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Abstract

Following Hestenes and others we explore the piisgithat the electron is a (sort
of) bound electromagnetic wave.

To do this a waveguide analogy is considered. THé field components in
waveguide satisfy the second order Klein Gordoraggn. The question is if a (first
order) Dirac equation is involved.

Making use of Clifford Algebra, by first it is shovthat a spinoy satisfying Dirac

equation describes, trough the relativistic en@mggulse four vector, the energy
propagation of the electromagnetic field into a egwde and in free space. At the
same timey automatically describes TE and TM modes (TEM @efspace), each
with Right or Left polarization.

It is shown that this description with Dirac eqoathas been implicit in the
waveguide theory all the time. The equivalencanmbedded in the usual V and |
mode description [1].

The Dirac equation for TE, TM modes opens new @gtng interpretations. For
example the effect op of a gauge transformation with the electromagrgiage
group generatori ¢, in the Hestenes notation [2]) is readily interpceas a

modification of the TE, TM group velocity. This ads the electromagnetic force on
a charge, and requires two opposite sign of (ictgt) charges for TE or TM.
Obviously this suggest an analogy with electrorsjpon and possibly neutrino for
the TEM.

[1] S. Ramo, J. R. Whinnery, T. van Duzer, “Fietal®l Waves in Communication
Electronics”, John Wiley (1994)

[2] D. Hestenes, “Space-time structure of weak @edtromagnetic interactions”,
Found. Phys. 12, 153-168 (1982)



Clifford Algebra and Dirac equation for TE, TM in w aveguide.

Introduction

Following Hestenes and others we explore the piisgithat the electron is a (sort
of) bound electromagnetic wave.

To do this a waveguide analogy is considered. THé field components in
waveguide, taking into account only the dependémce propagation coordinate,
obey to a second order equation which mathematispkaking is the Klein Gordon
equation, as for a relativistic particle.

Since this is a relativistic equation of 2nd ordee wonders if there are, and what are
the corresponding relativistic equations of 1seord

In the electromagnetic theory or in the theory aveguides such kind of equations
for TE, TM modes do not exist. We have Maxwell dores of course, but they give
the second order wave equation and not the Kleml&@oequation.

In analogy with the electron we suppose that saciagons are the Dirac equations.
This is, in fact, true.

To show this, Clifford Algebra is employed.

(Note: useful references (electromagnetism, CliffAlgebra etc.) are in [1]...... [7],
and in [8]......[14] for electron models, Dirac atjon and so on).

It is also shown that this description with Diragation has been implicit in the
waveguide theory all the time. The equivalencambedded in the usual (see for
example [7]) V and | mode description.

A Dirac spinory describes TE, TM modes in such a way that onlpajlo
characteristics are accounted, | mean energy, sepnd polarization.

Practically the action ofy is to give the relativistic energy impulse fouctg of the
mode (the total energy-momentum vector), and atdarjzation.

The ¢ solutions for TE, TM (and TEM) modes corresporalthe electron, positron
(and neutrino) plane wave solutions of the Diragatipns.

But obviously the Dirac equation for TE, TM modg®ns new interesting
interpretations. For example the effect@wrof a gauge transformation with the
electromagnetic gauge group generatot (n the Hestenes notation [12]) is readily
interpreted as a modification of the TE, TM growgboeity. This acts as the
electromagnetic force on a charge, and requirepposite sign of (fictitious)
charges for TE or TM.



Maxwell equations with Clifford Algebra

Maxwell equations are obtained introducing thefGid number (see A4) or “even
number”:

(1) F=(E +]JE)+Tji(H, +jH,)

(in MKSA units JeE e \[uH).
The analyticity condition:

2) F=0

(3) a*:£+ii+ji+Ti
ox o0y "0z Or

provides:
i—ii iH, +ith +iEt =0
ox oy 0z or
i+ii iH, —iiH| +iE| =0
ox oy 0z or

(4)
i—ii E +iEt +ith =0
ox oy 0z or

0z T
where:
E, =E, +iE,
E =E, +iE,
(5)
H =H, +iH,



Equations (4) coincide with the Maxwell equatioas ¥~ (basically changing the
sign for y,z components af).

Note that this corresponds to the usual properth®plane analytic functions: the
analyticity conditiono” f =0 means the field equations for a field having the
conjugate components .

From a different point of view the analyticity fér means also the analyticity &f ,
who has the physical componentsiaf H . We have:

(6) d°Fi =0
where:
(7) Fi =B +E,J+EK+Tji(H+H, |+H,K)—F = E+TjiA

so that in (7) y e z components are not the san(®) abut the same with change of
sign.

In (7) | also posed, =0 e H, =0 in order to have Maxwell equations in empty
space. (Note: reall,H are “time-like bivectors” (Hestenes, [3]), so wmsld

considerFiT, not Fi , but for the present scope (7) is enough).

Is immediate and very smart from (7) to derive Mexwell's equations with div and
rot. See Appendix 11.

From the even numbear we may form several "squares" for example, from
F=E+TjiH:

8) FF' =(EE" -HH )+Tji(EH" + HE*)=OE‘2 —\H\2)+2Tji|§ﬂ:|
or:
(9) %FF* =L+TjiEH

invariant under Lorentz transformations and "Lagran density" of the
electromagnetic field.



Another interesting “square” is:
(10) %F?F* :%(EE* ¥ HH*)'T'+%Tji(— EH' +HE' )T
which further develops:

(11) %FfF*z%OE\2+\H\2)f—ExH

This is the fourth row of the energy momentum temsal provides energy
momentum density.



Dirac equation with Clifford algebra

The Dirac equation is obtained by introducing azo&iponent "even number"
structured exactly as (1), unless the differenatons for the components. Let:

(12) y=u+ iy, +Tig, +Ty,

whereyyw.w.w, are number with indexesil,The Dirac equation is:
(13) o'y =-imyT

or indifferently:

(14) o, =-myT

15) o, =0 =27+9549k+ 9%
ox o9y 0z oOr

Developing and equating the components we obtairac equation in extended
form:

0 .0 0 0 .

&_|a_y w4+&w3+(g+lm}ﬂ1=0

0 .0 0 0 .

&'Ha_y W3_&w4+(g+lm}ﬂ2:0
(16)

0 .0 0 0 .
- + +| ——Im =0
[OX |ay W, szl (GT ' j‘ﬂs

0 .0 0 0 .

— =W, =y, +| ——imy, =0
(ax ay I azw2 (ar )41/4

A comparison with (4) putting m=0, neutrino equaso



. 0 0
— = — +— +—y. =0
2 az% arlﬂl

ox oy

0 .0 0 0
— _ —_ _ :O
x| oy Vs azw‘1 +6rw2

(16bis)

0 .90 0 0

O il + Ly + Ly =0
(ax ay}ll2 9z v or &

0 .0 0 0

— 4= - + =0
(ax aijl 0z ¥ ar Y

provides the formal identification:

E=¢,
E =¢,
(17)
H, =¢,
H =y,
‘/Il Ex+iEy
lﬂz _ Ez+iEr
(18) wy | i, +iH,)

] [i(H,+iH,)
From the even number may form several "squares" for example the modulus
(19) 7
or the four velocityi (see.A3)
(20) Ty =0 02=-1
true if ¢ is unitary, i.e. ify is a “rotor”:

(21) ¢=R — RR*=1



Conditions of relativistic invariance for 13), iiavariance with respect to spacetime
rotations of an angle , make thaty transforms with half angl% . This implies (the

fact is a consequence of the other and vice vaikgantities likeyTy" transform
like vectors (see.A6). Particularly ¢f is the unitary the quantities:

pwy =g

l/’I‘/’ =8,
(22)

yky” =&

YTy =& =0

form a set of axes rotated with respect,fok, T .

This establishes a relationship with the relativikinematics of a small rigid body
(Hestenes).
If ¢ is a function of time such including a term:

ijat

el =g«

(rotation according the bivectdy) then (22) determine position and movement of an
axis systene, rotating with respect to fixed axis j k T, whereyTy =8 =i is the
four velocity andgky” =&, =§ is the spin.



The energy — momentum four vector

The mathematical physical keystone of the wholaiai as follows. An object that
has mass has a momentum in the language of migtensors, four-vectors, etc.)
which holds:

(23) B = mu;

wherem is the rest mass and the four velocity.m is a scalar and., p, transform
like four vectors.

In simple with this description the object is tehfas a whole, its internal structure is
ignored, and is described by the energy momenguna four-vector.

Even a radar pulse or a wave packet that propagdtea waveguide is in its way an
object that propagates with momentum and energyvasole. Therefore we can
propose to represent it as an object which itsreateharacteristics, ignoring the
internal structure and complexity, describing itashole with a four vector.

Now %F'I:F * Is or would be strong candidate to represent éxsept that is not a

four-vector but is a line of energy momentum dgnighsor, i.e. does not change
how (and is not) a four-vector.

Of courseFTF*e ¢Ty" are noticeably similar both in form and substaae if i is
a spinoryTy” transforms like a four vector (see A6).
Therefore a quantity structured @by is a good candidate to represent the total

momentum and energy of the electromagnetic fieftsictered as a whole, ignoring
its internal structure.

%F'i’F does the same thing but giving an internal desonipoint by point, what we

are assuming foreclosed.

Note however that the volume integraI%JﬁF * gives the total energy momentum

of the field, and they form a four vector (WolfgaRguli, [5]).



V and | in waveguide

In the theory of waveguides is introduced with gaia degree of arbitrariness which
remains available, a set of quantities V and Itage and current, although precisely
(Franceschetti) "in the “not TEM” modes is no longemediate the identification of
Vandl".

We pose with regard to transverse fields:

E (xv.2) =V(2)&(x y))
(24)
H, (x y.2) = 1(z)h(x. y))

with the condition:

(25) P:%ReiﬁtXHt EtﬁdS:%Re(Vl*)

(Note: unfortunately | have not in this moment teferences of the beautiful book of
Franceschetti).

The physical meaning of (24) is that in V and lilokdately ignores the detailed
features in the transverse plane, putting it equabnstant.

The meaning of (25) is that it requires howevet tha magnitudes V and | correctly
reproduce the value of the total energy that prafesy

Place

(26) ¥=z

However, there is a degree of arbitrariness in & lakVe can alter V and | and
simultaneouslyg, h as follows:

V':av,é'zié
a
(27)
|':1|,ﬁ':aﬁ
a

manteining condition:
(28) P =%Re(V| *)=%Re(V' 1)
With the new values is

(29) z'=



The new choice does not affect both the value etidinsverse fields and the value of

the energy that propagates, which have a physieahing independent of any
breakdown.

Different choices would depend on the definitiomitary, of the impedanc\%.



Comparison of equations for V and the Dirac equatio

We can now to compare the equations of V and | thighequations between two
individual components of the Diragz.
For example, the equations for a TE, with the signvention IEEEe"“ , are:

d_V = —|W|
dz

d—l——iax 1—6()—02
dz W’

We look for a plane wave solution of Dirac equatidth the dependence’ and
for propagation along z. We also seek the soluthidhe formy,,¢, =0 and with

only ¢, andy, different from zero. Equations (16) provide (asswg = 1 and
w,=m):

(30)

oy
0z

S +(iw+iay )y, =0
(31)
0 .
%+(|a)—|a)o)¢3 =0
We try a solution in the form:

‘//3 = Agléikez
(32)
‘/’1 = Be'“ ik
Substituting in (31) yelds:
—ik,A+(iw+ia,)B=0
(33)
—ik,B+(iw-icy,)A=0
which with a little steps is necessary:

(34) k> =a - af

and finally (A arbitrary, A = 1):



W, = g k2
(35)

W+ W,

This is in quantum mechanics the classical solutonhe positron (positron g
with the sign convention of quantum mechanics).

The solutions of V and | (30) for the TE mode do aypear these, but it is easy to
show that in fact these are, the apparent diveosity depends on an arbitrary
definition of voltage and current and impedanceatiag to (27) (29 ).

For those familiar with the transmission lines bafp a digression of Electrical
Engineering, who does not wish he could jump diydaot (41).

Equations (30) can be thought of as those of thpggation in a dispersive line with
cut off w,.

The equations of the line are:

d—V =-ZI
dz

(36)
d_l =YV
dz

where Z and Y depend on the line 3\7% Is the characteristic impedance of the
line. With (30) thus assumes implicitly

Z=wu

(37)




The line has equivalent Z and Y this way:

,_
I
N
| |
11
@)
I
™

The line is dispersive because the characterisgiedance (38) is not constant but
depends on the frequency. The line resonates to:

_ 1 _
(40) a)—ﬁ—%

Now put in (27):

_Jwtw,
(41) a-= 0z

Substituting into (30) we have:

%+(ia)+ia)o),ul':o

(42)

a' . . ,
E+(|a)—|a)0)e\/ =0

And the new Z goes for (29)

V' wtw
(43) ZI:?: w > Z e

So equations for voltage and current are actua#yDirac equation fog,andy, .

Note: correctly equation holds fgiu1' and+/ev', beingy,andy, without
dimension..



Not yet shown that V and | can form a complete Bgonents spinog, or a 4
complex componentg . @, spinor, but it is easily feasible and is doneha t

Appendix. We anticipate some conclusions.
Begin to consider the solution for the positromest than for (35) ig, =e"“ ,¢, =0.

For the line, this means that there is voltage & am current I, but with reference to
the original meaning of V and | in (24) we can adsg that there is no transverse
magnetic field and there is transverse electrid fie

In these conditions, the quantities V and | ordxemmse electric field and transverse
magnetic field describe what you can say an egeitgllane wave, not propagating,
being zero the Poynting vector (* see note).

We can give an electrical interpretationgofexplicitly linking to it an electric field
vector E, =¢i =&, "fictitious" as defined by the same degree ofteakiness with
which V was defined.

The electric field rotates on the transverse piaitie e .

But nowe"“ takes on real meaning of physical rotation andrimg us that the
transverse electric field is rotating in a precsase.

In this case, then what was the original solutibthe line with " complex V " is
enriched by an information of polarizatiddow the Dirac equation has 2 distinct
solutions for the positron at rest, solutions whack with opposite spin:

-only ¢, #0
-only ¢, 20

and these corresponds to a TE right and a TE left.

If you repeat the discussion done here with thahefine equivalent to the TM
modes, one find a solution at rest with only txemse rotating magnetic field. In
conclusion we find that the Dirac equation hassfimict solutions at rest:

-only ¢, 20

-only ¢, 20

-only ¢, #0

-only ¢, #0

and these provide TE and TM in opposite polarizetifig. 1):

(. U\ N
TE in opposite polarizations V
TM in opposite polarizations @—) @ @_) A



The description of the electromagnetic field witbpanory so not only is shown to
be equivalent to the description with complex V &naut is enriched with a precise
physical meaning due to Clifford algebra.

In essence, the conventional writing V and | witb@nential €'“ for example, with
the conventions of IEEE) becomes in itself a regm&stion of a rotating physical
thing or physical field.

V (Volt) becomes (Volt/meter) and | (Ampere) becenfdmpere/meter) and the
equivalent line becomes an equivalent medium irclwvbin equivalent plane wave
propagates, but traveling in a dispersive medium.

If we consider this spinor generalization is onfisanall” variation from the
Schroedinger point of view, but the variant takesoant of polarization, and is
relativistic ...... (not for nothing are the Diraguation)

* Note: while at rest the correspondence>¥, —TE is physically reasonable, the
correspondence TE-positron« (g, # 0) is ambiguous because it depends on the
conventions on exponential that are (......... afrse) opposed.

For IEEE positive frequencies ag&“ while in guantum mechanics positive energies
(frequencies) are™. If the mathematics of the positron become ththeraatics of
the electron the TE-at rest would be representefg/by0), more like pleasantly the
formal identification (18).



Radar polarization

Notations of radar polarization propose, for examplwrite of the electric field with
the Jones vector:

(44) E:R%{C.OS(D —smfb}{co.sr}ew}
sin® cosd | isinr

i.e. (note by the usual conventiefi“ of the IEEE):
(45) E= Re[(cosd: COST — | sind)sinr)ei‘“]éX + Re[(sinCDcosr +i cosdsin r)e““]é

y

from which the ellipse of polarization depictedHigure 2.

Q>

e

v

Figura 2

We will show that the polarization is representelifford algebra with the number
(4 components "Clifford numbedi, j,ij)

(46) y=e"e e’ se

A similar notation appears in the texts on the rgadarization, with the Pauli
matrices with exponent, but ... difference is tierte (46) is a spinor solution of Dirac
equation at rest, then be able to completely descthe four-vector of the
electromagnetic field in all conditions of motion.



More if you calculate the rotated position of tétwectork i.e. following Hestenes
the unit spin vectoé, =yky *, we see thag, has a position in space in a way that

reproduces the Poincaré sphere.

The demonstrations were quickly made.

The fact that (46) is a spinor solution of Diraciagon at rest (16) is shown in the
following paragraphs and in any case is directiyfiagl by substitution.

To associate an electric field, for reasons th#ithei justified later, use the following
rule. First separatgg in "spin up" and "spin down" components:

47  w=y,.+y.

where:
w.=Z-igi)
(48)
v =S +igi)

(This of course introduces a further resemblanteden (46) and a wave function,
all to appreciate and interpret. From a purely mathtical point of view, the (48)
separating the components, respectively, with cotarand anticommute with).
Next associate witly an electric field (or in general electromagnetith:

(49) E=y.i+y (-j) (49bis)E + TjiH =g, +y_(- j)i

And now verify that (46) and provides a full exmies of the polarization. If you in
fact develop further (45) yields:

(51) E =(cos®cosrcosat +sindsinzsinat)a, +(sin® cosr cosat - cosPsinzsinat)a,

whereas if it develops (46) with (49) is obtainéaseveral passages

A

(52) E =+/2(cos® cosrcosat +sin®sinrsinat)l ++/2(sin® cosr cosat — cosd®sinT sinat) |

i.e. the same as (51) (except fova different normalization).
Clearly we've reproduced the physics of the etigdtmotion so we have reproduced
the ellipse and the conventions of figure 2.



Same spinoy carries a position o0&, in physical space x, Y, z
And in fact:

(53) & =yky*
with some step from which we obtain:

(54) &, =yky* = (cos2dcos2r)i +(sin2d cos2r)] + (sin2r)k

~

Ak

21

—> y

20

Is mentioned here the Stokes vector of compongatg, .But hereg,g,g, iS hot an
abstract space but is a physical space, that qfdbiéion of &, = gk * which is
nothing butk rotated througly or following Hestenes the axis of rotation of the

rigid body.
These aspects are all to appreciate and understand.
We can follow the explicit steps leadiirgto & through successive rotations.

T
~ _ _ _ ~ . -j= .
(55) ¢ky*=e""e irg e"“ke*"“e 4ele®=

_|q> - e ke 4ejre|¢>_

2 —]T( . jelf g® =

A

E|d>e ]Ti e]r |¢D_
=) —i® | e]2re



The last step rotateof an angle2r towardsk, and the whole is then rotated
towards j .(Note the differences which and j, sincej =ik).



The mapping between spinors and plane waves

We noted that according to (24) with the "complgxantities V and | (indices 1, i)
we introduce complex quantities (1, i) that aréaict fields. Transversal fields,
respectively electric and magnetic fields, namelystant field in x, y and a function
only of z. Fields are "fictitious" at least as #ne quantities V, |, but still adequate to
describe correctly the transport of energy in waneg

It happens that at rest V, or E, has two solut{d@ns$) corresponding to the two
circular polarizations of a TE.

Two other solutions are there for TM, for a tothtwo electric and two magnetic
solutions, in all 4 solutions (1, i).

It remains to determine how to associate thesempooents (1, i) to the components
Yy, of aspinory .

In other words, the question is whatgnis "electric" and what is "magnetic".

In a previous section | noted that "the correspandel B-positron— (g, # 0) is
ambiguous "and that" if the mathematics of the tpasibecome the mathematics of
the electron the TE at rest would be representefghjoy0), more like pleasantly to
formal identification (18)”.

To follow the formal identification (18) assume thiae componentsi, j,ij of ¢

correspond to electric fields.
At this point it presents a second difficulty.
The Dirac equation for plane wave at rest hasdhewing 4 solutions

Y=e'“ w, 20, electron
W= je w,#0, electron
(56)
W =Tjie"™ W, #0, positron
‘//:Tji(jeﬂax) Y, z0, positron
Note thatTiji
(57)  Tji =ijKT

Is the "imaginary of spacetime”, squared (f1ij))* = -1 and commute with all
elementsii, |, T,ij,iT, jT,Tji of even algebra. Is sometimes referred toi asn'the
notation of Hestenes or Cambridge.



Take the two solutions "electron”

Yy=e“ w, 20, elettrone
(58)
w=je™ w, %0, elettrone

The two solutions have componenfsj,ij .

The first of the two components is interpreted in a natural way as transverse
electric field, just aske, =¢i =e i .

For the second componefij you can not have an interpretation as a transverse
field. They do not see a reason.

Moreover certainly in quantum mechanics it représ#re solution “electron” with
opposite spin. In order to hawg components and rotate in the opposite direction
multiply - j from right. The final formula is (49).

Therefore the mapping that we have establishedthl{47) .. (49) between the
even number and the vectoE is so done, that the positiongj are still related to
transverse components, but rotating in opposite directions.

The same applies to thge components havingji in front, which have the same
meaning but are magnetic components.

As saying that the mapping (49) holds evemwifis 8 components, and this provides

not only E but alsoH in the form

(49bis) E+TjiH =g.,i +g_(- )



Summary

We can now take stock and to go back over the pssgmade.

Starting this time from the Dirac equation we agrim a few moments to the
complete representation of the electromagnetid frelvarious TE and TM modes
and in various polarizations.

w=e" andy = je™ are solutions of the Dirac equation for plane watveest.
(Note: the same is repeated with the same solwlihn Tji in front).

Therefore it is also solution

(59) ¢ =cospe™ +sinp(je‘i“‘)

or any other linear combination of the typayt =1):

(60) w=e""cospe™™ +e™ sinp(je‘i“‘)

which is a linear combination of the two basic $siols that appear in (59) and, for
convenience, normalized to 1.

The (60) can be rewritten either:
w=e"*(cosp + jsinple™ =e elre ™

or:

(61) y=eeireigie
just to put

62)  p=-r+)

Apart from the irrelevance of the notations (ys®r r means having, for example,
the circulare™ for p=0orr :%) the (60) thus contains the polarization term used

in the theory of polarization radar that is to §alyopping the propagation factor "as
they say in books) the factor:

(63) e®eite’s
However now (63) has very different meanings.

By a factor of propagatioa™ becomes the solution of the Dirac equation (64) fo
an electric field in elliptical polarization, atste



By a factor of propagatioa™ andTji

(64) W = Tjie ®e e g

becomes the solution of the Dirac equation for gmeéic field in elliptical
polarization, at rest.
By a factor of propagation (see A5)

(65) @ = (L+Tj)e™oenedgretshs

becomes "a polarizatiosr®e "e “e™ at the speed of light”. In short in terms of
guantum mechanics, a neutrino or rather a collecfaeutrinos. In terms of
electromagnetic field a TEM that propagates ingbsitive z direction.

Thus summing up the same factor of polarizatior) é&pears in all the formulas (61)
(64) (65) except that now we are no longer in tles@nce of conventional scriptures
of polarization but solutions of the Dirac equation

(From a radar point of view (63) can be considehedbaseband signal after purified
by "coho").

(61) and (64) can "get moving" at speed v remaiswigtions of Dirac equation,
whereas (65) has no reference at rest, as it atgyits moving with speed c.

If you remain in circular base is immediate in eaabe derive the electromagnetic
field in the usual formE andH .

For example from (61) occurs in sequence:

(66) ¢ =e""e’e™™ =cospe™®e™ +sinpe e ]

from wich is easy to recognize the components gesgely), with commute and
anticommute with .

W, = cospe e
(67)

—id +Hatk ;

Y_=sinpe""e "]
and then withE + TjiH =i +¢_(- j)i

(68) E=cospge e +singe®e



Are clearly highlighted two opposing circular potations starting for =0, =0
from thei axis, while fore # 0 starting fromie'®.

|
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Figura 4

Let's look instead. (65), for example the caseunéircular polarization

(69) ‘// - (1+ Tj )e—iax+ikzz



and then with a few quick moves (5=, because it commutes witl)

A

(70) E+ TjiH = wi — (e—iax+ikzz + Tje—ia,t+ikzz) — e—ia,t+ikzzi" + Tjie—iauikzz]‘

Here are two vectors, electric and magnetic veabegjual magnitude and
corotating, but fort = 0 z = 0 the electric onasfromi and the other fronj .

The situation then is that which is represented plane wave with Poynting vector
directed according to the positive z direction agdt rotation (R) in the IEEE
conventions.

—

Figura 5



Conclusions

As | mentioned in the introduction to interest mearticular philosophical
considerations. To be more explicit, not being ablshow that the electron is an
electromagnetic field, | set out to demonstraté dimaelectromagnetic field can be
described as the electron with the Dirac equation.

The polarization radar is reinterpreted with pdgsdonsequences theoretical or
practical, Clifford algebra has here one of theliappons in which they can better
appreciate the geometrical meaning (for furtheisaerations see A9, A10).



Al

Without losing the physical meaning of the unambiggiapplication of the Dirac
equation for a spinor characterizing TEM TE and Thkkn not say whether it has
some basis the analogy ¥ electron and / or TM- positron. It is possible that the
analogy means that at rest fora TE or TM

(71)  ygyr=E*-H*

So for a TE or TM where there was only E or only H:
(72) Yy =E*>0

(73) Yy =-H? <0

Sinceyy * is invariant under Lorentz transformations, thasue at rest is valid
forever. Therefore (72) and (73) inform us that¢hare two different entities of this
kind.

Another reason for the analogy might lie in thedigje" positive or negative we must
assign to TE and TM to describe their behavior wihety are accelerated or slowed.
This analogy (see below, A8) seems to depend ooghesite sign of. in “.



A2

It is interesting to note that] k are isomorphic with the Pauli matrices

IS I e S
In fact:

(75) o, =1 0,0, =-0,0,

and they coincide exactly with the formulas (seleweA4)

A

j2=1 k%=1 ji=-] etc
with | =ijk

(76)  i*=

Note thatl =ijk play a role of the imaginary in thig k algebra because commute
and has square -1.

So too are isomorphic with the Pauli matrices:

(77) 0T i KT

Instead are isomorphic with the symbols of Hamiltsee (88) (89), then
la+ib+ jc+ jidis a quaternion of Hamilton.



A3

| remember that the time axis rotated through a Lorentz transformation becomes
the four-velocityd (T2 =-1,3% =-1).
Indeed let for example:

_i5e
(78)  R=e 2

and rotateT doing

~ —K f,\ |2A£ N An
(79) RiRt=e  2fe" 2=Tei*

But it is developing the exponential

(80) Te™ =T

where
(81) ¢ = arcth%

for which

0I<

(82) =T = +Kk
V2 v?2
\/1_c2 Jl‘cz

is the four-velocity of the body. Its square(iq) for any velocity v. In the case of
(82) motion is the Z axis having been made a Largansformation (rotation)
according to the bivectdtT normal to the planéz, 7).




A4

Algebra here is based on 4 elemeht$ k T, unit vectors in spacetime (sometimes
referred to the authors,e,,e,,e,). They have the following properties:

(83) i?=1 j?=1 Kk®=1 T?=-1 ji=-] etc

and | use the symbols j T to generalize the usual imaginary unif the xy plane
(84) i=ij j=ik T=iT

All this, combined with the rule concerning the paates

(85) (AB) =B"A

generates all properties of interest.
In fact is enough to admit that factj k do not change by conjugation (as it is

intuitive that it should be) to derive for exampde rediscover, the usual rule for the
conjugatei” :

A An

@6) i =(]) =i =] =-f=-
and so is obtained
@7 == T=T
Apply, as a consequence of (83) and (84),
(88) i’=-1 j*=-1 T*=1
(89) ij =—ji iT=-Ti jT=-Tj
The 16 elements algebra
1, ] kT (4elements), ij iT etc. (6 elements)ijk etc. (4 elements), {jkT
contains a subalgebra of 8 elements ( "even subiage a Clifford algebra”,
Hestenes)
1, i] IT etc. (6 elements),  {jkT

rewritten at will as consisting of all possible guats between



1,0, j,T,ij ,iT, jT,Tiji
ElementTji hence the previous property benefits of:

(90) (Tii) =i

(91) (Tji)? =-1

The complex

(92) z=x+iy ( x=iz=xi+yj)

generalizes in spacetime with

(93)  z=x+iy+jz+Tr (X=iz=x +yj+ZK+1T)

(not confuse z in first and second member, sorry).
We have

(94) Z =x*+y*+2°-1* (X*°=xx=2Z)

On xy plane symbols or operators

©@5) 9=2-i2
ox oy
a:i+ii

ox oy

are, respectively, to express the derivative ardCthuchy Riemann conditions.
These are generalized in

96) 9=2-i9_ ;9 _ 19
(
ox ody "0z Or

o* :i+ii+ji+Ti

ox ody "0z 01
and the property is

0> 9%  9* 0°

97 00 =00=—s+——>+——
(97) ox> oy* 0z*> or’




Alternatively to the symbol or operatoir used to express the analyticity one can use
the operator that is obtained by multiplying ibjrom left

(Note: if " f =0 alsoia” f =0 and vice versa).

The operator thus obtained

Is formally a four-vector, as.

So on.

This algebra differs from the STA for the choicelué base with the properties (83).
The STA choice is for spacelike unit vectgggk = 1,23) having square (-1). Thus

there is a basis in spacetime that instead oft{88)the properties:
(99) w=-1y5=1

So doing to obtain a unit vector basis X, y, zspace should be defined three
bivectors (Hestenes, [3]):

(100) gy = Vo

Hestenes note explicitly the opportunities of aittteoice ([3], p.25):
“If instead we had choseyf =1, )7 =-1 we could entertain the solutian =y, ,

which may seem more natural, because...”,

because vectors in spacetime would also be vecterace.

| prefer to keep this option best suits to engiagenit vectors | k with square +1,
imaginary uniti, complex numbek +iy, etc.).

Plus (Doran, [2]) for any of the two choices thermwalgebras are isomorphic, so
working in even algebra there is no change in angth

| should also note that all the conditions thasédias a vector, complex number,
imaginary unit and so on recall mnemonically cons&b the past and we can
sometimes help but are materially misleading. Ad éntities we have introduced are
simply numbers, and we can correctly call "Cliffar@mbers", simple underlying
rules, sum product and division, of the Clifforgelbra. The same goes for symbols
such as asterisk or the arrow for vectors etce hawve the sole function of
mnemonic recall. What matters are only the propetif algebra | have briefly
summarized.



AS

Spinorial solutions on TEM have some special priggevhich should be
considered. We have seen that for the TE TM (wijtlk m cut off frequency of the

mode) the equation holds:
(101) o'y =-imyT
and for TEM

(102) w=0

A solution of (102) is for example

(103) ¢ =[+Tlee

who is "what becomes the polarizatietf* reaching the speed of light". In terms of
spinors a neutrino, in terms of the em field th@aspdescribing a TEM.

Note that formally the equation fgr is the same as for the electromagnetic field

but it is obviously different the rule for the Lote transformation. The plane wave,
fictitious, equivalent to the spingr, is obtained from

(104) E+TjiH =¢,i+w_(-j)

while if it were a em field would be achieved by

(105) F=Ef+E,J+EK+TjilH {+H,]+H K

(the situation is not very different from that itape admits as analytic functions
and+/z).

The presence of the term

(106) (1+Tj)=[+KT)

in (103) gives rise to some special properties such

(107) W = ykT

Computing the four-velocity and spin through thaalselations:



(108)  G=¢Ty*  S=yky*
we find using (107)
(109) =-§

We can calculate explicitly the four-velocity tleatrresponds to the signal (103). In
this case the normalizatiamy* =1 is not possible becauge/* =0, but use an

arbitrary normalization ofy with v2. Thus we have

(110)  yTyr=y2 @+Tjle ™= T etz (1-Tj)=y2 (1+Tj) T (1-Tj)
and finally using (106)

(111) y¢Tyr=0=T-k

The module of the four-velocity is zero and itsreat meaning is
(energy) = (momentum).

The spin for the (109) is

(112)  8=k-T

a four-vector withs* =0.

Consider the other solution with opposite spin
The solution of (102) witly, andy, nonzero provides:

(114) @ =-ykT

This is "what becomes the polarizatiger at velocity ¢ ".
This time is instead of (107)

(114) @ =-ykT
Similar calculations as the previous one lead to

(115) G=5

11
—5

|
~>

(116) a

w»
I

—5
|

~>

(117)



The result is quite logical because the four-véyocan not be different from before
(always the impulse is traveling toward the positzy. Instead we get a meaningful
information about polarization that is that thensjoi the two cases is opposite.

We can identify the components #fwith the 4 components of the Stokes vector of
the radar polarization for which

(118) g5 =97/ +0; +9;



A6

Review the meaning of wanting to describe a foutaeby a spinor associated with
it.

Let’s start from the study of a plane motion witmgplex numbers, rather than
through the velocity vector tangent to the traject®lacing

v = pe'’|
instead of the analysis in terms of velocity vector

-

\'
leads to the study of complex number

z = pe'?
We can say (after Hestenes) that the operatiorhtsatnade here introduced a
Clifford algebra constructed on the basis of the twit vector of the plane:

A AN

I, ]

and having identified as "imaginary" the bivector

I = 1]

The space of complex numbers z is thus identifeetkaen subalgebra of a Clifford
algebra” of components, so if you want to calr@al" 1 and "imaginaryt . The
essential thing is that everything is clear, diéspincluding geometric, are clarified.
The word "complex” or "imaginary" is essentiallyelesss or misleading.

Facciamo ora il salto successivo che e quello sig@ dal piano 2D allo spazio 3D.
Let us now jump next to move from 2D to 3D spaceerithing is repeated with the
added fact that | consider irrelevant even if mexessary, that now the complex
number must be applied half right and half lefi. &lthis is known.

The number now has 4 components and is called muate

With the usual language and the clarity of claafion we owe to David Hestenes
(although my symbols) we can say that this intreduan "even subalgebra of a
Clifford algebra constructed on a 3 unit vectorcgpa

I, ],k

The components of quaternions are precisely thgpoaenmts "even" of algebra
17,7k, k

The last and decisive step is to pass in 4D,hestudy of a vector in spacetime or
four-vector with a complex number, according to tiseal technique that we have
seen in 2D and 3D space.

It is necessary (and sufficient) to introduce df@id algebra on a basis of 3 unit

vectors spacelike and one timelike:

~

i K, T



and this identifies a "even subalgebra of a Cldfalgebra" to 8 components

1,i], 7k, jk , iT,JT kT ,{jkT
Complex numberg are now Dirac spinors with the exception of dstaitd / or
notations. Even now, the complex number must bhepralf right and half left. For

example, ifP is an energy momentum vector therF l//Tl// as with the quaternions

(except here the use at ) and so on. The essential thing is that everythargear,
all roles, including geometric, are clarified.

AA AN

Note that the sub-case with componehtsj, ik, J k provides the aforementioned

guaternions in 3D space while the componénljs give the ordinary complex
numbers in the 2D xy plane.
Among the various consequences of the rotatiopacetime there is one now eg. a

four-velocity can be rotated with a bivector Iiﬁe and then rotate on, | plane,

but also with a bivector like T and then rotate on, T plane or speeds up or
slows down.

The law of transformation "single-sidedly" of spiaas summarized effectively by
Doran et. al. (see, for example. "States and operat the Spacetime Algebra”,
Found. Phys. 23 (9), 1993).

If a vector such

(119) s=yky*

Is rotated througlR'( )R*, the result of the rotation is
(120) &§=R&R*

then the corresponding spinor must transform
(121) y¢'=Ry

“We use the term spinor to denote any object wighgforms single—sidedly under a
rotor R” (Doran).



A7

We show that the equations of transmission line§Eand TM modes in waveguide
are the Dirac equations.
The treatment of TM along with TE leads to thesea¢igns (e.g. by Franceschetti or

[6], [7]):

N
dz “H
2

TE ﬂ=—iar(1—‘”—°)v

dz N
(122)

dav . w.’
™ — == 1-—= I

dz IW( a)ZJ

d—lz—iazv

dz

Let in (27) with respect to TM

— \la)+ a)O
(123) a= To

and so you get a new set of equations for the TMlai to (41) for the TE.
By grouping all

ﬂ+(iw+iwo);n':o

dz
TE
i+(ia)—ia)0)e‘\/'=0
dz
(124)
av' . . .
E+(W—|%)M =0
™

%+(ia)+ia)0)£V'=O

Conventions in use (eg Ramo) assumed an expondepehdence“ henceiaw
comes from a derivativ§E and therefore we can rewrite the formulas for vwhay

really mean (pitch for simplicity a system with Mequidimensional, ¢ = 1)



dl+(i+iwojl':0

dz or
TE

dli 0 .

- - '=0

dz+[6r a)ojv
(125)

av' 0o .

- [ |':

dz+(6r I%j 0
™

d’ (6 . }/
—+| —+iw V'=0
dz \or

Recalling (24) we can explain the various V (z) &) in their sense of complex
quantities(Li) representatives of constant transverse fieldpemively TE and TM

dETE +(i+la)0jHTE e O

dz or
TE
d;'ZTE +(air—iwojETE =0
(126)
dlj;“" +[%—|a)ojHTM =0
™
d';%+(%+iwojEm =0

The Dirac equation for a plane wave in z are

d .

( a"’a*( r“m}”l:o
d J B
E[‘[/4+(E+|mjz//2—0

(127)



How are grouped 4 complex quantitig¢$) H..E,H-, E,, in a Dirac spinor

W=y, + g, +Tjw, + Ty, wheregywwy, are numbelli)? Use for this the
correspondence (49bis) already established bets@aars and fields | remember
here and then developed in full. We have:

(128) E+TjiH =g, +¢_(- j)

and being

(129)  yw=y,+jw,+Tiy,+Ty,

Is obtained from (48)

(130) W, =W +Tiy,)
(131) v =iy, +Ty,)
from which

A

(132) E+TjiH =g, 0+y (=) =l + Tis + j@, (1) + Teu(-))
This can also explicitly write with the fields thairrespond t@, and ¢_
(133) E+TjiH =Fi =(E, +TjiH, +E_+TjiH_)i

Given the significance of the various terms yduidl that it is written the spinay
differently. For comparison:

(134) E, =¢,
TjiH, = Tjy,
E =jw,(-])
TjiH_ =Ty,(-j)



Obtainingy.w.w, and replacing in the Dirac equation (127) it conveél a long
but easy steps

diH, (a
+| —
dz

dif +(i—iwojE_ =0
dz

(135)

dE, +(i—ia)ojiH+ =0
dz

£+(i+iwojiH_ =0
dz or

which are precisely the equations (126) in waveggiioy Franceschetti - Ramo but
also the Dirac equation where it is simply donefti@wing name change ig

components:

(//1 E+
(136) o | 15D
¢’3 IH+

Y] [IH_]



A8

We start from the Dirac equation (127) for freeticder with the componentg, and
Ys:

9 d . _
(137) Ews + (a—r + lmjlﬂl =0

0 0 . _
Ewl +(E—|m)¢/3 =0

These may be a TE or a TM depending on if resoatedst withy, # 0 or with

W, 20.
The Dirac equation in the presence of potentiatggn® for an electron becomes

(138) il//e, +(i+iu +imj¢’1 =0
0z or
0 0o . .
Elﬂl +(E+|U _|mjl//3 =0

These resolved witly, # 0 at rest provide (placing - w,)

(139) (//1 = e—iax+ikzz ‘//3 — Be—iax+ikzz B= @

(140) k?=(w-U)*-af

mezzol mezzo 2

v




Formula (140) fork, allows the calculation of speed in medium 2 amtdfore also

allows an analogy with the propagation of TE inaeguide 2 with a different cutoff
frequency (or sizel,).

d,,w,
I guida 2

d2 ! a‘)O,Z

For this we use the formulg = 3:”

for the group velocity in a waveguide.

z

From (140) is obtained

(141) Kk, =y(w-UY-af  so

dw W,
142 = =,[1- 22 her
(142) v, k. 7 where
(143) @, =—
s 1_!
w

The (143) implicitly provides the size of the wauate 2 with respect to the
waveguide 1. Conversely given a transition betweegnide 1 of sizel, and a second
guide of sized, the (143) gives the value of U to be includedchia Dirac equation to
represent this transition between waveguides.

The analogy provides useful information for themtetation of the "Klein paradox".
In short for U = w-w, the (143) providesw=w,, i.e. waveguide 2 is at cutoff and

the wave becomes evanescent. If U increases fufthvay = « waveguide 2 closes
completely and a further growth of U has no physsease. Explicitlyd, = (1—U/w)dl
and thus iU > « the size of the second waveguide was negativeheeaquation
(138) is no longer representative of the phenomenon

Now suppose that the same transition between walegof the previous case
interests instead of a TE a TM.



From the electromagnetic point of view with the sgmarameters,«, and size of

the waveguide 2 makes no difference whether ifliMeor a TE in the sense that the
final velocity of the field in medium 2 is the sanktowever to achieve this is
necessary as we will take hours instead of (13&ratquations in which the
potential energy is changed in sign, as happerstivit change of sign of electric
charge U =+eVv) in the Dirac equation.

Precisely the equations must be like those of tsitq@n

0 0o . ,
(144) Ezps +(E_IU +|mjt//l =0

d a0 ... .
—Y, +|—-IlU-im, =0
2 v+ Z-iu-imp,

They actually have solutions

(145) g, =€y, =Be"“T? B= @

ki =(w-U) -af

From these derive the same formulas (141) (1423)(a4d the same speed in the
guide 2, which would have a TE.



A9

In summary, if one describe an electromagnetid féel a whole without looking
inside, you find that it is described by a Diramsp and the Dirac equation for the
electron.

The simple mechanism, and the reason why this mespeas follows:

describing a given electromagnetic field througialtenergy momentum vector (ie
the volume integral of density given by the eneagg momentum tensor) they form
a four vector.

At this point the game is done because, as sho®T Aor Space Time Algebra
(Hestenes, Doran etc.) to give a four vector yostnfor can) give a Dirac spinor.
From here, a lot of consequences and reflectionarious directions.

One, for example, clarifying the role of 'entitgirsor. Consider the quaternions that
one right and one left, describing a 3D vector. Miglyou can see with the
mathematics of the STA the Dirac spinors, one dpaydrom the right and one left,
are used to give a four vector, 4D (relativistic).

(the game so he did appear spinors and Dirac equistexactly what you want to
describe the electromagnetic field with a giverrfeector, with the volume integral
of energy momentum density, i.e. as a whole, iithaut looking inside).

More, the Dirac equation, which underlie the spsnave find very elegant and
nothing but the equation, relativistic and writtertierms STA, of the usual equations
of EM fields in waveguide written in terms of V ahd

There are several other consequences. He redalls a

Chosen as em field a field in waveguide that wdbdaravel to velocity v different
from c, the spinor has been provided without tlygired two distinct types of field,
which turns out to be the TE and TM each in righlieft polarization, for a total of 4
possible solutions. At the speed of light instdsel/tare provided only 2 (logical,
because a TE at this point is indistinct from a TM)

We now want to give our electric field the abilitygo faster or slower?

In the Dirac equation, which underlie the spinare,must introduce a coupling
parameter formally identical to the electric chamfger which widen or tighten the
guide (ie, vary the speed of the field) appeahadquation with a scalar electric
potential similar to the electrical potential "phi"

So also it appears likely the opportunity to ckagbme things about our methods.
Example, the Dirac equation, which is still subjetctebate and discussion (see ex.
[81],.....] 12] or [13] D. Hestenes, "Mysteries andights of Dirac's Theory"),
provides in automatic dual possibility of parti¢lentiparticle and a double spin state.
Now it is certainly significant that with only tmeathematical condition to describe a
four vector with the spinor associated with it, &or electromagnetic field
automatically follows a double possibility of stdteé / TM in a double state of
circular polarization.

l.e. a complete analogy exists and is not the onsy. It follows that the Dirac
equation lends itself to be investigated in thisectinan in the case, less "accessible",
the electron.



Al0

Among the various consequences, | think (and thaae of the many reasons for this
paper) that the study of radar scattering fronrgeta with the notations of Clifford
algebra we can draw a parallel to the interactmeis/een signal-to-target and
electroweak interactions.

Notations of Clifford algebra are not obviouslye&ssal but to create a parallel could
be extremely educational and physical.

Perhaps we could deepen, with a concrete examplehws visible, that is ... the
example of scattering from a radar target, whatlagesarious conventions,
methodology, rules, particles, interactions andrs@and so forth that appear in the
Standard Model.

| go into some detail.

The basic observation from which to start is ap¥ed.

We have seen that was ultimately responsible for providing the fauaetor Ty’ .

It is assigned a spinor with 8 parameters whileedeaough to assign a four vector.
So there is a fourfold arbitrarinessgn(Hestenes, [11], [14]), which is represented
by the 4 parameters transformation:

(146) W - weTjiﬁ+ijV—id>+jp

It is indeed significant that an arbitrary transfiation of this kind leavegT ¢’
unchanged.

Now the groupe™*iv-®+i# js the groupsu (2)0uU (1) (i, j,ij is SU(2)). It follows that in
the description of the electromagnetic field witfoar-vectoryTy” you can submit
w to a transformatiorsu (2) DU (1) without altering the energy momentum vector.
su(2)Du(1)therefore acts as an "internal symmetry".

We may then assume with a little imagination

a) that the (146) is accepted as a legitimate ¢jkpbasformation into a new equation
that can accept it ("a modification of the Diramiation to accommodate the larger
gauge group"”, Hestenes [11]).

The Dirac equation (13) as it is formulated onlgegats the 'electromagnetic gauge
group "e™®.

The new equation ..... could be (?) the equaticenréutrino or from a radar point of
view a TEM namely:

(147)  o*y=0;

b) that in the new equation the transformation fgdabal to local gives, following
the usual techniques of the gauge fields, the uargbectroweak forces acting on a
TEM / neutrino and / or TE / TM, but this time stclearly visible meanings.

Let's stop here with the imagination.



In the words of Hestenes to finish one of his mostginative articles:
"That's enough speculation for one paper!"



All
From:
(7) Fi=Ei+E,j+EK+Tji(H,i +H, ]+HK)—F =E+TjiA

Is immediate and very elegant derive Maxwell's ¢éigua with div and rot.

Here is a (long) introduction on a property of greduct in Clifford algebra,
properties that | don’t mentioned in A4.

In Clifford algebra arises naturally a product timaorporates scalar product and
vector product.

It starts from the obvious equality:

(147)  ab= %(ab + ba)+%(ab - ba)

This truism becomes a raison d'etre for the featt ttiere are elements of Clifford
Algebra which anticommute, so it makes sense takspéba distinct fromab.
They are also potentially opposite.

An analysis of (147) with some examples immediasélgws that

(148) %(ab+ ba)=asb

Is the usual inner product between vectors and@akar, while what should be called
exterior product:

(149) %(ab—ba): ab

remember, but do not call it that, the vector paidikb.
For if aandb are vectorsaaCb is a bivector, whileaxb is a vector.
Between the two the formula holds:

(150) aOb= (iMjIQXax b)
you can also use reversed
(151) axb= —(ileXa Ob)

The (151) is not necessary to send her to minduseci is easily remembered by the
example:

A

(152)  ij=(kk



that relates the bivectdf with the associate vectdk j =k .

(Note: this involved the faults and merits of GibHe took the blame and the credit
to understand thatCb, born as bivector, was a vector, and as such ingast axb
and so the engineers deal with for exantpied , as a vector).

This hides the true quality of the product of twthogonal vectors, which are those
of an entity bivector. However (151) make thingght).

We extend the (151) to vector operaigr(3D):

0~ 0+ 0/ =
98) —i+—j+—k=0
(98) ox oy 0z v

From (147 )...( 150) we have successively

(152) od,a=0d,a+d, Da=5v-a+(ﬁl2x5vxa)

and therefore the operators div and rot are "eméxdtial the 'Clifford algebra
through the relation:

(153) d,a=diva+ (ﬁlz)(rota)

Then immediately derive Maxwell's equations with dnd rot.

From:
(6) 0'Fi =0—id"Fi =0
7) Fi=E,+E, ] +ER+Tji[H f+H, ] +H K- F = E+TjiH
immediately:

0+, 0+ 0, 02,z o= 0z srons
154 —I+—]+—k+—=T)E+TjiH)=(d, +—T)|E+I]KTH)=0
(154) (T LTk DXETiF) =@, + ) IE+TkTH)

Development and separation of the indices comeskkyui

(152) rotE = a—H,rotH = —a—E,divE =0,divH =0
or or

which are the Maxwell equations.
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