of eigen-
values of the modified Dirac operator eigenvalues must have the decomposition

�k =
Y
i=1,2

exp

"X
n

ck,ngn(Zi)gn(Zi) + c.c

#
⇥ exp

"X
n

dk,ngn(Z1)gn(Z2) + c.c

#
.(10.7.4)

Hence also the eigenvalues coming from the Dirac propagators have also expansion
in terms of G/H harmonics so that in principle WCW integration would reduce to
Fourier analysis in symmetric space.

Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltoni-
ans since also the interaction term between the ends of the line is present not taken into
account in the previous approach.

i. The proposed representation of WCW Hamiltonians as flux Hamiltonians [K10, K9]

Q(HA) =

Z
HA(1 +K)Jd2x ,

J = ✏↵�J↵� , J03pg4 = KJ12 . (10.7.5)

works for the kinetic terms only since J cannot be the same at the ends of the
line. The formula defining K assumes weak form of self-duality (03 refers to the
coordinates in the complement of X2 tangent plane in the 4-D tangent plane). K is
assumed to be symplectic invariant and constant for given X2. The condition that
the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field equals
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to the Kähler charge gK gives the condition K = g2K/~, where gK is Kähler coupling

constant. Within experimental uncertainties one has ↵K = g/K4⇡~0 = ↵em ' 1/137,
where ↵em is finite structure constant in electron length scale and ~0 is the standard
value of Planck constant.
The assumption that Poisson bracket of WCW Hamiltonians reduces to the level
of imbedding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be
justified. One starts from the representation in terms of say flux Hamiltonians
Q(HA) and defines JA,B as JA,B ⌘ Q({HA, HB}). One has @HA/@tB = {HB , HA},
where tB is the parameter associated with the exponentiation of HB . The in-
verse JAB of JA,B = @HB/@tA is expressible as JA,B = @tA/@HB . From these
formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
@tCQ(HA)JCD@tDQ(HB) of flux Hamiltonians equals to the flux HamiltonianQ({HA, HB}).

ii. One should be able to assign to WCW Hamiltonians also a part corresponding to
the interaction term. The symplectic conjugation associated with the interaction
term permutes the WCW coordinates assignable to the ends of the line. One should
reduce this apparently non-local symplectic conjugation (if one thinks the ends of
line as separate objects) to a non-local symplectic conjugation for �CD ⇥ CP2 by
identifying the points of lower and upper end of CD related by time reflection and
assuming that conjugation corresponds to time reflection. Formally this gives a well
defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection
in quantum field theories is is in accordance with this picture.

iii. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained
by the replacement of the flux integral over X2 with an integral over the projection
of X2 to a sphere S2 assignable to the light-cone boundary or to a geodesic sphere
of CP2, which come as two varieties corresponding to homologically trivial and
non-trivial spheres. The projection is defined as by the geodesic line orthogonal to
S2 and going through the point of X2. The hierarchy of Planck constants assigns
to CD a preferred geodesic sphere of CP2 as well as a unique sphere S2 as a sphere
for which the radial coordinate rM or the light-cone boundary defined uniquely
is constant: this radial coordinate corresponds to spherical coordinate in the rest
system defined by the time-like vector connecting the tips of CD. Either spheres or
possibly both of them could be relevant.
Recall that also the construction of number theoretic braids and symplectic QFT
[K12] led to the proposal that braid diagrams and symplectic triangulations could
be defined in terms of projections of braid strands to one of these spheres. One could
also consider a weakening for the condition that the points of the number theoretic
braid are algebraic by requiring only that the S2 coordinates of the projection are
algebraic and that these coordinates correspond to the discretization of S2 in terms
of the phase angles associated with ✓ and �.
This gives for the corresponding contribution of the WCW Hamiltonian the expres-
sion

Q(HA)int =

Z
S2
±

HAX�2(s+, s�)d
2s± =

Z
P (X2

+)\P (X2
�)

@(s1, s2)

@(x1
±, x

2
±)

d2x± .(10.7.6)

Here the Poisson brackets between ends of the line using the rules involve delta
function �2(s+, s�) at S2 and the resulting Hamiltonians can be expressed as a
similar integral of H[A,B] over the upper or lower end since the integral is over the
intersection of S2 projections.
The expression must vanish when the induced Kähler form vanishes for either end.
This is achieved by identifying the scalar X in the following manner:

X = Jkl
+ J�

kl ,

Jkl
± = (1 +K±)@↵s

k@�s
lJ↵�

± . (10.7.7)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).
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iv. One could of course ask why these Hamiltonians could not contribute also to the
kinetic terms and why the brackets with flux Hamiltonians should vanish. This
relate to how one defines the Kähler form. It was shown above that in case of
flux Hamiltonians the definition of Kähler form as brackets gives the basic formula
{Q(HA), Q(HB)} = Q({HA, HB} and same should hold true now. In the recent
case JA,B would contain an interaction term defined in terms of flux Hamiltonians
and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates
tA.

v. The quantization of the modified Dirac operator must be reconsidered. It would
seem that one must add to the super-Hamiltonian completely analogous term ob-
tained by replacing (1+K)J withX@(s1, s2)/@(x1

±, x
2
±). Besides the anti-commutation

relations defining correct anti-commutators to flux Hamiltonians, one should pose
anti-commutation relations consistent with the anti-commutation relations of super
Hamiltonians. In these anti-commutation relations (1 + K)J�2(x, y) would be re-
placed with X�2(s+, s�). This would guarantee that the oscillator operators at the
ends of the line are not independent and that the resulting Hamiltonian reduces to
integral over either end for H[A,B].

vi. In the case of CP2 the Hamiltonians generating isometries are rational functions.
This should hold true also now so that p-adic variants of Hamiltonians as functions
in WCW would make sense. This in turn would imply that the components of the
WCW Kähler form are rational functions. Also the exponentiation of Hamiltoni-
ans make sense p-adically if one allows the exponents of group parameters to be
functions Expp(t).

Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all
clear whether the expansion in powers of K actually converges.

i. In the proposed scenario one performs the expansion of the vacuum functional
exp(K) in powers of K and therefore in negative powers of ↵K . In principle an
infinite number of terms can be present. This is analogous to the perturbative ex-
pansion based on using magnetic monopoles as basic objects whereas the expansion
using the contravariant Kähler metric as a propagator would be in positive powers
of ↵K and analogous to the expansion in terms of magnetically bound states of
wormhole throats with vanishing net value of magnetic charge. At this moment one
can only suggest various approaches to how one could understand the situation.

ii. Weak form of self-duality and magnetic confinement could change the situation.
Performing the perturbation around magnetic flux tubes together with the assumed
slicing of the space-time sheet by stringy world sheets and partonic 2-surfaces could
mean that the perturbation corresponds to the action assignable to the electric part
of Kähler form proportional to ↵K by the weak self-duality. Hence by K = 4⇡↵K

relating Kähler electric field to Kähler magnetic field the expansion would come
in powers of a term containing sum of terms proportional to ↵0

K and ↵K . This
would leave to the scattering amplitudes the exponents of Kähler function at the
maximum of Kähler function so that the non-analytic dependence on ↵K would not
disappear.

A further reason to be worried about is that the expansion containing infinite number
of terms proportional to ↵0

K could fail to converge.

i. This could be also seen as a reason for why magnetic singlets are unavoidable except
perhaps for ~ < ~0. By the holomorphic factorization the powers of the interaction
part of Kähler action in powers of 1/↵K would naturally correspond to increasing
and opposite net values of the quantum numbers assignable to the WCW phase
coordinates at the ends of the propagator line. The magnetic bound states could
have similar expansion in powers of ↵K as pairs of states with arbitrarily high but
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opposite values of quantum numbers. In the functional integral these quantum
numbers would compensate each other. The functional integral would leave only
an expansion containing powers of ↵K starting from some finite possibly negative
(unless one assumes the weak form of self-duality) power. Various gauge coupling
strengths are expected to be proportional to ↵K and these expansions should reduce
to those in powers of ↵K .

ii. Since the number of terms in the fermionic propagator expansion is finite, one might
hope on basis of super-symmetry that the same is true in the case of the functional
integral expansion. By the holomorphic factorization the expansion in powers of K
means the appearance of terms with increasingly higher quantum numbers. Quan-
tum number conservation at vertices would leave only a finite number of terms
to tree diagrams. In the case of loop diagrams pairs of particles with opposite
and arbitrarily high values of quantum numbers could be generated at the vertex
and magnetic confinement might be necessary to guarantee the convergence. Also
super-symmetry could imply cancellations in loops.

Could one do without flux Hamiltonians?

The fact that the Kähler functions associated with the propagator lines can be regarded
as interaction terms inspires the question whether the Kähler function could contain only
the interaction terms so that Kähler form and Kähler metric would have components
only between the ends of the lines.

i. The basic objection is that flux Hamiltonians too beautiful objects to be left without
any role in the theory. One could also argue that the WCW metric would not be
positive definite if only the non-diagonal interaction term is present. The simplest
example is Hermitian 2 ⇥ 2-matrix with vanishing diagonal for which eigenvalues
are real but of opposite sign.

ii. One could of course argue that the expansions of exp(K) and �k give in the general
powers (fnfn)m analogous to diverging tadpole diagrams of quantum field theories
due to local interaction vertices. These terms do not produce divergences now but
the possibility that the exponential series of this kind of terms could diverge cannot
be excluded. The absence of the kinetic terms would allow to get rid of these terms
and might be argued to be the symmetric space counterpart for the vanishing of
loops in WCW integral.

iii. In zero energy ontology this idea does not look completely non-sensical since physi-
cal states are pairs of positive and negative energy states. Note also that in quantum
theory only creation operators are used to create positive energy states. The mani-
fest non-locality of the interaction terms and absence of the counterparts of kinetic
terms would provide a trivial manner to get rid of infinities due to the presence of
local interactions. The safest option is however to keep both terms.

Summary

The discussion suggests that one must treat the entire Feynman graph as single geo-
metric object with Kähler geometry in which the symmetric space is defined as product
of what could be regarded as analogs of symmetric spaces with interaction terms of the
metric coming from the propagator lines. The exponent of Kähler function would be
the product of exponents associated with all lines and contributions to lines depend on
quantum numbers (momentum and color quantum numbers) propagating in line via the
coupling to the modified Dirac operator. The conformal factorization would allow the
reduction of integrations to Fourier analysis in symmetric space. What is of decisive im-
portance is that the entire Feynman diagrammatics at WCW level would reduce to the
construction of WCW geometry for a single propagator line as a function of quantum
numbers propagating on the line.
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10.8 Do geometric invariants of preferred extremals
define topological invariants of space-time surface and
code for quantum physics?

The recent progress in the understanding of preferred extremals [K5] led to a reduction
of the field equations to conditions stating for Euclidian signature the existence of Kähler
metric. The resulting conditions are a direct generalization of corresponding conditions
emerging for the string world sheet and stating that the 2-metric has only non-diagonal
components in complex/hypercomplex coordinates. Also energy momentum of Kähler
action and has this characteristic (1,1) tensor structure. In Minkowskian signature one
obtains the analog of 4-D complex structure combining hyper-complex structure and
2-D complex structure.

The construction lead also to the understanding of how Einstein’s equations with cosmo-
logical term follow as a consistency condition guaranteeing that the covariant divergence
of the Maxwell’s energy momentum tensor assignable to Kähler action vanishes. This
gives T = kG+⇤g. By taking trace a further condition follows from the vanishing trace
of T :

R =
4⇤

k
. (10.8.1)

That any preferred extremal should have a constant Ricci scalar proportional to cosmo-
logical constant is very strong prediction. Note that the accelerating expansion of the
Universe would support positive value of ⇤. Note however that both ⇤ and k / 1/G are
both parameters characterizing one particular preferred extremal. One could of course
argue that the dynamics allowing only constant curvature space-times is too simple. The
point is however that particle can topologically condense on several space-time sheets
meaning e↵ective superposition of various classical fields defined by induced metric and
spinor connection.

The following considerations demonstrate that preferred extremals can be seen as canon-
ical representatives for the constant curvature manifolds playing central role in Thurston’s
geometrization theorem [A25] known also as hyperbolization theorem implying that ge-
ometric invariants of space-time surfaces transform to topological invariants. The gen-
eralization of the notion of Ricci flow to Maxwell flow in the space of metrics and further
to Kähler flow for preferred extremals in turn gives a rather detailed vision about how
preferred extremals organize to one-parameter orbits. It is quite possible that Kähler
flow is actually discrete. The natural interpretation is in terms of dissipation and self
organization.

Quantum classical correspondence suggests that this line of thought could be contin-
ued even further: could the geometric invariants of the preferred extremals could code
not only for space-time topology but also for quantum physics? How to calculate the
correlation functions and coupling constant evolution has remained a basic unresolved
challenge of quantum TGD. Could the correlation functions be reduced to statistical
geometric invariants of preferred extemals? The latest (means the end of 2012) and
perhaps the most powerful idea hitherto about coupling constant evolution is quantum
classical correspondence in statistical sense stating that the statistical properties of a
preferred extremal in quantum superposition of them are same as those of the zero
energy state in question. This principle would be quantum generalization of ergodic
theorem stating that the time evolution of a single member of ensemble represents the
ensemble statistically. This principle would allow to deduce correlation functions and
S-matrix from the statistical properties of single preferred extremal alone using classical
intuition. Also coupling constant evolution would be coded by the statistical properties
of the representative preferred extremal.

http://en.wikipedia.org/wiki/Hyperbolization_theorem
http://en.wikipedia.org/wiki/Hyperbolization_theorem
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10.8.1 Preferred extremals of Kähler action as manifolds with
constant Ricci scalar whose geometric invariants are topological
invariants

An old conjecture inspired by the preferred extremal property is that the geometric
invariants of space-time surface serve as topological invariants. The reduction of Kähler
action to 3-D Chern-Simons terms [K5] gives support for this conjecture as a classical
counterpart for the view about TGD as almost topological QFT. The following argu-
ments give a more precise content to this conjecture in terms of existing mathematics.

i. It is not possible to represent the scaling of the induced metric as a deformation
of the space-time surface preserving the preferred extremal property since the scale
of CP2 breaks scale invariance. Therefore the curvature scalar cannot be chosen to
be equal to one numerically. Therefore also the parameter R = 4⇤/k and also ⇤
and k separately characterize the equivalence class of preferred extremals as is also
physically clear.
Also the volume of the space-time sheet closed inside causal diamond CD remains
constant along the orbits of the flow and thus characterizes the space-time surface.
⇤ and even k / 1/G can indeed depend on space-time sheet and p-adic length
scale hypothesis suggests a discrete spectrum for ⇤/k expressible in terms of p-adic
length scales: ⇤/k / 1/L2

p with p ' 2k favored by p-adic length scale hypothesis.
During cosmic evolution the p-adic length scale would increase gradually. This
would resolve the problem posed by cosmological constant in GRT based theories.

ii. One could also see the preferred extremals as 4-D counterparts of constant curvature
3-manifolds in the topology of 3-manifolds. An interesting possibility raised by the
observed negative value of ⇤ is that most 4-surfaces are constant negative curvature
4-manifolds. By a general theorem coset spaces H4/�, where H4 = SO(1, 4)/SO(4)
is hyperboloid of M5 and � a torsion free discrete subgroup of SO(1, 4) [A10]. It
is not clear to me, whether the constant value of Ricci scalar implies constant
sectional curvatures and therefore hyperbolic space property. It could happen that
the space of spaces with constant Ricci curvature contain a hyperbolic manifold
as an especially symmetric representative. In any case, the geometric invariants of
hyperbolic metric are topological invariants.
By Mostow rigidity theorem [A16] finite-volume hyperbolic manifold is unique for
D > 2 and determined by the fundamental group of the manifold. Since the orbits
under the Kähler flow preserve the curvature scalar the manifolds at the orbit must
represent di↵erent imbeddings of one and hyperbolic 4-manifold. In 2-D case the
moduli space for hyperbolic metric for a given genus g > 0 is defined by Teichmueller
parameters and has dimension 6(g � 1). Obviously the exceptional character of
D = 2 case relates to conformal invariance. Note that the moduli space in question
plays a key role in p-adic mass calculations [K11].
In the recent case Mostow rigidity theorem could hold true for the Euclidian regions
and maybe generalize also to Minkowskian regions. If so then both ”topological”
and ”geometro” in ”Topological GeometroDynamics” would be fully justified. The
fact that geometric invariants become topological invariants also conforms with
”TGD as almost topological QFT” and allows the notion of scale to find its place
in topology. Also the dream about exact solvability of the theory would be realized
in rather convincing manner.

These conjectures are the main result independent of whether the generalization of the
Ricci flow discussed in the sequel exists as a continuous flow or possibly discrete sequence
of iterates in the space of preferred extremals of Kähler action. My sincere hope is that
the reader could grasp how far reaching these result really are.

http://tgdtheory.com/public_html/tgdclass/tgdclass.html#class
http://tgdtheory.com/public_html/tgdclass/tgdclass.html#class
http://en.wikipedia.org/wiki/Hyperbolic_manifold
http://en.wikipedia.org/wiki/Mostow_rigidity_theorem
http://tgdtheory.com/public_html/paddark/paddark.html#elvafu
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10.8.2 Is there a connection between preferred extremals and
AdS

4

/CFT correspondence?

The preferred extremals satisfy Einstein Maxwell equations with a cosmological con-
stant and have negative scalar curvature for negative value of ⇤. 4-D space-times with
hyperbolic metric provide canonical representation for a large class of four-manifolds
and an interesting question is whether these spaces are obtained as preferred extremals
and/or vacuum extremals.

4-D hyperbolic space with Minkowski signature is locally isometric with AdS4. This sug-
gests at connection with AdS4/CFT correspondence of M-theory. The boundary of AdS
would be now replaced with 3-D light-like orbit of partonic 2-surface at which the signa-
ture of the induced metric changes. The metric 2-dimensionality of the light-like surface
makes possible generalization of 2-D conformal invariance with the light-like coordinate
taking the role of complex coordinate at light-like boundary. AdS could represent a
special case of a more general family of space-time surfaces with constant Ricci scalar
satistying Einstein-Maxwell equations and generalizing the AdS4/CFT correspondence.
There is however a strong objection from cosmology: the accelerated expansion of the
Universe requires positive value of ⇤ and favors De Sitter Space dS4 instead of AdS4.

These observations provide motivations for finding whether AdS4 and/or dS4 allows an
imbedding as a vacuum extremal to M4⇥S2 ⇢ M4⇥CP2, where S2 is a homologically
trivial geodesic sphere of CP2. It is easy to guess the general form of the imbedding by
writing the line elements of, M4, S2, and AdS4.

i. The line element of M4 in spherical Minkowski coordinates (m, rM , ✓,�) reads as

ds2 = dm2 � dr2M � r2Md⌦2 . (10.8.2)

ii. Also the line element of S2 is familiar:

ds2 = �R2(d⇥2 + sin2(✓)d�2) . (10.8.3)

iii. By visiting in Wikipedia one learns that in spherical coordinate the line element of
AdS4/dS4 is given by

ds2 = A(r)dt2 � 1

A(r)
dr2 � r2d⌦2 ,

A(r) = 1 + ✏y2 , y =
r

r0
,

✏ = 1 for AdS4 , ✏ = �1 for dS4 . (10.8.4)

iv. From these formulas it is easy to see that the ansatz is of the same general form as
for the imbedding of Schwartschild-Nordstöm metric:

m = ⇤t+ h(y) , rM = r ,
⇥ = s(y) , � = !(t+ f(y)) .

(10.8.5)

The non-trivial conditions on the components of the induced metric are given by

gtt = ⇤2 � x2sin2(⇥) = A(r) ,

gtr =
1

r0


⇤
dh

dy
� x2sin2(✓)

df

dr

�
= 0 ,

grr =
1

r20


(
dh

dy
)2 � 1� x2sin2(✓)(

df

dy
)2 �R2(

d⇥

dy
)2
�
= � 1

A(r)
,

x = R! . (10.8.6)

By some simple algebraic manipulations one can derive expressions for sin(⇥), df/dr
and dh/dr.

i. For ⇥(r) the equation for gtt gives the expression

http://en.wikipedia.org/wiki/AdS
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sin(⇥) = ±P 1/2

x
,

P = ⇤2 �A = ⇤2 � 1� ✏y2 . (10.8.7)

The condition 0  sin2(⇥)  1 gives the conditions

(⇤2 � x2 � 1)1/2  y  (⇤2 � 1)1/2 for ✏ = 1 (AdS4) ,
(�⇤2 + 1)1/2  y  (x2 + 1� ⇤2)1/2 for ✏ = �1 (dS4) .

(10.8.8)

Only a spherical shell is possible in both cases. The model for the final state of
star considered in [K56] predicted similar layer layer like structure and inspired
the proposal that stars quite generally have an onion-like structure with radii of
various shells characterize by p-adic length scale hypothesis and thus coming in
some powers of

p
2. This brings in mind also Titius-Bode law.

ii. From the vanishing of gtr one obtains

dh

dy
=

P

⇤

df

dy
.

(10.8.9)

iii. The condition for grr gives

(
df

dy
)2 =

r20
AP

[A�1 �R2(
d⇥

dy
)2] . (10.8.10)

Clearly, the right-hand side is positive if P � 0 holds true and Rd⇥/dy is small.
One can express d⇥/dy using chain rule as

(
d⇥

dy
)2 = x2y2

P (P�x2) . (10.8.11)

One obtains

(
df

dy
)2 = ⇤r20

y2

AP


1

1 + y2
� x2(

R

r0
)2

1

P (P � x2)

�
.

(10.8.12)

The right hand side of this equation is non-negative for certain range of parameters
and variable y. Note that for r0 � R the second term on the right hand side can
be neglected. In this case it is easy to integrate f(y).

The conclusion is that both AdS4 and dS4 allow a local imbedding as a vacuum extremal.
Whether also an imbedding as a non-vacuum preferred extremal to M4 ⇥ S2, S2 a
homologically non-trivial geodesic sphere is possible, is an interesting question.

10.8.3 Generalizing Ricci flow to Maxwell flow for 4-geometries
and Kähler flow for space-time surfaces

The notion of Ricci flow has played a key part in the geometrization of topological
invariants of Riemann manifolds. I certainly did not have this in mind when I choose
to call my unification attempt ”Topological Geometrodynamics” but this title strongly
suggests that a suitable generalization of Ricci flow could play a key role in the under-
standing of also TGD.

Ricci flow and Maxwell flow for 4-geometries

The observation about constancy of 4-D curvature scalar for preferred extremals inspires
a generalization of the well-known volume preserving Ricci flow [A22] introduced by
Richard Hamilton. Ricci flow is defined in the space of Riemann metrics as

http://en.wikipedia.org/wiki/Ricci_flow
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dg↵�
dt

= �2R↵� + 2
Ravg

D
g↵� . (10.8.13)

Here Ravg denotes the average of the scalar curvature, and D is the dimension of the
Riemann manifold. The flow is volume preserving in average sense as one easily checks
(hg↵�dg↵�/dti = 0). The volume preserving property of this flow allows to intuitively
understand that the volume of a 3-manifold in the asymptotic metric defined by the
Ricci flow is topological invariant. The fixed points of the flow serve as canonical repre-
sentatives for the topological equivalence classes of 3-manifolds. These 3-manifolds (for
instance hyperbolic 3-manifolds with constant sectional curvatures) are highly symmet-
ric. This is easy to understand since the flow is dissipative and destroys all details from
the metric.

What happens in the recent case? The first thing to do is to consider what might be
called Maxwell flow in the space of all 4-D Riemann manifolds allowing Maxwell field.

i. First of all, the vanishing of the trace of Maxwell’s energy momentum tensor codes
for the volume preserving character of the flow defined as

dg↵�
dt

= T↵� . (10.8.14)

Taking covariant divergence on both sides and assuming that d/dt andD↵ commute,
one obtains that T↵� is divergenceless.
This is true if one assumes Einstein’s equations with cosmological term. This gives

dg↵�
dt

= kG↵� + ⇤g↵� = kR↵� + (�kR

2
+ ⇤)g↵� . (10.8.15)

The trace of this equation gives that the curvature scalar is constant. Note that
the value of the Kähler coupling strength plays a highly non-trivial role in these
equations and it is quite possible that solutions exist only for some critical values of
↵K . Quantum criticality should fix the allow value triplets (G,⇤,↵K) apart from
overall scaling

(G,⇤,↵K) ! (xG,⇤/x, x↵K .

Fixing the value of G fixes the values remaining parameters at critical points. The
rescaling of the parameter t induces a scaling by x.

ii. By taking trace one obtains the already mentioned condition fixing the curvature
to be constant, and one can write

dg↵�
dt

= kR↵� � ⇤g↵� . (10.8.16)

Note that in the recent case Ravg = R holds true since curvature scalar is constant.
The fixed points of the flow would be Einstein manifolds [A6, A30] satisfying

R↵� =
⇤

k
g↵� (10.8.17)

.

iii. It is by no means obvious that continuous flow is possible. The condition that
Einstein-Maxwell equations are satisfied might pick up from a completely general
Maxwell flow a discrete subset as solutions of Einstein-Maxwell equations with a
cosmological term. If so, one could assign to this subset a sequence of values tn of
the flow parameter t.

iv. I do not know whether 3-dimensionality is somehow absolutely essential for getting
the topological classification of closed 3-manifolds using Ricci flow. This ignorance
allows me to pose some innocent questions. Could one have a canonical represen-
tation of 4-geometries as spaces with constant Ricci scalar? Could one select one
particular Einstein space in the class four-metrics and could the ratio ⇤/k represent

http://en.wikipedia.org/wiki/Einstein_manifold
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topological invariant if one normalizes metric or curvature scalar suitably. In the
3-dimensional case curvature scalar is normalized to unity. In the recent case this
normalization would give k = 4⇤ in turn giving R↵� = g↵�/4. Does this mean
that there is only single fixed point in local sense, analogous to black hole toward
which all geometries are driven by the Maxwell flow? Does this imply that only the
4-volume of the original space would serve as a topological invariant?

Maxwell flow for space-time surfaces

One can consider Maxwell flow for space-time surfaces too. In this case Kähler flow
would be the appropriate term and provides families of preferred extremals. Since space-
time surfaces inside CD are the basic physical objects are in TGD framework, a possible
interpretation of these families would be as flows describing physical dissipation as a
four-dimensional phenomenon polishing details from the space-time surface interpreted
as an analog of Bohr orbit.

i. The flow is now induced by a vector field jk(x, t) of the space-time surface having
values in the tangent bundle of imbedding space M4 ⇥ CP2. In the most general
case one has Kähler flow without the Einstein equations. This flow would be defined
in the space of all space-time surfaces or possibly in the space of all extremals. The
flow equations reduce to

hklD↵j
k(x, t)D�h

l =
1

2
T↵� . (10.8.18)

The left hand side is the projection of the covariant gradient D↵jk(x, t) of the
flow vector field jk(x, t) to the tangent space of the space-time surface. Dalpha is
covariant derivative taking into account that jk is imbedding space vector field.
For a fixed point space-time surface this projection must vanish assuming that this
space-time surface reachable. A good guess for the asymptotia is that the divergence
of Maxwell energy momentum tensor vanishes and that Einstein’s equations with
cosmological constant are well-defined.
Asymptotes corresponds to vacuum extremals. In Euclidian regions CP2 type vac-
uum extremals and in Minkowskian regions to any space-time surface in any 6-D
sub-manifold M4 ⇥ Y 2, where Y 2 is Lagrangian sub-manifold of CP2 having there-
fore vanishing induced Kähler form. Symplectic transformations of CP2 combined
with di↵eomorphisms of M4 give new Lagrangian manifolds. One would expect
that vacuum extremals are approached but never reached at second extreme for the
flow.
If one assumes Einstein’s equations with a cosmological term, allowed vacuum ex-
tremals must be Einstein manifolds. For CP2 type vacuum extremals this is the
case. It is quite possible that these fixed points do not actually exist in Minkowskian
sector, and could be replaced with more complex asymptotic behavior such as limit,
chaos, or strange attractor.

ii. The flow could be also restricted to the space of preferred extremals. Assuming
that Einstein Maxwell equations indeed hold true, the flow equations reduce to

hklD↵j
k(x, t)@�h

l =
1

2
(kR↵� � ⇤g↵�) . (10.8.19)

Preferred extremals would correspond to a fixed sub-manifold of the general flow in
the space of all 4-surfaces.

iii. One can also consider a situation in which jk(x, t) is replaced with jk(h, t) defining
a flow in the entire imbedding space. This assumption is probably too restrictive.
In this case the equations reduce to

(Drjl(x, t) +Dljr)@↵h
r@�h

l = kR↵� � ⇤g↵� . (10.8.20)

Here Dr denotes covariant derivative. Asymptotia is achieved if the tensor Dkjl +
Dkjl becomes orthogonal to the space-time surface. Note for that Killing vector
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fields of H the left hand side vanishes identically. Killing vector fields are indeed
symmetries of also asymptotic states.

It must be made clear that the existence of a continuous flow in the space of preferred ex-
tremals might be too strong a condition. Already the restriction of the general Maxwell
flow in the space of metrics to solutions of Einstein-Maxwell equations with cosmological
term might lead to discretization, and the assumption about reprentability as 4-surface
in M4 ⇥ CP2 would give a further condition reducing the number of solutions. On
the other hand, one might consiser a possibility of a continuous flow in the space of
constant Ricci scalar metrics with a fixed 4-volume and having hyperbolic spaces as the
most symmetric representative.

Dissipation, self organization, transition to chaos, and coupling constant
evolution

A beautiful connection with concepts like dissipation, self-organization, transition to
chaos, and coupling constant evolution suggests itself.

i. It is not at all clear whether the vacuum extremal limits of the preferred extremals
can correspond to Einstein spaces except in special cases such as CP2 type vacuum
extremals isometric with CP2. The imbeddability condition however defines a con-
straint force which might well force asymptotically more complex situations such
as limit cycles and strange attractors. In ordinary dissipative dynamics an exter-
nal energy feed is essential prerequisite for this kind of non-trivial self-organization
patterns.
In the recent case the external energy feed could be replaced by the constraint
forces due to the imbeddability condition. It is not too di�cult to imagine that the
flow (if it exists!) could define something analogous to a transition to chaos taking
place in a stepwise manner for critical values of the parameter t. Alternatively,
these discrete values could correspond to those values of t for which the preferred
extremal property holds true for a general Maxwell flow in the space of 4-metrics.
Therefore the preferred extremals of Kähler action could emerge as one-parameter
(possibly discrete) families describing dissipation and self-organization at the level
of space-time dynamics.

ii. For instance, one can consider the possibility that in some situations Einstein’s
equations split into two mutually consistent equations of which only the first one is
independent

xJ↵
⌫J

⌫� = R↵� ,

LK = xJ↵
⌫J

⌫� = 4⇤ ,

x =
1

16⇡↵K
. (10.8.21)

Note that the first equation indeed gives the second one by tracing. This happens
for CP2 type vacuum extremals.
Kähler action density would reduce to cosmological constant which should have a
continuous spectrum if this happens always. A more plausible alternative is that
this holds true only asymptotically. In this case the flow equation could not lead
arbitrary near to vacuum extremal, and one can think of situation in which LK = 4⇤
defines an analog of limiting cycle or perhaps even strange attractor. In any case,
the assumption would allow to deduce the asymptotic value of the action density
which is of utmost importance from calculational point of view: action would be
simply SK = 4⇤V4 and one could also say that one has minimal surface with ⇤
taking the role of string tension.

iii. One of the key ideas of TGD is quantum criticality implying that Kähler coupling
strength is analogous to critical temperature. Second key idea is that p-adic coupling
constant evolution represents discretized version of continuous coupling constant
evolution so that each p-adic prime would correspond a fixed point of ordinary
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coupling constant evolution in the sense that the 4-volume characterized by the
p-adic length scale remains constant. The invariance of the geometric and thus
geometric parameters of hyperbolic 4-manifold under the Kähler flow would conform
with the interpretation as a flow preserving scale assignable to a given p-adic prime.
The continuous evolution in question (if possible at all!) might correspond to a
fixed p-adic prime. Also the hierarchy of Planck constants relates to this picture
naturally. Planck constant ~eff = n~ corresponds to a multi-furcation generating
n-sheeted structure and certainly a↵ecting the fundamental group.

iv. One can of course question the assumption that a continuous flow exists. The
property of being a solution of Einstein-Maxwell equations, imbeddability property,
and preferred extremal property might allow allow only discrete sequences of space-
time surfaces perhaps interpretable as orbit of an iterated map leading gradually
to a fractal limit. This kind of discrete sequence might be also be selected as
preferred extremals from the orbit of Maxwell flow without assuming Einstein-
Maxwell equations. Perhaps the discrete p-adic coupling constant evolution could
be seen in this manner and be regarded as an iteration so that the connection with
fractality would become obvious too.

Does a 4-D counterpart of thermodynamics make sense?

The interpretation of the Kähler flow in terms of dissipation, the constancy of R, and
almost constancy of LK suggest an interpretation in terms of 4-D variant of thermo-
dynamics natural in zero energy ontology (ZEO), where physical states are analogs for
pairs of initial and final states of quantum event are quantum superpositions of classical
time evolutions. Quantum theory becomes a ”square root” of thermodynamics so that
4-D analog of thermodynamics might even replace ordinary thermodynamics as a fun-
damental description. If so this 4-D thermodynamics should be qualitatively consistent
with the ordinary 3-D thermodynamics.

i. The first naive guess would be the interpretation of the action density LK as an
analog of energy density e = E/V3 and that of R as the analog to entropy density
s = S/V3. The asymptotic states would be analogs of thermodynamical equilibria
having constant values of LK and R.

ii. Apart from an overall sign factor ✏ to be discussed, the analog of the first law
de = Tds� pdV/V would be

dLK = kdR+ ⇤
dV4

V4
.

One would have the correspondences S ! ✏RV4, e ! ✏LK and k ! T , p ! �⇤.
k / 1/G indeed appears formally in the role of temperature in Einstein’s action
defining a formal partition function via its exponent. The analog of second law
would state the increase of the magnitude of ✏RV4 during the Kähler flow.

iii. One must be very careful with the signs and discuss Euclidian and Minkowskian re-
gions separately. Concerning purely thermodynamic aspects at the level of vacuum
functional Euclidian regions are those which matter.

A. For CP2 type vacuum extremals LK / E2 +B2 , R = ⇤/k, and ⇤ are positive.
In thermodynamical analogy for ✏ = 1 this would mean that pressure is negative.

B. In Minkowskian regions the value of R = ⇤/k is negative for ⇤ < 0 suggested by
the large abundance of 4-manifolds allowing hyperbolic metric and also by cos-
mological considerations. The asymptotic formula LK = 4⇤ considered above
suggests that also Kähler action is negative in Minkowskian regions for mag-
netic flux tubes dominating in TGD inspired cosmology: the reason is that the
magnetic contribution to the action density LK / E2 �B2 dominates.

Consider now in more detail the 4-D thermodynamics interpretation in Euclidian and
Minkowskian regions assuming that the the evolution by quantum jumps has Kähler
flow as a space-time correlate.
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i. In Euclidian regions the choice ✏ = 1 seems to be more reasonable one. In Euclidian
regions �⇤ as the analog of pressure would be negative, and asymptotically (that
is for CP2 type vacuum extremals) its value would be proportional to ⇤ / 1/GR2,
where R denotes CP2 radius defined by the length of its geodesic circle.
A possible interpretation for negative pressure is in terms of string tension e↵ectively
inducing negative pressure (note that the solutions of the modified Dirac equation
indeed assign a string to the wormhole contact). The analog of the second law
would require the increase of RV4 in quantum jumps. The magnitudes of LK , R,
V4 and ⇤ would be reduced and approach their asymptotic values. In particular,
V4 would approach asymptotically the volume of CP2.

ii. In Minkowskian regions Kähler action contributes to the vacuum functional a phase
factor analogous to an imaginary exponent of action serving in the role of Morse
function so that thermodynamics interpretation can be questioned. Despite this one
can check whether thermodynamic interpretation can be considered. The choice
✏ = �1 seems to be the correct choice now. �⇤ would be analogous to a negative
pressure whose gradually decreases. In 3-D thermodynamics it is natural to assign
negative pressure to the magnetic flux tube like structures as their e↵ective string
tension defined by the density of magnetic energy per unit length. �R � 0 would
entropy and �LK � 0 would be the analog of energy density.
R = ⇤/k and the reduction of ⇤ during cosmic evolution by quantum jumps suggests
that the larger the volume of CD and thus of (at least) Minkowskian space-time
sheet the smaller the negative value of ⇤.
Assume the recent view about state function reduction explaining how the arrow
of geometric time is induced by the quantum jump sequence defining experienced
time [K4]. According to this view zero energy states are quantum superpositions
over CDs of various size scales but with common tip, which can correspond to
either the upper or lower light-like boundary of CD. The sequence of quantum
jumps the gradual increase of the average size of CD in the quantum superposition
and therefore that of average value of V4. On the other hand, a gradual decrease
of both �LK and �R looks physically very natural. If Kähler flow describes the
e↵ect of dissipation by quantum jumps in ZEO then the space-time surfaces would
gradually approach nearly vacuum extremals with constant value of entropy density
�R but gradually increasing 4-volume so that the analog of second law stating the
increase of �RV4 would hold true.

iii. The interpretation of �R > 0 as negentropy density assignable to entanglement
is also possible and is consistent with the interpretation in terms of second law.
This interpretation would only change the sign factor ✏ in the proposed formula.
Otherwise the above arguments would remain as such.

10.8.4 Could correlation functions, S-matrix, and coupling con-
stant evolution be coded the statistical properties of preferred
extremals?

Quantum classical correspondence states that all aspects of quantum states should have
correlates in the geometry of preferred extremals. In particular, various elementary
particle propagators should have a representation as properties of preferred extremals.
This would allow to realize the old dream about being able to say something interesting
about coupling constant evolution although it is not yet possible to calculate the M-
matrices and U-matrix. Hitherto everything that has been said about coupling constant
evolution has been rather speculative arguments except for the general vision that it
reduces to a discrete evolution defined by p-adic length scales. General first principle
definitions are however much more valuable than ad hoc guesses even if the latter give
rise to explicit formulas.

In quantum TGD and also at its QFT limit various correlation functions in given quan-
tum state should code for its properties. By quantum classical correspondence these
correlation functions should have counterparts in the geometry of preferred extremals.
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Even more: these classical counterparts for a given preferred extremal ought to be identi-
cal with the quantum correlation functions for the superposition of preferred extremals.
This correspondence could be called quantum ergodicity by its analogy with ordinary
ergodicity stating that the member of ensemble becomes representative of ensemble.

i. The marvellous implication of quantum ergodicity would be that one could cal-
culate everything solely classically using the classical intuition - the only intuition
that we have. Quantum ergodicity would also solve the paradox raised by the quan-
tum classical correspondence for momentum eigenstates. Any preferred extremal in
their superposition defining momentum eigenstate should code for the momentum
characterizing the superposition itself. This is indeed possible if every extremal
in the superposition codes the momentum to the properties of classical correlation
functions which are identical for all of them.

ii. The only manner to possibly achieve quantum ergodicity is in terms of the statistical
properties of the preferred extremals. It should be possible to generalize the ergodic
theorem stating that the properties of statistical ensemble are represented by single
space-time evolution in the ensemble of time evolutions. Quantum superposition of
classical worlds would e↵ectively reduce to single classical world as far as classical
correlation functions are considered. The notion of finite measurement resolution
suggests that one must state this more precisely by adding that classical correlation
functions are calculated in a given UV and IR resolutions meaning UV cuto↵ defined
by the smallest CD and IR cuto↵ defined by the largest CD present.

iii. The skeptic inside me immediately argues that TGD Universe is 4-D spin glass so
that this quantum ergodic theorem must be broken. In the case of the ordinary spin
classes one has not only statistical average for a fixed Hamiltonian but a statistical
average over Hamiltonians. There is a probability distribution over the coupling
parameters appearing in the Hamiltonian. Maybe the quantum counterpart of this
is needed to predict the physically measurable correlation functions.
Could this average be an ordinary classical statistical average over quantum states
with di↵erent classical correlation functions? This kind of average is indeed taken
in density matrix formalism. Or could it be that the square root of thermodynamics
defined by ZEO actually gives automatically rise to this average? The eigenvalues
of the ”hermitian square root ” of the density matrix would code for components of
the state characterized by di↵erent classical correlation functions. One could assign
these contributions to di↵erent ”phases”.

iv. Quantum classical correspondence in statistical sense would be very much like holog-
raphy (now individual classical state represents the entire quantum state). Quantum
ergodicity would pose a rather strong constraint on quantum states. This symme-
try principle could actually fix the spectrum of zero energy states to a high degree
and fix therefore the M-matrices given by the product of hermitian square root of
density matrix and unitary S-matrix and unitary U-matrix having M-matrices as
its orthonormal rows.

v. In TGD inspired theory of consciousness the counterpart of quantum ergodicity
is the postulate that the space-time geometry provides a symbolic representation
for the quantum states and also for the contents of consciousness assignable to
quantum jumps between quantum states. Quantum ergodicity would realize this
strongly self-referential looking condition. The positive and negative energy parts of
zero energy state would be analogous to the initial and final states of quantum jump
and the classical correlation functions would code for the contents of consciousness
like written formulas code for the thoughts of mathematician and provide a sensory
feedback.

How classical correlation functions should be defined?

i. General Coordinate Invariance and Lorentz invariance are the basic constraints on
the definition. These are achieved for the space-time regions with Minkowskian
signature and 4-D M4 projection if linear Minkowski coordinates are used. This
is equivalent with the contraction of the indices of tensor fields with the space-
time projections of M4 Killing vector fields representing translations. Accepting
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ths generalization, there is no need to restrict oneself to 4-D M4 projection and one
can also consider also Euclidian regions identifiable as lines of generalized Feynman
diagrams.
Quantum ergodicity very probably however forces to restrict the consideration to
Minkowskian and Euclidian space-time regions and various phases associated with
them. Also CP2 Killing vector fields can be projected to space-time surface and
give a representation for classical gluon fields. These in turn can be contracted with
M4 Killing vectors giving rise to gluon fields as analogs of graviton fields but with
second polarization index replaced with color index.

ii. The standard definition for the correlation functions associated with classical time
evolution is the appropriate starting point. The correlation function GXY (⌧) for two
dynamical variablesX(t) and Y (t) is defined as the average GXY (⌧) =

R
T
X(t)Y (t+

⌧)dt/T over an interval of length T , and one can also consider the limit T ! 1.
In the recent case one would replace ⌧ with the di↵erence m1 � m2 = m of M4

coordinates of two points at the preferred extremal and integrate over the points
of the extremal to get the average. The finite time interval T is replaced with the
volume of causal diamond in a given length scale. Zero energy state with given
quantum numbers for positive and negative energy parts of the state defines the
initial and final states between which the fields appearing in the correlation functions
are defined.

iii. What correlation functions should be considered? Certainly one could calculate cor-
relation functions for the induced spinor connection given electro-weak propagators
and correlation functions for CP2 Killing vector fields giving correlation functions
for gluon fields using the description in terms of Killing vector fields. If one can
uniquely separate from the Fourier transform uniquely a term of form Z/(p2 �m2)
by its momentum dependence, the coe�cient Z can be identified as coupling con-
stant squared for the corresponding gauge potential component and one can in
principle deduce coupling constant evolution purely classically. One can imagine
of calculating spinorial propagators for string world sheets in the same manner.
Note that also the dependence on color quantum numbers would be present so that
in principle all that is needed could be calculated for a single preferred extremal
without the need to construct QFT limit and to introduce color quantum numbers
of fermions as spin like quantum numbers (color quantum numbers corresponds to
CP2 partial wave for the tip of the CD assigned with the particle).

iv. What about Higgs field? TGD in principle allows scalar and pseudo-scalars which
could be called Higgs like states. These states are however not necessary for particle
massivation although they can represent particle massivation and must do so if one
assumes that QFT limit exist. p-Adic thermodynamics however describes particle
massivation microscopically.
The problem is that Higgs like field does not seem to have any obvious space-time
correlate. The trace of the second fundamental form is the obvious candidate but
vanishes for preferred extremals which are both minimal surfaces and solutions of
Einstein Maxwell equations with cosmological constant. If the string world sheets
at which all spinor components except right handed neutrino are localized for the
general solution ansatz of the modified Dirac equation, the corresponding second
fundamental form at the level of imbedding space defines a candidate for classical
Higgs field. A natural expectation is that string world sheets are minimal surfaces
of space-time surface. In general they are however not minimal surfaces of the
imbedding space so that one might achieve a microscopic definition of classical
Higgs field and its vacuum expectation value as an average of one point correlation
function over the string world sheet.

Many detailed speculations about coupling constant evolution to be discussed in the
sections below must be taken as innovative guesses doomed to have the eventual fate of
guesses. The notion of quantum ergodicity could however be one of the really deep ideas
about coupling constant evolution comparable to the notion of p-adic coupling constant
evolution. Quantum Ergodicity (briefly QE) would also state something extremely non-
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trivial also about the construction of correlation functions and S-matrix. Because this
principle is so new, the rest of the chapter does not yet contain any applications of QE.
This should not lead the reader to under-estimate the potential power of QE.

10.9 Does the exponent of Chern-Simons action re-
duce to the exponent of the area of minimal surfaces?

As I scanned of hep-th I found an interesting article by Giordano, Peschanski, and
Seki [B22] based on AdS/CFT correspondence. What is studied is the high energy
behavior of the gluon-gluon and quark-quark scattering amplitudes of N = 4 SUSY.

i. The proposal made earlier by Aldaya and Maldacena [B5] is that gluon-gluon scat-
tering amplitudes are proportional to the imaginary exponent of the area of a mini-
mal surface in AdS5 whose boundary is identified as momentum space. The bound-
ary of the minimal surface would be polygon with light-like edges: this polygon and
its dual are familiar from twistor approach.

ii. Giordano, Peschanski, and Seki claim that quark-quark scattering amplitude for
heavy quarks corresponds to the exponent of the area for a minimal surface in the
Euclidian version of AdS5 which is hyperbolic space (space with a constant negative
curvature): it is interpreted as a counterpart of WCW rather than momentum space
and amplitudes are obtained by analytic continuation. For instance, a universal
Regge behavior is obtained. For general amplitudes the exponent of the area alone
is not enough since it does not depend on gluon quantum numbers and vertex
operators at the edges of the boundary polygon are needed.

In the following my intention is to consider the formulation of this conjecture in quantum
TGD framework. I hasten to inform that I am not a specialist in AdS/CFT and can
make only general comments inspired by analogies with TGD.

10.9.1 Why Chern-Simons action should reduce to area for min-
imal surfaces?

The minimal surface conjectures are highly interesting from TGD point of view. The
weak form of electric magnetic duality implies the reduction of Kähler action to 3-D
Chern-Simons terms. E↵ective 2-dimensionality implied by the strong form of General
Coordinate Invariance suggests a further reduction of Chern-Simons terms to 2-D terms
and the areas of string world sheet and of partonic 2-surface are the only non-topological
options that one can imagine. Skeptic could of course argue that the exponent of the
minimal surface area results as a characterizer of the quantum state rather than vacuum
functional. In the following I defend the minimal interpretation as Chern-Simons terms.

Let us look this conjecture in more detail.

i. In zero energy ontology twistor approach is very natural since all physical states
are bound states of massless particles. Also virtual particles are composites of
massless states. The possibility to have both signs of energy makes possible space-
like momenta for wormhole contacts. Mass shell conditions at internal lines imply
extremely strong constraints on the virtual momenta and both UV and IR finiteness
are expected to hold true.

ii. The weak form of electric magnetic duality [K18] implies that the exponent of Kähler
action reduces to the exponent of Chern-Simons term for 3-D space-like surfaces at
the ends of space-time surface inside CD and for light-like 3-surfaces. The coe�-
cient of this term is complex since the contribution of Minkowskian regions of the
space-time surface is imaginary (

p
g4 is imaginary) and that of Euclidian regions

(generalized Feynman diagrams) real. The Chern-Simons term from Minkowskian
regions is like Morse function and that from Euclidian regions defines Kähler func-
tion and stationary phase approximation makes sense. The two contributions are

http://arxiv.org/pdf/1110.3680
http://arxiv.org/pdf/0710.1060
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di↵erent since the space-like 3-surfaces contributing to Kähler function and Morse
function are di↵erent.

iii. Electric magnetic duality [K18] leads also to the conclusion that wormhole throats
carrying elementary particle quantum numbers are Kähler magnetic monopoles.
This forces to identify elementary particles as string like objects with ends having
opposite monopole charges. Also more complex configurations are possible.
It is not quite clear what the scale of the stringyness is. The natural first guess
inspired by quantum classical correspondence is that it corresponds to the p-adic
length scale of the particle characterizing its Compton length. Second possibility is
that it corresponds to electroweak scale. For leptons stringyness in Compton length
scale might not have any fatal implications since the second end of string contains
only neutrinos neutralizing the weak isospin of the state. This kind of monopole
pairs could appear even in condensed matter scales: in particular if the proposed
hierarchy of Planck constants [K17] is realized.

iv. Strong form of General Coordinate Invariance requires e↵ective 2-dimensionality. In
given UV and IR resolutions either partonic 2-surfaces or string world sheets form a
finite hierarchy of CDs inside CDs with given CD characterized by a discrete scale
coming as an integer multiple of a fundamental scale (essentially CP2 size). The
string world sheets have boundaries consisting of either light-like curves in induced
metric at light-like wormhole throats and space-like curves at the ends of CD whose
M4 projections are light-like. These braids intersect partonic 2-surfaces at discrete
points carrying fermionic quantum numbers.
This implies a rather concrete analogy with AdS5 ⇥ S5 duality, which describes
gluons as open strings. In zero energy ontology (ZEO) string world sheets are
indeed a fundamental notion and the natural conjecture is that these surfaces are
minimal surfaces whose area by quantum classical correspondence depends on the
quantum numbers of the external particles. String tension in turn should depend on
gauge couplings -perhaps only Kähler coupling strength- and geometric parameters
like the size scale of CD and the p-adic length scale of the particle.

v. Are the minimal surfaces in question minimal surfaces of the imbedding space M4⇥
CP2 or of the space-time surface X4? All possible 2-surfaces at the boundary of CD
must be allowed so that they cannot correspond to minimal surfaces in M4 ⇥ CP2

unless one assumes that they emerge in stationary phase approximation only. The
boundary conditions at the ends of CD could however be such that any partonic
2-surface correspond to a minimal surfaces in X4. Same applies to string world
sheets. One might even hope that these conditions combined with the weak form
of electric magnetic duality fixes completely the boundary conditions at wormhole
throats and space-like ends of space-time surface.
The trace of the second fundamental form orthogonal to the string world sheet/partonic
2-surface as sub-manifold of space-time surface would vanish: this is nothing but a
generalization of the geodesic motion obtained by replacing word line with a 2-D
surface. It does not imply the vanishing of the trace of the second fundamental form
in M4⇥CP2 having interpretation as a generalization of particle acceleration [K56].
E↵ective 2-dimensionality would be realized if Chern-Simons terms reduce to a sum
of the areas of these minimal surfaces.

These arguments suggest that scattering amplitudes are proportional to the product of
exponents of 2-dimensional actions which can be either imaginary or real. Imaginary
exponent would be proportional to the total area of string world sheets and the imagi-
nary unit would come naturally from

p
g2. Teal exponent proportional to the total area

of partonic 2-surfaces. The coe�cient of these areas would not in general be same.

The equality of the Minkowskian and Euclidian Chern-Simons terms is suggestive but
not necessarily true since there could be also other Chern-Simons contributions than
those assignable to wormhole throats and the ends of space-time. The equality would
imply that the total area of string world sheets equals to the total area of partonic
2-surfaces suggesting strongly a duality meaning that either Euclidian or Minkowskian
regions carry the needed information.
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10.9.2 IR cuto↵ and connection with p-adic physics

In twistor approach the IR cuto↵ is necessary to get rid of IR divergences. Also in
the AdS5 approach the condition that the minimal surface area is finite requires an IR
cuto↵. The problem is that there is no natural IR cuto↵. In TGD framework zero
energy ontology brings in a natural IR cuto↵ via the finite and quantized size scale of
CD guaranteeing that the minimal surfaces involved have a finite area. This implies
that also particles usually regarded as massless have a small mass characterized by the
size of CD. The size scale of CD would correspond to the scale parameter R assigned
with the metric of AdS5.

i. String tension relates in AdS5 approach to the gauge coupling gYM and to the
number Nc of colors by the formula

� = g2YMNc =
R2

↵0 . (10.9.1)

1/Nc-expansion is in terms of 1/
p
�. The formula has an alternative form as an

expression for the string tension

↵0 =
R2p

g2YMNc

. (10.9.2)

The analog this formula in TGD framework suggests an connection with p-adic length
scale hypothesis.

i. As already noticed, the natural counterpart for the scale R could be the discrete
value of the size scale of CD. Since the symplectic group assignable to �M4

± ⇥CP2

(or the upper or lower boundary of CD) is the natural generalization of the gauge
group, it would seem that Nc = 1 holds true in the absence of cuto↵. At the
limit Nc = 1 only planar diagrams would contribute to YM scattering amplitudes.
Finite measurement resolution must make the e↵ective value of Nc finite so that
also � would be finite. String tension would depend on both the size of CD and the
e↵ective number of symplectic colors.

ii. If ↵0 is characterized by the square of the Compton length of the particle, � would be
essentially the square of the ratio of CD size scale given by secondary p-adic lengths
and of the primary p-adic length scale associated with the particle: � = g2YM

p
p,

where p is the p-adic prime characterizing the particle. Favored values of the p-adic
prime correspond to primes near powers of two. The e↵ective number of symplectic
colors would beNc =

p
p/g2YM and the expansion would come in powers of g2YM/

p
p.

For electron one would have p = M127 = 2127�1 so that the expansion would
converge extremely fast. Together with the amazing success of the p-adic mass
calculations based on p-adic thermodynamics for the scaling generator L0 [K31] this
suggests a deep connection with p-adic physics and number theoretic universality.

10.9.3 Could Kähler action reduce to Kähler magnetic flux over
string world sheets and partonic 2-surfaces?

Can one consider alternative identifications of Kähler action for preferred extremals?
The only alternative identification of Kähler function that I can imagine is that Kähler
action proportional to the Kähler magnetic flux

R
Y 2 J or Kähler electric flux

R
Y 2 ⇤J for

string world sheets and possibly also partonic 2-surfaces. These fluxes are dimensionless
numbers. If the weak form of electric-magnetic duality holds true also at string world
sheets, the two options are equivalent apart from a proportionality constant.

i. For Kähler magnetic flux there would be no explicit dependence on the induced
metric. This is in accordance with the almost topological QFT property.

ii. Unless the weak form of electric-magnetic duality holds true, the Kähler electric
flux has an explicit dependence on the induced metric but in a scaling invariant
manner. The most obvious objection relates to the sign factor of the dual flux which
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depends on the orientation of the string world sheet and thus changes sign when
the orientation of space-time sheet is changed by changing that of the string world
sheet. This is in conflict with the independence of Kähler action on orientation.
One can however argue that the orientation makes itself actually physically visible
via the weak form of electric-magnetic duality and that the change of the orientation
as a symmetry is dynamically broken. This breaking would be analogous to parity
breaking at the level of imbedding space.

iii. In [K23] it is proposed that braids defined by the boundaries of string world sheets
could correspond to Legendrian sub-manifolds, whereas partonic 2-surfaces could
the duals of Legendrian manifolds, so that braiding would take place dynamically.
The identification of the Kähler action as Kähler magnetic flux associated with
string world sheets and possibly also partonic 2-surfaces is consistent with the as-
sumption that the extremal of Kähler action in question. Indeed, the Legendrian
property says that the projection of the Kähler gauge potential on braid strand
vanishes and this expresses the extremality of the Kähler magnetic flux.

The assumption that Kähler action is proportional to Kähler magnetic flux seems to
be consistent with the minimal surface property. The weak form of electric-magnetic
duality gives a constraint on the normal derivatives of imbedding space coordinates at
the string world sheet and minimal surface property strengthens these constraints. One
could perhaps say that space-time surface chooses its shape in such a manner that the
string world sheet has a minimal area.

The open questions are following.

i. Does Kähler action for the preferred extremals reduce to the area of the string world
sheet or to Kähler flux, or are the representations equivalent so that the induced
Kähler form would e↵ectively define area form? If the Kähler form form associated
with the induced metric on string world sheet is proportional to the induced Kähler
form the Kähler magnetic flux is proportional to the area and Kähler action reduces
to genuine area. This condition looks like a natural additional constraint on string
world sheets besides minimal surface property.

ii. The proportionality of the induced Kähler form and Kähler form of the induced
2-metric implies as such only the extremal property against the symplectic varia-
tions so that one cannot have minimal surface property at imbedding space level.
Minimality at space-time level is however possible since space-time surface itself
can arrange the situation so that general variations deforming the string world
sheet along space-time surface reduce to symplectic variations at the level of the
imbedding space.

iii. Does the situation depend on whether the string world sheet is in Minkowskian or
Euclidian space-time region? The problem is that in Euclidian regions the value
of Kähler action is positive definite and it is not obvious why the Kähler magnetic
flux for Euclidian string world sheets should have a fixed sign. Could weak form of
electric-magnetic duality fix the sign?

Irrespective whether the Kähler action is proportional to the total area or the Kähler
electric flux over string world sheets, the theory would be exactly solvable at string
world sheet level (finite measurement resolution).

10.9.4 What is the interpretation of Yangian duality in TGD
framework?

Minimal surfaces in both WCW and momentum space are used in the above mentioned
two articles [B5, B22]. The possibility of these two descriptions must reflect the Yangian
symmetry unifying the conformal symmetries of Minkowski space and momentum space
in twistorial approach.

The minimal surfaces in X4 ⇢ M4⇥CP2 are natural in TGD framework. Could also the
minimal surfaces in momentum space have some interpretation in TGD framework? Ore
more generally, what could be the interpretation of the dual descriptions provided by
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twistor diagrams with light-like edges and dual twistor diagrams with light-like vertices?
One can imagine many interpretations but zero energy ontology suggests an especially
attractive and natural interpretation of this duality as the exchange of the roles of worm-
hole throats carrying always on mass shell massless momenta and wormhole contacts
carrying in general o↵-mass shell momenta and massive momenta in incoming lines.

i. For WCW twistor diagrams vertices correspond to incoming and outgoing light-like
momenta. The light-like momenta associated with the wormhole throats of the
incoming and outgoing lines of generalized Feynman diagram could correspond to
the light-like momenta associated with the vertices of the polygon. The internal
lines defined by wormhole contacts carrying virtual o↵ mass shell momenta would
naturally correspond to to edges of the twistor diagram.

ii. What about dual twistor diagrams in which light-like momenta correspond to lines?
Zero energy ontology implies that virtual wormhole throats carry on mass shell
massless momenta whereas incoming wormhole contacts in general carry massive
particles: this guarantees the absence of IR divergences. Could one identify the
momenta of internal wormhole throats as light-like momenta associated with the
lines dual twistor diagrams and the incoming net momenta assignable to wormhole
contacts as incoming and outgoing momenta.

Also the transition from Minkowskian to Euclidian signature by Wick rotation could
have interpretation in TGD framework. Space-time surfaces decompose into Minkowskian
and Euclidian regions. The latter ones represent generalized Feynman diagrams. This
suggests a generalization of Wick rotation. The string world sheets in Euclidian regions
would define the analogs of the minimal surfaces in Euclidian AdS5 and the string world
sheets in Minkowskian regions the analogs of Minkowskian AdS5. The magnitudes of
the areas would be identical so that they might be seen as analytical continuations of
each other in some sense. Note that partonic 2-surfaces would belong to the intersection
of Euclidian and Minkowskian space-time regions. This argument tells nothing about
possible momentum space analog of M4 ⇥ CP2.
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Appendix

Originally this appendix was meant to be a purely technical summary of basic facts but
in its recent form it tries to briefly summarize those basic visions about TGD which I
dare to regarded stabilized. I have added illustrations making it easier to build mental
images about what is involved and represented briefly the key arguments. This chapter
is hoped to help the reader to get fast grasp about the concepts of TGD.

The basic properties of imbedding space and related spaces are discussed and the rela-
tionship of CP2 to standard model is summarized. The notions of induction of metric
and spinor connection, and of spinor structure are discussed. Many-sheeted space-time
and related notions such as topological field quantization and the relationship many-
sheeted space-time to that of GRT space-time are discussed as well as the recent view
about induced spinor fields and the emergence of fermionic strings. Various topics re-
lated to p-adic numbers are summarized with a brief definition of p-adic manifold and
the idea about generalization of the number concept by gluing real and p-adic number
fields to a larger book like structure. Hierarchy of Planck constants can be now un-
derstood in terms of the non-determinism of Kähler action and the recent vision about
connections to other key ideas is summarized.

A-1 Imbedding space M 4 ⇥ CP2 and related notions

Space-times are regarded as 4-surfaces in H = M4 ⇥ CP2 the Cartesian product of
empty Minkowski space - the space-time of special relativity - and compact 4-D space
CP2 with size scale of order 104 Planck lengths. One can say that imbedding space
is obtained by replacing each point m of empty Minkowski space with 4-D tiny CP2.
The space-time of general relativity is replaced by a 4-D surface in H which has very
complex topology. The notion of many-sheeted space-time gives an idea about what is
involved.

Fig. 1. Imbedding space H = M4 ⇥ CP2 as Cartesian product of Minkowski space M4

and complex projective space CP2. http://www.tgdtheory.fi/appfigures/Hoo.jpg

Denote by M4
+ and M4

� the future and past directed lightcones of M4. Denote their
intersection, which is not unique, by CD. In zero energy ontology (ZEO) causal diamond
(CD) is defined as cartesian product CD⇥CP2. Often I use CD to refer just to CD⇥CP2

since CP2 factor is relevant from the point of view of ZEO.

Fig. 2. Future and past light-cones M4
+ and M4

�. Causal diamonds (CD) are defined
as their intersections. http://www.tgdtheory.fi/appfigures/futurepast.jpg

Fig. 3. Causal diamond (CD) is highly analogous to Penrose diagram but simpler.
http://www.tgdtheory.fi/appfigures/penrose.jpg

A rather recent discovery was that CP2 is the only compact 4-manifold with Euclidian
signature of metric allowing twistor space with Kähler structure. M4 is in turn is the
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only 4-D space with Minkowskian signature of metric allowing twistor space with Kähler
structure so that H = M4 ⇥ CP2 is twistorially unique.

One can loosely say that quantum states in a given sector of ”world of classical worlds”
(WCW) are superpositions of space-time surfaces inside CDs and that positive and
negative energy parts of zero energy states are localized and past and future boundaries
of CDs. CDs form a hierarchy. One can have CDs within CDs and CDs can also
overlap. The size of CD is characterized by the proper time distance between its two
tips. One can perform both translations and also Lorentz boosts of CD leaving either
boundary invariant. Therefore one can assign to CDs a moduli space and speak about
wave function in this moduli space.

In number theoretic approach it is natural to restrict the allowed Lorentz boosts to
some discrete subgroup of Lorentz group and also the distances between the tips of CDs
to multiples of CP2 radius defined by the length of its geodesic. Therefore the moduli
space of CDs discretizes. The quantization of cosmic recession velocities for which there
are indications, could relate to this quantization.

A-2 Basic facts about CP2

CP2 as a four-manifold is very special. The following arguments demonstrates that it
codes for the symmetries of standard models via its isometries and holonomies.

A-2.1 CP
2

as a manifold

CP2, the complex projective space of two complex dimensions, is obtained by identifying
the points of complex 3-space C3 under the projective equivalence

(z1, z2, z3) ⌘ �(z1, z2, z3) . (A-2.1)

Here � is any non-zero complex number. Note that CP2 can be also regarded as the
coset space SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a complex
coordinate chart for CP2. As j runs from 1 to 3 one obtains an atlas of three coordinate
charts covering CP2, the charts being holomorphically related to each other (e.g. CP2

is a complex manifold). The points z3 6= 0 form a subset of CP2 homoeomorphic to R4

and the points with z3 = 0 a set homeomorphic to S2. Therefore CP2 is obtained by
”adding the 2-sphere at infinity to R4”.

Besides the standard complex coordinates ⇠i = zi/z3 , i = 1, 2 the coordinates of Eguchi
and Freund [A59] will be used and their relation to the complex coordinates is given by

⇠1 = z + it ,

⇠2 = x+ iy . (A-2.2)

These are related to the ”spherical coordinates” via the equations

⇠1 = rexp(i
( + �)

2
)cos(

⇥

2
) ,

⇠2 = rexp(i
( � �)

2
)sin(

⇥

2
) . (A-2.3)

The ranges of the variables r,⇥,�, are [0,1], [0,⇡], [0, 4⇡], [0, 2⇡] respectively.

Considered as a real four-manifold CP2 is compact and simply connected, with Euler
number Euler number 3, Pontryagin number 3 and second b = 1.

Fig. 4. CP2 as manifold. http://www.tgdtheory.fi/appfigures/cp2.jpg

http://www.tgdtheory.fi/appfigures/cp2.jpg
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A-2.2 Metric and Kähler structure of CP
2

In order to obtain a natural metric for CP2, observe that CP2 can be thought of as a
set of the orbits of the isometries zi ! exp(i↵)zi on the sphere S5:

P
ziz̄i = R2. The

metric of CP2 is obtained by projecting the metric of S5 orthogonally to the orbits of
the isometries. Therefore the distance between the points of CP2 is that between the
representative orbits on S5.

The line element has the following form in the complex coordinates

ds2 = gab̄d⇠
ad⇠̄b , (A-2.4)

where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2@a@b̄K , (A-2.5)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (A-2.6)

The Kähler function for S2 has the same form. It gives the S2 metric dzdz/(1 + r2)2

related to its standard form in spherical coordinates by the coordinate transformation
(r,�) = (tan(✓/2),�).

The representation of the CP2 metric is deducible from S5 metric is obtained by putting
the angle coordinate of a geodesic sphere constant in it and is given

ds2

R2
=

(dr2 + r2�2
3)

F 2
+

r2(�2
1 + �2

2)

F
, (A-2.7)

where the quantities �i are defined as

r2�1 = Im(⇠1d⇠2 � ⇠2d⇠1) ,

r2�2 = �Re(⇠1d⇠2 � ⇠2d⇠1) ,

r2�3 = �Im(⇠1d⇠̄1 + ⇠2d⇠̄2) . (A-2.8)

R denotes the radius of the geodesic circle of CP2. The vierbein forms, which satisfy
the defining relation

skl = R2
X
A

eAk e
A
l , (A-2.9)

are given by

e0 = dr
F , e1 = r�1p

F
,

e2 = r�2p
F

, e3 = r�3
F .

(A-2.10)

The explicit representations of vierbein vectors are given by

e0 = dr
F , e1 = r(sin⇥cos d�+sin d⇥)

2
p
F

,

e2 = r(sin⇥sin d��cos d⇥)

2
p
F

, e3 = r(d +cos⇥d�)
2F .

(A-2.11)
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The explicit representation of the line element is given by the expression

ds2/R2 =
dr2

F 2
+

r2

4F 2
(d + cos⇥d�)2 +

r2

4F
(d⇥2 + sin2⇥d�2) .

(A-2.12)

The vierbein connection satisfying the defining relation

deA = �V A
B ^ eB , (A-2.13)

is given by

V01 = � e1

r , V23 = e1

r ,

V02 = � e2

r , V31 = e2

r ,
V03 = (r � 1

r )e
3 , V12 = (2r + 1

r )e
3 .

(A-2.14)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ^ e1 � e2 ^ e3 , R23 = e0 ^ e1 � e2 ^ e3 ,
R02 = e0 ^ e2 � e3 ^ e1 , R31 = �e0 ^ e2 + e3 ^ e1 ,
R03 = 4e0 ^ e3 + 2e1 ^ e2 , R12 = 2e0 ^ e3 + 4e1 ^ e2 .

(A-2.15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = �igab̄d⇠
ad⇠̄b , (A-2.16)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure because
it satisfies the condition

Jk
rJ

rl = �skl . (A-2.17)

The form J is integer valued and by its covariant constancy satisfies free Maxwell equa-
tions. Hence it can be regarded as a curvature form of a U(1) gauge potential B carrying
a magnetic charge of unit 1/2g (g denotes the gauge coupling). Locally one has therefore

J = dB , (A-2.18)

where B is the so called Kähler potential, which is not defined globally since J describes
homological magnetic monopole.

It should be noticed that the magnetic flux of J through a 2-surface in CP2 is propor-
tional to its homology equivalence class, which is integer valued. The explicit represen-
tations of J and B are given by

B = 2re3 ,

J = 2(e0 ^ e3 + e1 ^ e2) =
r

F 2
dr ^ (d + cos⇥d�) +

r2

2F
sin⇥d⇥d� .

(A-2.19)

The vierbein curvature form and Kähler form are covariantly constant and have in the
complex coordinates only components of type (1,1).

Useful coordinates for CP2 are the so called canonical coordinates in which Kähler
potential and Kähler form have very simple expressions
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B =
X
k=1,2

PkdQk ,

J =
X
k=1,2

dPk ^ dQk . (A-2.20)

The relationship of the canonical coordinates to the ”spherical” coordinates is given by
the equations

P1 = � 1

1 + r2
,

P2 =
r2cos⇥

2(1 + r2)
,

Q1 =  ,

Q2 = � . (A-2.21)

A-2.3 Spinors in CP
2

CP2 doesn’t allow spinor structure in the conventional sense [A54] . However, the cou-
pling of the spinors to a half odd multiple of the Kähler potential leads to a respectable
spinor structure. Because the delicacies associated with the spinor structure of CP2

play a fundamental role in TGD, the arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel
transport of the vierbein in a simply connected space M . The parallel propagation
around a closed curve with a base point x leads to a rotated vierbein at x: eA = RA

Be
B

and one can associate to each closed path an element of SO(4).

Consider now a one-parameter family of closed curves �(v) : v 2 (0, 1) with the same
base point x and �(0) and �(1) trivial paths. Clearly these paths define a sphere S2

in M and the element RA
B(v) defines a closed path in SO(4). When the sphere S2 is

contractible to a point e.g., homologically trivial, the path in SO(4) is also contractible
to a point and therefore represents a trivial element of the homotopy group ⇧1(SO(4)) =
Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4) can be homo-
topically nontrivial and therefore corresponds to a nonclosed path in the covering group
Spin(4) (leading from the matrix 1 to -1 in the matrix representation). Assume this is
the case.

Assume now that the space allows spinor structure. Then one can parallel propagate
also spinors and by the above construction associate a closed path of Spin(4) to the
surface S2. Now, however this path corresponds to a lift of the corresponding SO(4)
path and cannot be closed. Thus one ends up with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed
�1- factor associated with the parallel transport of the spinor around the sphere S2 by
coupling it to a gauge potential in such a way that in the parallel transport the gauge
potential introduces a compensating �1-factor. For a U(1) gauge potential this factor
is given by the exponential exp(i2�) , where � is the magnetic flux through the surface.
This factor has the value �1 provided the U(1) potential carries half odd multiple of
Dirac charge 1/2g. In case of CP2 the required gauge potential is half odd multiple of
the Kähler potential B defined previously. In the case of M4⇥CP2 one can in addition
couple the spinor components with di↵erent chiralities independently to an odd multiple
of B/2.

A-2.4 Geodesic sub-manifolds of CP
2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with
the imbedding space. As a consequence the second fundamental form of the geodesic
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manifold vanishes, which means that the tangent vectors hk
↵ (understood as vectors of

H) are covariantly constant quantities with respect to the covariant derivative taking
into account that the tangent vectors are vectors both with respect to H and X4.

In [A43] a general characterization of the geodesic sub-manifolds for an arbitrary sym-
metric space G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the
so called Lie triple systems of the Lie-algebra g of the group G. The Lie triple system
t is defined as a subspace of g characterized by the closedness property with respect to
double commutation

[X, [Y, Z]] 2 t for X,Y, Z 2 t . (A-2.22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic
spheres. This is understood by observing that SU(3) allows two nonequivalent SU(2)
algebras corresponding to subgroups SO(3) (orthogonal 3 ⇥ 3 matrices) and the usual
isospin group SU(2). By taking any subset of two generators from these algebras,
one obtains a Lie triple system and by exponentiating this system, one obtains a 2-
dimensional geodesic sub-manifold of CP2.

Standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ⇠1 = ⇠̄2 or equivalently (⇥ = ⇡/2, = 0) ,

S2
II : ⇠1 = ⇠2 or equivalently (⇥ = ⇡/2,� = 0) .

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as
holomorphic transformations in CP2. The vanishing of the second fundamental form
is also easy to verify. The first geodesic manifold is homologically trivial: in fact, the
induced Kähler form vanishes identically for S2

I . S
2
II is homologically nontrivial and the

flux of the Kähler form gives its homology equivalence class.

A-3 CP2 geometry and standard model symmetries

A-3.1 Identification of the electro-weak couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S.
First, the coupling of the spinors to the U(1) gauge potential defined by the Kähler
structure provides the missing U(1) factor in the gauge group. Secondly, it is possible
to couple di↵erent H-chiralities independently to a half odd multiple of the Kähler
potential. Thus the hopes of obtaining a correct spectrum for the electromagnetic
charge are considerable. In the following it will be demonstrated that the couplings
of the induced spinor connection are indeed those of the GWS model [B15] and in
particular that the right handed neutrinos decouple completely from the electro-weak
interactions.

To begin with, recall that the space H allows to define three di↵erent chiralities for
spinors. Spinors with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R
are defined by the condition

� = e ,

e = ±1 , (A-3.1)

where � denotes the matrix �9 = �5 ⇥ �5, 1⇥ �5 and �5 ⇥ 1 respectively. Clearly, for a
fixed H-chirality CP2- and M4-chiralities are correlated.

The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors
respectively. The separate conservation of baryon and lepton numbers can be under-
stood as a consequence of generalized chiral invariance if this identification is accepted.
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For the spinors with a definite H-chirality one can identify the vielbein group of CP2

as the electro-weak group: SO(4) = SU(2)L ⇥ SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n�1�) . (A-3.2)

Here V and B denote the projections of the vielbein and Kähler gauge potentials re-
spectively and 1+(�) projects to the spinor H-chirality +(�). The integers n± are odd
from the requirement of a respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the
equations

V01 = � e1

r , V23 = e1

r ,

V02 = � e2

r , V31 = e2

r ,
V03 = (r � 1

r )e
3 , V12 = (2r + 1

r )e
3 ,

(A-3.3)

and

B = 2re3 , (A-3.4)

respectively. The explicit representation of the vielbein is not needed here.

Let us first show that the charged part of the spinor connection couples purely left
handedly. Identifying ⌃0

3 and ⌃1
2 as the diagonal (neutral) Lie-algebra generators of

SO(4), one finds that the charged part of the spinor connection is given by

Ach = 2V23I
1
L + 2V13I

2
L , (A-3.5)

where one have defined

I1L =
(⌃01 � ⌃23)

2
,

I2L =
(⌃02 � ⌃13)

2
. (A-3.6)

Ach is clearly left handed so that one can perform the identification

W± =
2(e1 ± ie2)

r
, (A-3.7)

where W± denotes the charged intermediate vector boson.

Consider next the identification of the neutral gauge bosons � and Z0 as appropriate
linear combinations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (A-3.8)

appearing in the neutral part of the spinor connection. We show first that the mere
requirement that photon couples vectorially implies the basic coupling structure of the
GWS model leaving only the value of Weinberg angle undetermined.

To begin with let us define
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�̄ = aX + bY ,

Z̄0 = cX + dY , (A-3.9)

where the normalization condition

ad� bc = 1 ,

is satisfied. The physical fields � and Z0 are related to �̄ and Z̄0 by simple normalization
factors.

Expressing the neutral part of the spinor connection in term of these fields one obtains

Anc = [(c+ d)2⌃03 + (2d� c)2⌃12 + d(n+1+ + n�1�)]�̄

+ [(a� b)2⌃03 + (a� 2b)2⌃12 � b(n+1+ + n�1�)]Z̄
0 .

(A-3.10)

Identifying ⌃12 and ⌃03 = 1 ⇥ �5⌃12 as vectorial and axial Lie-algebra generators,
respectively, the requirement that � couples vectorially leads to the condition

c = �d . (A-3.11)

Using this result plus previous equations, one obtains for the neutral part of the con-
nection the expression

Anc = �Qem + Z0(I3L � sin2✓WQem) . (A-3.12)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = ⌃12 +
(n+1+ + n�1�)

6
,

I3L =
(⌃12 � ⌃03)

2
. (A-3.13)

The fields � and Z0 are defined via the relations

� = 6d�̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X � Y ) . (A-3.14)

The value of the Weinberg angle is given by

sin2✓W =
3b

2(a+ b)
, (A-3.15)

and is not fixed completely. Observe that right handed neutrinos decouple completely
from the electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem. The angle
is completely fixed once the YM action is fixed by requiring that action contains no
cross term of type �Z0. Pure symmetry non-broken electro-weak YM action leads to a
definite value for the Weinberg angle. One can however add a symmetry breaking term
proportional to Kähler action and this changes the value of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the
induced gauge field as
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Fnc = 2R03⌃
03 + 2R12⌃

12 + J(n+1+ + n�1�) , (A-3.16)

where one has

R03 = 2(2e0 ^ e3 + e1 ^ e2) ,

R12 = 2(e0 ^ e3 + 2e1 ^ e2) ,

J = 2(e0 ^ e3 + e1 ^ e2) , (A-3.17)

in terms of the fields � and Z0 (photon and Z- boson)

Fnc = �Qem + Z0(I3L � sin2✓WQem) . (A-3.18)

Evaluating the expressions above one obtains for � and Z0 the expressions

� = 3J � sin2✓WR03 ,

Z0 = 2R03 . (A-3.19)

For the Kähler field one obtains

J =
1

3
(� + sin2✓WZ0) . (A-3.20)

Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJ↵�J↵� ,

Lsym =
1

4g2
Tr(F↵�F↵�) , (A-3.21)

where the trace is taken in spinor representation, in terms of � and Z0 one obtains for
the coe�cient X of the �Z0 cross term (this coe�cient must vanish) the expression

X = � K

2g2
+

fp

18
,

K = Tr
⇥
Qem(I3L � sin2✓WQem)

⇤
, (A-3.22)

In the general case the value of the coe�cient K is given by

K =
X
i


� (18 + 2n2

i )sin
2✓W

9

�
, (A-3.23)

where the sum is over the spinor chiralities, which appear as elementary fermions and
ni is the integer describing the coupling of the spinor field to the Kähler potential. The
cross term vanishes provided the value of the Weinberg angle is given by

sin2✓W =
9
P

i 1

(fg2 + 2
P

i(18 + n2
i ))

. (A-3.24)

In the scenario where both leptons and quarks are elementary fermions the value of the
Weinberg angle is given by

sin2✓W =
9

( fg
2

2 + 28)
. (A-3.25)

The bare value of the Weinberg angle is 9/28 in this scenario, which is quite close to
the typical value 9/24 of GUTs [B29] .
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A-3.2 Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:

i. Symmetries must be realized as purely geometric transformations.

ii. Transformation properties of the field variables should be essentially the same as in
the conventional quantum field theories [B8] .

The action of the reflection P on spinors of is given by

 ! P = �0 ⌦ �0 . (A-3.26)

in the representation of the gamma matrices for which �0 is diagonal. It should be
noticed that W and Z0 bosons break parity symmetry as they should since their charge
matrices do not commute with the matrix of P.

The guess that a complex conjugation in CP2 is associated with T transformation of
the physicist turns out to be correct. One can verify by a direct calculation that pure
Dirac action is invariant under T realized according to

mk ! T (Mk) ,

⇠k ! ⇠̄k ,

 ! �1�3 ⌦ 1 . (A-3.27)

The operation bearing closest resemblance to the ordinary charge conjugation corre-
sponds geometrically to complex conjugation in CP2:

⇠k ! ⇠̄k ,

 !  †�2�0 ⌦ 1 . (A-3.28)

As one might have expected symmetries CP and T are exact symmetries of the pure
Dirac action.

A-4 The relationship of TGD to QFT and string mod-
els

TGD could be seen as a generalization of quantum field theory (string models) obtained
by replacing pointlike particles (strings) as fundamental objects with 3-surfaces.

Fig. 5. TGD replaces point-like particles with 3-surfaces. http://www.tgdtheory.fi/
appfigures/particletgd.jpg

The fact that light-like 3-surfaces are e↵ectively metrically 2-dimensional and thus pos-
sess generalization of 2-dimensional conformal symmetries with light-like radial coordi-
nate defining the analog of second complex coordinate suggests that this generalization
could work and extend the super-conformal symmetries to their 4-D analogs.

The boundary �M4
+ = S2 ⇥ R+- of 4-D light-cone M4

+ is also metrically 2-dimensional
and allows extended conformal invariance. Also the group of isometries of light-cone
boundary and of light-like 3-surfaces is infinite-dimensional since the conformal scalings
of S2 can be compensated by S2-local scaling of the light-like radial coordinate of R+.
These simple facts mean that 4-dimensional Minkowski space and 4-dimensional space-
time surfaces are in completely unique position as far as symmetries are considered.

String like objects obtained as deformations of cosmic strings X2 ⇥ Y 2, where X2 is
minimal surface in M4 and Y 2 a holomorphic surface of CP2 are fundamental extremals
of Kähler action having string world sheet as M4 projections. Cosmic strings dominate
the primordial cosmology of TGD Universe and inflationary period corresponds to the

http://www.tgdtheory.fi/appfigures/particletgd.jpg
http://www.tgdtheory.fi/appfigures/particletgd.jpg
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transition to radiation dominated cosmology for which space-time sheets with 4-D M4

projection dominate.

Also genuine string like objects emerge from TGD. The conditions that the em charge of
modes of induces spinor fields is well-defined requires in the generic case the localization
of the modes at 2-D surfaces -string world sheets and possibly also partonic 2-surfaces.
This in Minkowskian space-time regions.

Fig. 6. Well-definedness of em charge forces the localization of induced spinor modes to
2-D surfaces in generic situtation in Minkowskian regions of space-time surface. http:
//www.tgdtheory.fi/appfigures/fermistring.jpg

TGD based view about elementary particles has two aspects.

i. The space-time correlates of elementary particles are identified as pairs of wormhole
contacts with Euclidian signature of metric and having 4-D CP2 projection. Their
throats behave e↵ectively as Kähler magnetic monopoles so that wormhole throats
must be connected by Kähler magnetic flux tubes with monopole flux so that closed
flux tubes are obtained.

ii. Fermion number is carried by the modes of the induced spinor field. In Minkowskian
space-time regions the modes are localized at string world sheets connecting the
wormhole contacts.

Fig. 7. TGD view about elementary particles. a) Particle corresponds 4-D general-
ization of world line or b) with its light-like 3-D boundary (holography). c) Particle
world lines have Euclidian signature of the induced metric. d) They can be identi-
fied as wormhole contacts. e) The throats of wormhole contacs carry e↵ective Kähler
magnetic charges so that wormhole contacts must appear as pairs in order to obtain
closed flux tubes. f) Wormhole contacts are accompnied by fermionic strings connect-
ing the throats at same sheet: the strings do not extend inside the wormhole contacts.
http://www.tgdtheory.fi/appfigures/elparticletgd.jpg

Particle interactions involve both stringy and QFT aspects.

i. The boundaries of string world sheets correspond to fundamental fermions. This
gives rise to massless propagator lines in generalized Feynman diagrammatics. One
can speak of ”long” string connecting wormhole contacts and having hadronic string
as physical counterpart. Long strings should be distinguished from wormhole con-
tacts which due to their super-conformal invariance behave like ”short” strings with
length scale given by CP2 size, which is 104 times longer than Planck scale charac-
terizing strings in string models.

ii. Wormhole contact defines basic stringy interaction vertex for fermion-fermion scat-
tering. The propagator is essentially the inverse of the superconformal scaling gen-
erator L0. Wormhole contacts containing fermion and antifermion at its opposite
throats beheave like virtual bosons so that one has BFF type vertices typically.

iii. In topological sense one has 3-vertices serving as generalizations of 3-vertices of
Feynman diagrams. In these vertices 4-D ”lines” of generalized Feynman diagrams
meet along their 3-D ends. One obtains also the analogs of stringy diagrams but
stringy vertices do not have the usual interpretation in terms of particle decays but
in terms of propagation of particle along two di↵erent routes.

Fig. 8. a) TGD analogs of Feynman and string diagrammatics at the level of space-time
topology. b) The 4-D analogs of both string diagrams and QFT diagrams appear but
the interpretation of the analogs stringy diagrams is di↵erent. http://www.tgdtheory.
fi/appfigures/tgdgraphs.jpg

A-5 Induction procedure and many-sheeted space-
time

Since the classical gauge fields are closely related in TGD framework, it is not possible
to have space-time sheets carrying only single kind of gauge field. For instance, em fields
are accompanied by Z0 fields for extremals of Kähler action.

http://www.tgdtheory.fi/appfigures/fermistring.jpg
http://www.tgdtheory.fi/appfigures/fermistring.jpg
http://www.tgdtheory.fi/appfigures/elparticletgd.jpg
http://www.tgdtheory.fi/appfigures/tgdgraphs.jpg
http://www.tgdtheory.fi/appfigures/tgdgraphs.jpg
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Classical em fields are always accompanied by Z0 field and some components of color
gauge field. For extremals having homologically non-trivial sphere as a CP2 projection
em and Z0 fields are the only non-vanishing electroweak gauge fields. For homologically
trivial sphere only W fields are non-vanishing. Color rotations does not a↵ect the
situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although
the net gauge field has U(1) holonomy by 2-dimensionality of the CP2 projection. Color
gauge field has U(1) holonomy for all space-time surfaces and quantum classical cor-
respondence suggest a weak form of color confinement meaning that physical states
correspond to color neutral members of color multiplets.

Induction procedure for gauge fields

Induction procedure for gauge potentials and spinor structure is a standard procedure
of bundle theory. If one has imbedding of some manifold to the base space of a bundle,
the bundle structure can be induced so that it has as base space the imbedded manifold.
In the recent case the imbedding of space-time surface to imbedding space defines the
induction procedure. The induce gauge potentials and gauge fields are projections of the
spinor connection of the imbedding space to the space-time surface. Induction procedure
makes sense also for the spinor fields of imbedding space and one obtains geometrization
of both electroweak gauge potentials and of spinors.

Fig. 9. Induction of spinor connection and metric as projection to the space-time
surface. http://www.tgdtheory.fi/appfigures/induct.jpg

Induced gauge fields for space-times for which CP2 projection is a geodesic
sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-
dimensional CP2 projection, only vacuum extremals and space-time surfaces for which
CP2 projection is a geodesic sphere, are allowed. Homologically non-trivial geodesic
sphere correspond to vanishing W fields and homologically non-trivial sphere to non-
vanishing W fields but vanishing � and Z0. This can be verified by explicit examples.

r = 1 surface gives rise to a homologically non-trivial geodesic sphere for which e0
and e3 vanish imply the vanishing of W field. For space-time sheets for which CP2

projection is r = 1 homologically non-trivial geodesic sphere of CP2 one has

� = (
3

4
� sin2(✓W )

2
)Z0 ' 5Z0

8
.

The induced W fields vanish in this case and they vanish also for all geodesic sphere
obtained by SU(3) rotation.

Im(⇠1) = Im(⇠2) = 0 corresponds to homologically trivial geodesic sphere. A more
general representative is obtained by using for the phase angles of standard complex
CP2 coordinates constant values. In this case e1 and e3 vanish so that the induced em,
Z0, and Kähler fields vanish but induced W fields are non-vanishing. This holds also for
surfaces obtained by color rotation. Hence one can say that for non-vacuum extremals
with 2-D CP2 projection color rotations and weak symmetries commute.

A-5.1 Many-sheeted space-time

TGD space-time is many-sheeted: in other words, there are in general several space-
sheets which have projection to the same M4 region. Second manner to say this is
that CP2 coordinates are many-valued functions of M4 coordinates. The original phys-
ical interpretation of many-sheeted space-time time was not correct: it was assumed
that single sheet corresponds to GRT space-time and this obviously leads to di�culties
since the induced gauge fields are expressible in terms of only four imbedding space
coordinates.

http://www.tgdtheory.fi/appfigures/induct.jpg
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Fig. 10. Illustration of many-sheeted space-time of TGD. http://www.tgdtheory.fi/
appfigures/manysheeted.jpg

Superposition of e↵ects instead of superposition of fields

The first objection against TGD is that superposition is not possible for induced gauge
fields and induced metric. The resolution of the problem is that it is e↵ects which need
to superpose, not the fields.
Test particle topologically condenses simultaneously to all space-time sheets having a
projection to same region of M4 (that is touches them). The superposition of e↵ects of
fields at various space-time sheets replaces the superposition of fields.This is crucial for
the understanding also how GRT space-time relates to TGD space-time, which is also
in the appendix of this book).

Wormhole contacts

Wormhole contacts are key element of many-sheeted space-time. One does not expect
them to be stable unless there is non-trivial Kähler magnetic flux flowing through then
so that the throats look like Kähler magnetic monopoles.
Fig. 11. Wormhole contact. http://www.tgdtheory.fi/appfigures/wormholecontact.
jpg

Since the flow lines of Kähler magnetic field must be closed this requires the presence of
another wormhole contact so that one obtains closed monopole flux tube decomposing
to two Minkowskian pieces at the two space-time sheets involved and two wormhole
contacts with Euclidian signature of the induced metric. These objects are identified
as space-time correlates of elementary particles and are clearly analogous to string like
objects.

The relationship between the many-sheeted space-time of TGD and of GRT
space-time

The space-time of general relativity is single-sheeted and there is no need to regard it
as surface in H although the assumption about representability as vacuum extremal
gives very powerful constraints in cosmology and astrophysics and might make sense in
simple situations.
The space-time of GRT can be regarded as a long length scale approximation obtained
by lumping together the sheets of the many-sheeted space-time to a region of M4 and
providing it with an e↵ective metric obtained as sum of M4 metric and deviations of
the induced metrics of various space-time sheets from M4 metric. Also induced gauge
potentials sum up in the similar manner so that also the gauge fields of gauge theories
would not be fundamental fields.
Fig. 12. The superposition of fields is replaced with the superposition of their e↵ects in
many-sheeted space-time. http://www.tgdtheory.fi/appfigures/fieldsuperpose.
jpg

Space-time surfaces of TGD are considerably simpler objects that the space-times of
general relativity and relate to GRT space-time like elementary particles to systems of
condensed matter physics. Same can be said about fields since all fields are expressible
in terms of imbedding space coordinates and their gradients, and general coordinate
invariance means that the number of bosonic field degrees is reduced locally to 4. TGD
space-time can be said to be a microscopic description whereas GRT space-time a macro-
scopic description. In TGD complexity of space-time topology replaces the complexity
due to large number of fields in quantum field theory.

Topological field quantization and the notion of magnetic body

Topological field quantization also TGD from Maxwell’s theory. TGD predicts topo-
logical light rays (”massless extremals (MEs)) as space-time sheets carrying waves or

http://www.tgdtheory.fi/appfigures/manysheeted.jpg
http://www.tgdtheory.fi/appfigures/manysheeted.jpg
http://www.tgdtheory.fi/appfigures/wormholecontact.jpg
http://www.tgdtheory.fi/appfigures/wormholecontact.jpg
http://www.tgdtheory.fi/appfigures/fieldsuperpose.jpg
http://www.tgdtheory.fi/appfigures/fieldsuperpose.jpg
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arbitrary shape propagating with maximal signal velocity in single direction only and
analogous to laser beams and carrying light-like gauge currents in the generi case. There
are also magnetic flux quanta and electric flux quanta. The deformations of cosmic
strings with 2-D string orbit as M4 projection gives rise to magnetic flux tubes carrying
monopole flux made possible by CP2 topology allowing homological Kähler magnetic
monopoles.

Fig. 13. Topological quantization for magnetic fields replaces magnetic fields with bun-
dles of them defining flux tubes as topological field quanta. http://www.tgdtheory.
fi/appfigures/field.jpg

The imbeddability condition for say magnetic field means that the region containing
constant magnetic field splits into flux quanta, say tubes and sheets carrying constant
magnetic field. Unless one assumes a separate boundary term in Kähler action, bound-
aries in the usual sense are forbidden except as ends of space-time surfaces at the bound-
aries of causal diamonds. One obtains typically pairs of sheets glued together along their
boundaries giving rise to flux tubes with closed cross section possibly carrying monopole
flux.

These kind of flux tubes might make possible magnetic fields in cosmic scales already
during primordial period of cosmology since no currents are needed to generate these
magnetic fields: cosmic string would be indeed this kind of objects and would dominated
during the primordial period. Even superconductors and maybe even ferromagnets could
involve this kind of monopole flux tubes.

A-5.2 Imbedding space spinors and induced spinors

One can geometrize also fermionic degrees of freedom by inducing the spinor structure
of M4 ⇥ CP2.

CP2 does not allow spinor structure in the ordinary sense but one can couple the opposite
H-chiralities of H-spinors to an n = 1 (n = 3) integer multiple of Kähler gauge potential
to obtain a respectable modified spinor structure. The em charges of resulting spinors
are fractional (integer valued) and the interpretation as quarks (leptons) makes sense
since the couplings to the induced spinor connection having interpretation in terms
electro-weak gauge potential are identical to those assumed in standard model.

The notion of quark color di↵ers from that of standard model.

i. Spinors do not couple to color gauge potential although the identification of color
gauge potential as projection of SU(3) Killing vector fields is possible. This coupling
must emerge only at the e↵ective gauge theory limit of TGD.

ii. Spinor harmonics of imbedding space correspond to triality t = 1 (t = 0) partial
waves. The detailed correspondence between color and electroweak quantum num-
bers is however not correct as such and the interpretation of spinor harmonics of
imbedding space is as representations for ground states of super-conformal repre-
sentations. The wormhole pairs associated with physical quarks and leptons must
carry also neutrino pair to neutralize weak quantum numbers above the length scale
of flux tube (weak scale or Compton length). The total color quantum numbers
or these states must be those of standard model. For instance, the color quantum
numbers of fundamental left-hand neutrino and lepton can compensate each other
for the physical lepton. For fundamental quark-lepton pair they could sum up to
those of physical quark.

The well-definedness of em charge is crucial condition.

i. Although the imbedding space spinor connection carries W gauge potentials one
can say that the imbedding space spinor modes have well-defined em charge. One
expects that this is true for induced spinor fields inside wormhole contacts with 4-D
CP2 projection and Euclidian signature of the induced metric.

ii. The situation is not the same for the modes of induced spinor fields inside Minkowskian
region and one must require that the CP2 projection of the regions carrying induced

http://www.tgdtheory.fi/appfigures/field.jpg
http://www.tgdtheory.fi/appfigures/field.jpg
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spinor field is such that the induced W fields and above weak scale also the induced
Z0 fields vanish in order to avoid large parity breaking e↵ects. This condition
forces the CP2 projection to be 2-dimensional. For a generic Minkowskian space-
time region this is achieved only if the spinor modes are localized at 2-D surfaces
of space-time surface - string world sheets and possibly also partonic 2-surfaces.

iii. Also the Kähler-Dirac gamma matrices appearing in the modified Dirac equation
must vanish in the directions normal to the 2-D surface in order that Kähler-Dirac
equation can be satisfied. This does not seem plausible for space-time regions with
4-D CP2 projection.

iv. One can thus say that strings emerge from TGD in Minkowskian space-time regions.
In particular, elementary particles are accompanied by a pair of fermionic strings at
the opposite space-time sheets and connecting wormhole contacts. Quite generally,
fundamental fermions would propagate at the boundaries of string world sheets
as massless particles and wormhole contacts would define the stringy vertices of
generalized Feynman diagrams. One obtains geometrized diagrammatics, which
brings looks like a combination of stringy and Feynman diagrammatics.

v. This is what happens in the the generic situation. Cosmic strings could serve as
examples about surfaces with 2-D CP2 projection and carrying only em fields and
allowing delocalization of spinor modes to the entire space-time surfaces.

A-5.3 Space-time surfaces with vanishing em, Z0, or Kähler
fields

In the following the induced gauge fields are studied for general space-time surface
without assuming the extremal property. In fact, extremal property reduces the study to
the study of vacuum extremals and surfaces having geodesic sphere as a CP2 projection
and in this sense the following arguments are somewhat obsolete in their generality.

Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the homo-
logically trivial geodesic sphere and extremal property are not assumed. It must be
emphasized that this case is possible in TGD framework only for a vanishing Kähler
field.

Using spherical coordinates (r,⇥, ,�) for CP2, the expression of Kähler form reads as

J =
r

F 2
dr ^ (d + cos(⇥)d�) +

r2

2F
sin(⇥)d⇥ ^ d� ,

F = 1 + r2 . (A-5.1)

The general expression of electromagnetic field reads as

Fem = (3 + 2p)
r

F 2
dr ^ (d + cos(⇥)d�) + (3 + p)

r2

2F
sin(⇥)d⇥ ^ d� ,

p = sin2(⇥W ) , (A-5.2)

where ⇥W denotes Weinberg angle.

i. The vanishing of the electromagnetic fields is guaranteed, when the conditions

 = k� ,

(3 + 2p)
1

r2F
(d(r2)/d⇥)(k + cos(⇥)) + (3 + p)sin(⇥) = 0 , (A-5.3)

hold true. The conditions imply that CP2 projection of the electromagnetically
neutral space-time is 2-dimensional. Solving the di↵erential equation one obtains
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r =

r
X

1�X
,

X = D


| (k + u

C
|
�✏

,

u ⌘ cos(⇥) , C = k + cos(⇥0) , D =
r20

1 + r20
, ✏ =

3 + p

3 + 2p
, (A-5.4)

where C and D are integration constants. 0  X  1 is required by the reality of
r. r = 0 would correspond to X = 0 giving u = �k achieved only for |k|  1 and
r = 1 to X = 1 giving |u+ k| = [(1 + r20)/r

2
0)]

(3+2p)/(3+p) achieved only for

sign(u+ k)⇥ [
1 + r20
r20

]
3+2p
3+p  k + 1 ,

where sign(x) denotes the sign of x.
The expressions for Kähler form and Z0 field are given by

J = � p

3 + 2p
Xdu ^ d� ,

Z0 = �6

p
J . (A-5.5)

The components of the electromagnetic field generated by varying vacuum param-
eters are proportional to the components of the Kähler field: in particular, the
magnetic field is parallel to the Kähler magnetic field. The generation of a long
range Z0 vacuum field is a purely TGD based feature not encountered in the stan-
dard gauge theories.

ii. The vanishing of Z0 fields is achieved by the replacement of the parameter ✏ with
✏ = 1/2 as becomes clear by considering the condition stating that Z0 field vanishes

identically. Also the relationship Fem = 3J = � 3
4
r2

F du ^ d� is useful.

iii. The vanishing Kähler field corresponds to ✏ = 1, p = 0 in the formula for em neutral
space-times. In this case classical em and Z0 fields are proportional to each other:

Z0 = 2e0 ^ e3 =
r

F 2
(k + u)

@r

@u
du ^ d� = (k + u)du ^ d� ,

r =

r
X

1�X
, X = D|k + u| ,

� = �p

2
Z0 . (A-5.6)

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z0 field
remains as a long range gauge field. Vacuum extremals for which long range Z0

field vanishes but em field is non-vanishing are not possible.

The e↵ective form of CP2 metric for surfaces with 2-dimensional CP2 pro-
jection

The e↵ective form of the CP2 metric for a space-time having vanishing em,Z0, or Kähler
field is of practical value in the case of vacuum extremals and is given by

ds2eff = (srr(
dr

d⇥
)2 + s⇥⇥)d⇥

2 + (s�� + 2ks� )d�
2 =

R2

4
[seff⇥⇥d⇥

2 + seff�� d�2] ,

seff⇥⇥ = X ⇥

✏2(1� u2)

(k + u)2
⇥ 1

1�X
+ 1�X

�
,

seff�� = X ⇥
⇥
(1�X)(k + u)2 + 1� u2

⇤
, (A-5.7)

and is useful in the construction of vacuum imbedding of, say Schwartchild metric.
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Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into regions
characterized by six vacuum parameters: two of these quantum numbers (!1 and !2)
are frequency type parameters, two (k1 and k2 ) are wave vector like quantum numbers,
two of the quantum numbers (n1 and n2) are integers. The parameters !i and ni

will be referred as electric and magnetic quantum numbers. The existence of these
quantum numbers is not a feature of these solutions alone but represents a much more
general phenomenon di↵erentiating in a clear cut manner between TGD and Maxwell’s
electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities
in the derivatives of CP2 coordinates on the common boundary of two neighboring
regions with di↵erent vacuum quantum numbers is topological field quantization, 3-space
decomposes into disjoint topological field quanta, 3-surfaces having outer boundaries
with possibly macroscopic size.

Under rather general conditions the coordinates  and � can be written in the form

 = !2m
0 + k2m

3 + n2�+ Fourier expansion ,

� = !1m
0 + k1m

3 + n1�+ Fourier expansion . (A-5.8)

m0,m3 and � denote the coordinate variables of the cylindrical M4 coordinates) so that
one has k = !2/!1 = n2/n1 = k2/k1. The regions of the space-time surface with given
values of the vacuum parameters !i,ki and ni and m and C are bounded by the surfaces
at which space-time surface becomes ill-defined, say by r > 0 or r < 1 surfaces.

The space-time surface decomposes into regions characterized by di↵erent values of the
vacuum parameters r0 and ⇥0. At r = 1 surfaces n2,!2 and m can change since all
values of  correspond to the same point of CP2: at r = 0 surfaces also n1 and !1 can
change since all values of � correspond to same point of CP2, too. If r = 0 or r = 1 is
not in the allowed range space-time surface develops a boundary.

This implies what might be called topological quantization since in general it is not
possible to find a smooth global imbedding for, say a constant magnetic field. Although
global imbedding exists it decomposes into regions with di↵erent values of the vacuum
parameters and the coordinate u in general possesses discontinuous derivative at r =
0 and r = 1 surfaces. A possible manner to avoid edges of space-time is to allow
field quantization so that 3-space (and field) decomposes into disjoint quanta, which
can be regarded as structurally stable units a 3-space (and of the gauge field). This
doesn’t exclude partial join along boundaries for neighboring field quanta provided some
additional conditions guaranteeing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

⌦ ⌘ !2

n2
� !1

n1
= 0 , (A-5.9)

is satisfied. In particular, the ratio !2/!1 is rational number for the electromagnetically
neutral regions of space-time surface. The change of the parameter n1 and n2 (!1 and
!2) in general generates magnetic field and therefore these integers will be referred to
as magnetic (electric) quantum numbers.

A-6 p-Adic numbers and TGD

A-6.1 p-Adic number fields

p-Adic numbers (p is prime: 2,3,5,...) can be regarded as a completion of the rational
numbers using a norm, which is di↵erent from the ordinary norm of real numbers [A32]
. p-Adic numbers are representable as power expansion of the prime number p of form
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x =
X
k�k0

x(k)pk, x(k) = 0, ...., p� 1 . (A-6.1)

The norm of a p-adic number is given by

|x| = p�k0(x) . (A-6.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm di↵ers
drastically from the norm of the ordinary real numbers since it depends on the lowest
pinary digit of the p-adic number only. Arbitrarily high powers in the expansion are
possible since the norm of the p-adic number is finite also for numbers, which are infinite
with respect to the ordinary norm. A convenient representation for p-adic numbers is
in the form

x = pk0"(x) , (A-6.3)

where "(x) = k + .... with 0 < k < p, is p-adic number with unit norm and analogous
to the phase factor exp(i�) of a complex number.

The distance function d(x, y) = |x � y|p defined by the p-adic norm possesses a very
general property called ultra-metricity:

d(x, z)  max{d(x, y), d(y, z)} . (A-6.4)

The properties of the distance function make it possible to decompose Rp into a union
of disjoint sets using the criterion that x and y belong to same class if the distance
between x and y satisfies the condition

d(x, y)  D . (A-6.5)

This division of the metric space into classes has following properties:

i. Distances between the members of two di↵erent classes X and Y do not depend on
the choice of points x and y inside classes. One can therefore speak about distance
function between classes.

ii. Distances of points x and y inside single class are smaller than distances between
di↵erent classes.

iii. Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for
spin glasses and is believed to have also applications in biology [B24] . The emergence of
p-adic topology as the topology of the e↵ective space-time would make ultra-metricity
property basic feature of physics.

A-6.2 Canonical correspondence between p-adic and real num-
bers

The basic challenge encountered by p-adic physicist is how to map the predictions of
the p-adic physics to real numbers. p-Adic probabilities provide a basic example in
this respect. Identification via common rationals and canonical identification and its
variants have turned out to play a key role in this respect.
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Basic form of canonical identification

There exists a natural continuous map I : Rp ! R+ from p-adic numbers to non-
negative real numbers given by the ”pinary” expansion of the real number for x 2 R
and y 2 Rp this correspondence reads

y =
X
k>N

ykp
k ! x =

X
k<N

ykp
�k ,

yk 2 {0, 1, .., p� 1} . (A-6.6)

This map is continuous as one easily finds out. There is however a little di�culty
associated with the definition of the inverse map since the pinary expansion like also
decimal expansion is not unique (1 = 0.999...) for the real numbers x, which allow pinary
expansion with finite number of pinary digits

x =
NX

k=N0

xkp
�k ,

x =
N�1X
k=N0

xkp
�k + (xN � 1)p�N + (p� 1)p�N�1

X
k=0,..

p�k .

(A-6.7)

The p-adic images associated with these expansions are di↵erent

y1 =
NX

k=N0

xkp
k ,

y2 =
N�1X
k=N0

xkp
k + (xN � 1)pN + (p� 1)pN+1

X
k=0,..

pk

= y1 + (xN � 1)pN � pN+1 , (A-6.8)

so that the inverse map is either two-valued for p-adic numbers having expansion with
finite pinary digits or single valued and discontinuous and non-surjective if one makes
pinary expansion unique by choosing the one with finite pinary digits. The finite pinary
digit expansion is a natural choice since in the numerical work one always must use a
pinary cuto↵ on the real axis.

The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers
di↵ers from the ordinary topology. The di↵erence is easily understood by interpreting
the p-adic norm as a norm in the set of the real numbers. The norm is constant in each
interval [pk, pk+1) (see Fig. ??) and is equal to the usual real norm at the points x = pk:
the usual linear norm is replaced with a piecewise constant norm. This means that p-
adic topology is coarser than the usual real topology and the higher the value of p is, the
coarser the resulting topology is above a given length scale. This hierarchical ordering
of the p-adic topologies will be a central feature as far as the proposed applications of
the p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic
topology is rougher than the ordinary norm. p-Adic continuity implies ordinary conti-
nuity from right as is clear already from the properties of the p-adic norm (the graph
of the norm is indeed continuous from right). This feature is one clear signature of the
p-adic topology.
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Fig. 14. The real norm induced by canonical identification from 2-adic norm. http:
//www.tgdtheory.fi/appfigures/norm.png

The linear structure of the p-adic numbers induces a corresponding structure in the
set of the non-negative real numbers and p-adic linearity in general di↵ers from the
ordinary concept of linearity. For example, p-adic sum is equal to real sum only provided
the summands have no common pinary digits. Furthermore, the condition x +p y <
max{x, y} holds in general for the p-adic sum of the real numbers. p-Adic multiplication
is equivalent with the ordinary multiplication only provided that either of the members
of the product is power of p. Moreover one has x⇥p y < x⇥ y in general. The p-Adic
negative �1p associated with p-adic unit 1 is given by (�1)p =

P
k(p�1)pk and defines

p-adic negative for each real number x. An interesting possibility is that p-adic linearity
might replace the ordinary linearity in some strongly nonlinear systems so these systems
would look simple in the p-adic topology.

These results suggest that canonical identification is involved with some deeper mathe-
matical structure. The following inequalities hold true:

(x+ y)R  xR + yR ,

|x|p|y|R  (xy)R  xRyR , (A-6.9)

where |x|p denotes p-adic norm. These inequalities can be generalized to the case of
(Rp)n (a linear vector space over the p-adic numbers).

(x+ y)R  xR + yR ,

|�|p|y|R  (�y)R  �RyR , (A-6.10)

where the norm of the vector x 2 Tn
p is defined in some manner. The case of Euclidian

space suggests the definition

(xR)
2 = (

X
n

x2
n)R . (A-6.11)

These inequalities resemble those satisfied by the vector norm. The only di↵erence is
the failure of linearity in the sense that the norm of a scaled vector is not obtained by
scaling the norm of the original vector. Ordinary situation prevails only if the scaling
corresponds to a power of p.

These observations suggests that the concept of a normed space or Banach space might
have a generalization and physically the generalization might apply to the description
of some non-linear systems. The nonlinearity would be concentrated in the nonlinear
behavior of the norm under scaling.

Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect
symmetries even approximately. This led to a search of variants which would do better
in this respect. The modification of the canonical identification applying to rationals
only and given by

IQ(q = pk ⇥ r

s
) = pk ⇥ I(r)

I(s)
(A-6.12)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under
exchange of target and domain. This map reduces to a direct identification of rationals
for 0  r < p and 0  s < p. It has turned out that it is this map which most naturally

http://www.tgdtheory.fi/appfigures/norm.png
http://www.tgdtheory.fi/appfigures/norm.png
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appears in the applications. The map is obviously continuous locally since p-adically
small modifications of r and s mean small modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary
particle masses. The predictions for the light elementary particle masses are within
extreme accuracy same for I and IQ but IQ is theoretically preferred since the real
probabilities obtained from p-adic ones by IQ sum up to one in p-adic thermodynamics.

Generalization of number concept and notion of imbedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-
adic number fields along common rationals is in question. This induces a similar fusion
of real and p-adic imbedding spaces. Since finite p-adic numbers correspond always to
non-negative reals n-dimensional space Rn must be covered by 2n copies of the p-adic
variant Rn

p of Rn each of which projects to a copy of Rn
+ (four quadrants in the case

of plane). The common points of p-adic and real imbedding spaces are rational points
and most p-adic points are at real infinity.

Real numbers and various algebraic extensions of p-adic number fields are thus glued
together along common rationals and also numbers in algebraic extension of rationals
whose number belong to the algebraic extension of p-adic numbers. This gives rise to
a book like structure with rationals and various algebraic extensions of rationals taking
the role of the back of the book. Note that Neper number is exceptional in the sense
that it is algebraic number in p-adic number field Qp satisfying ep mod p = 1.

Fig. 15. Various number fields combine to form a book like structure. http://www.
tgdtheory.fi/appfigures/book.jpg

For a given p-adic space-time sheet most points are literally infinite as real points and the
projection to the real imbedding space consists of a discrete set of rational points: the
interpretation in terms of the unavoidable discreteness of the physical representations of
cognition is natural. Purely local p-adic physics implies real p-adic fractality and thus
long range correlations for the real space-time surfaces having enough common points
with this projection.

p-Adic fractality means that M4 projections for the rational points of space-time surface
X4 are related by a direct identification whereas CP2 coordinates of X4 at these points
are related by I, IQ or some of its variants implying long range correlates for CP2

coordinates. Since only a discrete set of points are related in this manner, both real and
p-adic field equations can be satisfied and there are no problems with symmetries. p-
Adic e↵ective topology is expected to be a good approximation only within some length
scale range which means infrared and UV cuto↵s. Also multi-p-fractality is possible.

A-6.3 The notion of p-adic manifold

The notion of p-adic manifold is needed in order to fuse real physics and various p-
adic physics to a larger structure which suggests that real and p-adic number fields
should be glued together along common rationals bringing in mind adeles. The notion
is problematic because p-adic topology is totally disconnected implying that p-adic balls
are either disjoint or nested so that ordinary definition of manifold using p-adic chart
maps fails. A cure is suggested to be based on chart maps from p-adics to reals rather
than to p-adics (see the appendix of the book)

The chart maps are interpreted as cognitive maps, ”thought bubbles” with reverse map
interpreted as a transformation of intention to action and would be realized in terms of
canonical identification or some of its variants.

Fig. 16. The basic idea between p-adic manifold. http://www.tgdtheory.fi/appfigures/
padmanifold.jpg

There are some problems.

i. Canonical identification does not respect symmetries since it does not commute
with second pinary cuto↵ so that only a discrete set of rational points is mapped to

http://www.tgdtheory.fi/appfigures/book.jpg
http://www.tgdtheory.fi/appfigures/book.jpg
http://www.tgdtheory.fi/appfigures/padmanifold.jpg
http://www.tgdtheory.fi/appfigures/padmanifold.jpg
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their real counterparts by chart map arithmetic operations which requires pinary
cuto↵ below which chart map takes rationals to rationals so that commutativity
with arithmetics and symmetries is achieved in finite resolution: above the cuto↵
canonical identification is used

ii. Canonical identification is continuous but does not map smooth p-adic surfaces
to smooth real surfaces requiring second pinary cuto↵ so that only a discrete set
of rational points is mapped to their real counterparts by chart map requiring
completion of the image to smooth preferred extremal of Kähler action so that
chart map is not unique in accordance with finite measurement resolution

iii. Canonical identification vreaks general coordinate invariance of chart map: (cognition-
induced symmetry breaking) minimized if p-adic manifold structure is induced from
that for p-adic imbedding space with chart maps to real imbedding space and as-
suming preferred coordinates made possible by isometries of imbedding space: one
however obtains several inequivalent p-adic manifold structures depending on the
choice of coordinates: these cognitive representations are not equivalent.

A-7 Hierarchy of Planck constants and dark matter
hierarchy

Hierarchy of Planck constants was motivated by the ”impossible” quantal e↵ects of ELF
em fields on vertebrate cyclotron energies E = hf = ~⇥eB/m are above thermal energy
is possible only if ~ has value much larger than its standard value. Also Nottale’s finding
that planetary orbits migh be understood as Bohr orbits for a gigantic gravitational
Planck constant.

Hierachy of Planck constant would mean that the values of Planck constant come as
integer multiples of ordinary Planck constant: heff = n⇥ h. The particles at magnetic
flux tubes characterized by heff would correspond to dark matter which would be
invisible in the sense that only particle with same value of heff appear in the same
vertex of Feynman diagram.

Hierarchy of Planck constants would be due to the non-determism of the Kähler action
predicting huge vacuum degeneracy allowing all space-time surfaces which are sub-
manfolds of any M4⇥Y 2, where Y 2 is Lagrangian sub-manifold of CP2. For agiven Y 2

one obtains new manifolds Y 2 by applying symplectic transformations of CP2.

Non-determinism would mean that the 3-surface at the ends of causal diamond (CD)
can be connected by several space-time surfaces carrying same conserved Kähler charges
and having same values of Kähler action. Conformal symmetries defined by Kac-Moody
algebra associated with the imbedding space isometries could act as gauge transforma-
tions and respect the light-likeness property of partonic orbits at which the signature
of the induced metric changes from Minkowskian to Euclidian (Minkowskianb space-
time region transforms to wormhole contact say). The number of conformal equivalence
classes of these surfaces could be finite number n and define discrete physical degree
of freedom and one would have heff = n ⇥ h. This degeneracy would mean ”second
quantization” for the sheets of n-furcation: not only one but several sheets can be
realized.

This relates also to quantum criticality postulated to be the basic characteristics of
the dynamics of quantum TGD. Quantum criticalities would correspond to an infinite
fractal hierarchy of broken conformal symmetries defined by sub-algebras of conformal
algebra with conformal weights coming as integer multiples of n. This leads also to
connections with quantum criticality and hierarchy of broken conformal symmetries,
p-adicity, and negentropic entanglement which by consistency with standard quantum
measurement theory would be described in terms of density matrix proportional n⇥ n
identity matrix and being due to unitary entanglement coe�cients (typical for quantum
computing systems).

Formally the situation could be described by regarding space-time surfaces as surfaces
in singular n-fold singular coverings of imbedding space. A stronger assumption would
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be that they are expressible as as products of n1 -fold covering of M4 and n2-fold
covering of CP2 meaning analogy with multi-sheeted Riemann surfaces and that M4

coordinates are n1-valued functions and CP2 coordinates n2 -valued functions of space-
time coordinates for n = n1 ⇥ n2. These singular coverings of imbedding space form a
book like structure with singularities of the coverings localizable at the boundaries of
causal diamonds defining the back of the the book like structure.

Fig. 17. Hierarchy of Planck constants. http://www.tgdtheory.fi/appfigures/
planckhierarchy.jpg

A-8 Some notions relevant to TGD inspired conscious-
ness and quantum biology

Below some notions relevant to TGD inspired theory of consciousness and quantum
biology.

A-8.1 The notion of magnetic body

Topological field quantization inspires the notion of field body about which magnetic
body is especially important example and plays key role in TGD inspired quantum bi-
ology and consciousness theory. This is a crucial departure fromt the Maxwellian view.
Magnetic body brings in third level to the description of living system as a system inter-
acting strongly with environment. Magnetic body would serve as an intentional agent
using biological body as a motor instrument and sensory receptor. EEG would com-
municated the information from biological body to magnetic body and Libet’s findings
from time delays of consciousness support this view.

The following pictures illustrate the notion of magnetic body and its dynamics relevant
for quantum biology in TGD Universe.

Fig. 18. Magnetic body associated with dipole field. http://www.tgdtheory.fi/
appfigures/fluxquant.jpg

Fig. 19. Illustration of the reconnection by magnetic flux loops. http://www.tgdtheory.
fi/appfigures/reconnect1.jpg

Fig. 20. Illustration of the reconnection by flux tubes connecting pairs of molecules.
http://www.tgdtheory.fi/appfigures/reconect2.jpg

Fig. 21. Flux tube dynamics. a) Reconnection making possible magnetic body to
”recognize” the presence of another magnetic body, b) braiding, knotting and linking of
flux tubes making possible topological quantum computation, c) contraction of flux tube
in phase transition reducing the value of heff allowing two molecules to find each other in
dense molecular soup. http://www.tgdtheory.fi/appfigures/fluxtubedynamics.
jpg

A-8.2 Number theoretic entropy and negentropic entanglement

TGD inspired theory of consciousness relies heavily p-Adic norm allows an to define
the notion of Shannon entropy for rational probabilities (and even those in algebraic
extension of rationals) by replacing the argument of logarithm of probability with its p-
adic norm. The resulting entropy can be negative and the interpretation is that number
theoretic entanglement entropy defined by this formula for the p-adic prime minimizing
its value serves as a measure for conscious information. This negentropy character-
izes two-particle system and has nothing to do with the formal negative negentropy
assignable to thermodynamic entropy characterizing single particle. Negentropy Max-
imization Principle (NMP) implies that number theoretic negentropy increases during

http://www.tgdtheory.fi/appfigures/planckhierarchy.jpg
http://www.tgdtheory.fi/appfigures/planckhierarchy.jpg
http://www.tgdtheory.fi/appfigures/fluxquant.jpg
http://www.tgdtheory.fi/appfigures/fluxquant.jpg
http://www.tgdtheory.fi/appfigures/reconnect1.jpg
http://www.tgdtheory.fi/appfigures/reconnect1.jpg
http://www.tgdtheory.fi/appfigures/reconect2.jpg
http://www.tgdtheory.fi/appfigures/fluxtubedynamics.jpg
http://www.tgdtheory.fi/appfigures/fluxtubedynamics.jpg
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evolution by quantum jumps. The condition that NMP is consistent with the standard
quantum measurement theory requires that negentropic entanglement has a density ma-
trix proportional to unit matrix so that in 2-particle case the entanglement matrix is
unitary.

Fig. 22. Schrödinger cat is neither dead or alive. For negentropic entanglement this
state would be stable. http://www.tgdtheory.fi/appfigures/cat.jpg

A-8.3 Life as something residing in the intersection of reality
and p-adicities

In TGD inspired theory of consciousness p-adic space-time sheets correspond to space-
time correlates for thoughts and intentions. The intersections of real and p-adic preferred
extremals consist of points whose coordinates are rational or belong to some extension
of rational numbers in preferred imbedding space coordinates. They would correspond
to the intersection of reality and various p-adicities representing the ”mind stu↵” of
Descartes. There is temptation to assign life to the intersection of realities and p-
adicities. The discretization of the chart map assigning to real space-time surface its
p-adic counterpart would reflect finite cognitive resolution.

At the level of ”world of classical worlds” (WCW) the intersection of reality and various
p-adicities would correspond to space-time surfaces (or possibly partonic 2-surfaces)
representable in terms of rational functions with polynomial coe�cients with are rational
or belong to algebraic extension of rationals.

The quantum jump replacing real space-time sheet with p-adic one (vice versa) would
correspond to a buildup of cognitive representation (realization of intentional action).

Fig. 23. The quantum jump replacing real space-time surface with corresponding p-
adic manifold can be interpreted as formation of though, cognitive representation. Its
reversal would correspond to a transformation of intention to action. http://www.
tgdtheory.fi/appfigures/padictoreal.jpg

A-8.4 Sharing of mental images

The 3-surfaces serving as correlates for sub-selves can topologically condense to disjoint
large space-time sheets representing selves. These 3-surfaces can also have flux tube
connections and this makes possible entanglement of sub-selves, which unentangled in
the resolution defined by the size of sub-selves. The interpretation for this negentropic
entanglement would be in terms of sharing of mental images. This would mean that
contents of consciousness are not completely private as assumed in neuroscience.

Fig. 24. Sharing of mental images by entanglement of subselves made possible by flux
tube connections between topologically condensed space-time sheets associated with
mental images. http://www.tgdtheory.fi/appfigures/sharing.jpg

A-8.5 Time mirror mechanism

Zero energy ontology (ZEO) is crucial part of both TGD and TGD inspired conscious-
ness and leads to the understanding of the relationship between geometric time and
experience time and how the arrow of psychological time emerges. One of the basic
predictions is the possibiity of negative energy signals propagating backwards in geo-
metric time and having the property that entropy basically associated with subjective
time grows in reversed direction of geometric time. Negative energy signals inspire time
mirror mechanism (see fig. http://www.tgdtheory.fi/appfigures/timemirror.jpg
or fig. 24 in the appendix of this book) providing mechanisms of both memory recall,
realization of intentational action initiating action already in geometric past, and re-
mote metabolism. What happens that negative energy signal travels to past and is

http://www.tgdtheory.fi/appfigures/cat.jpg
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reflected as positive energy signal and returns to the sender. This process works also in
the reverse time direction.

Fig. 25. Zero energy ontology allows time mirror mechanism as a mechanism of memory
recall. Essentially ”seeing” in time direction is in question. http://www.tgdtheory.
fi/appfigures/timemirror.jpg
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