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Abstract 
 

          The author shows that the Maxwell’s equations in vacuum have solutions 
which have helical structure in space while being circularly polarized at the 
same time. This goes against the universally accepted solutions which treat the 
electromagnetic wave as sinusoidal wave propagating along a linear path. He 
shows that the helical wave structure assumes that the fundamental state of the 
electromagnetic wave is the circularly polarized state and not the linearly 
polarized state. Since the photon is theorized to exist in a circularly polarized 
state, the proposed new solution is consistent with that picture. The author 
proposes a simple experiment using a maser to confirm the veracity of the 
proposed helical structure. 
 

PACS numbers: 41.20jb, 42.25Bs, 03.65-w. 03.50 De 
 

1 Introduction 
 
         We know that the beauty of the Maxwell’s equations (given below) is that while they are 
very simple linear equations, all aspects of electromagnetism could be explained by them. 
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Since we propose to study the transmission of the electromagnetic (EM) waves in vacuum, we 
shall take the charge density, ρ and the electric current density j as zero which gives 
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We shall now solve these equations to see how the concept of the EM wave emerges from 
them. Subsequently we shall modify the approach suitably to arrive at the new solutions. We 
shall follow Feynman’s insightful approach here in solving these equations in the conventional 
way [1]. We know that the first equation can be written as 
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Here we assume that there are no variations with y and z, so that the last two terms could be 
taken as zero. Hence, we have 
 

                                                         .0=
∂
∂

x
xξ                                                                (3A) 

 
This means that ξx is a constant in the x-direction. If we study Maxwell’s equation (2.iv), 
assuming that just as in the case of the electric field, there is no variation in y and z directions 
in the magnetic field also, it can be seen that Ex is also a constant in time. Such a field could be 
conveniently taken as zero as we are interested in only dynamic fields. Therefore we may take 
Ex = 0. In other words, the electric field exists only in the y and z directions which are 
perpendicular to the direction of propagation. As a first step, for the sake of simplicity, we may 
assume that the electric field has a component only in the y-direction and obtain a solution on 
that basis. Later we may take up the case where the electric field has a component only in the 
z-direction. Then, the general solution could always be expressed as the superposition of the 
two cases. 
 

          Let us take the Maxwell’s equation (2.ii) and equate the projections along the three 
coordinate axes separately to obtain                   
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Here (“xξ)x will be zero because the derivatives with regard to y and z are zero. Note that from 
(3) we have already taken ξy as a constant while ξz is taken as zero. (“xξ)y is zero because the 
first term which is a derivative of ξx which is zero while the second term is zero for reasons 
already stated. The only component of curlξ which is not zero is (“xξ)z which is equal to 
∂ξy/∂x. Setting the three components of (—xξ) equal to the corresponding components of          
-∂B/∂t, we obtain 
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Since the x and y components of the magnetic field have zero time derivatives, they represent 
constant fields. If we study Maxwell’s equation (2.ii), it can be seen that Bx is also a constant 
In time. Such a field could be conveniently taken as zero as we are interested in only dynamic 
fields. Therefore, we may take Bx = 0. The last equation in (5) shows that the electric field has 
only the y-component while the magnetic field has only the z-component. This means ξ and B 
are perpendicular to each other. 
 

          Let us now take the last Maxwell’s equation whose components can be written as 
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Out of these, only the term ∂Bz/∂x is not equal to zero. So these three equations gives us 
simply 
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Now taking partial differentiation with retard to t and using the last equation in (5), we obtain 
the wave equations 
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Similarly we can obtain the wave equation for ξz and By also as 
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We know the solutions for the wave equations are given by 
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where ω is the angular frequency and k is the wave vector. Combining both, the wave equation   
                                                                     

                                                                                 λ                                                    Electric Field    ξ 
  

                                                                                                                                                 k 

                                                                                                                                Magnetic field   B 

                                 
                                

 
                                          The electric and the magnetic fields are perpendicular to each other and  the direction  of   
                                           propagation. Note that the sinusoidal curve represents the field on the line of propagation.    
                                                                      

                                                                                    Figure 1 
 

in a general direction will be given by 
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Similarly, we may obtain the wave equation for the magnetic component also which may be 
written as 

                                                 
( ) .k.rB −−=′ tie ωψ

                                                    
 

 

Note that the magnetic field will always be perpendicular to the electric field. Another 
important point to be kept in mind is that the solutions represent not a single wave, but a wave 
front which has its components of the electric field ξy and ξy (also the corresponding magnetic 
fields) constant along the y and z directions at any instant. 
 
2  The New Solutions of Maxwell’s Equation 
 
          We shall now look for the solution of the Maxwell’s equations in a different way. Earlier 
in (3) we had taken ∂ξy/∂y = ∂ξz/∂z = 0, which lead us to the result, ∂ξx/∂x = 0. The 
assumption, ∂ξy/∂y = ∂ξz/∂z = 0 means that at any instant, the electric field in the transverse 
directions is a constant one. In fact, to satisfy the condition of zero divergence for the electric 
field we need not take ξy and ξz as constants. We  may as well take 
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Note that this relation when applied in (3) gives us the equation, ∂ξx/∂x = 0. Let us examine the 
implications of such an assumption. The relation given in (10) shows that the electric field has 
a gradient along the y and z-axes. But note that when ξy increases with y, ξz decreases with z.  
 

          The simplest way to interpret (10) is to assume ξy and ξz to be the field at a point which 
undergoes simple harmonic motion (SHM) along y and z directions simultaneously. We may 
attribute the field at the point to be directly proportional to the displacement from the x-axis. 
There are four ways of defining ξy , ξz , y and z so that (10) is satisfied. They are  
 

                                   
zandy zy αξαξ m=±=   ,                                 (11)

 

[ ] [ ] .sincos kxtRzandkxtRywhere −=−= ωω m                            

Of these four possibilities, we shall take up the first case given by the following set of 
equations for study right now. 
 

                                     
zandy zy αξαξ −==   ,                                     (12) 

 

[ ] [ ] .sincos kxtRzandkxtRywhere −−=−= ωω                       
      

Note that the helical wave defined by (12) and (12A) will be executing rotation in the 
clockwise direction. We may attribute to any point on the helical path a magnetic field which 
is perpendicular to the resultant of ξy and ξz at that point. This is to state that the point which is 

(11A) 

(12A) 

(9B)
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executing the SHM has got electric and magnetic fields which are perpendicular to each other 
and also perpendicular to the x-axis. We may take 
 
                                    zByB yz αα == ;   .                                         (12B)

 
     

                                                                                      
Note the difference between (12B) and (12). Here the Bz depends on y, not on z. Likewise, By 
depends on z, not y. Now we observe that for a given value of x, the locus of the point which 
has field components (ξ, B) where ξ = (ξy+ ξz) and B = (By+Bz) will be a circle with radius R 
because we have 
 

                                                    y2  +  z2   =   R2   .                                                              (12C) 
 
From (12) and (12B) one may get the impression that there is nothing to limit the magnitude of 
the electric and the magnetic fields. However, the fact the frequency of the SHMs in the 
transverse directions has to the equal to that of the wave propagation introduces a limit to the 
value of R to 1/k. We shall be discussing this issue in detail in section 4. 
 
           Let us now proceed further with this line of reasoning. Let us now take equation (4)  
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On the basis of (11), we observe that ∂ξz/∂y = ∂ξy/∂z = 0. Further, since ξx = 0 everywhere, its 
derivative will also be zero. This would leave us with  
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     Let us now take the last Maxwell’s equation whose components can be written as 
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Here unlike in the case of ξy and ξz, we have  ∂Bz/∂y = α = ∂By/∂z . This will make [“xB]x = 0. 
Of the remaining derivatives given in (14), only ∂Bz/∂x and ∂By/∂x will not be zero. Therefore 
(13) can be simplified to give  
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Now using the above equation as well as (13A) and taking partial differentiation with retard to 
t and we obtain the wave equations                                   
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We know that the general solution for these equations are given by (9A) itself. In other words, 
despite the fact that the wave represented in (15) and (15A) are helical waves existing in the 
physical space, we obtain the same wave function as given in (9A) as the solution.  
 

              Let us now examine the solution obtained in depth. We observe that although (15) and 
(15A) together represents a circularly polarized wave travelling along a helical path with its 
axis along the x-axis, its form is same as what we obtained  for the wave been travelling along 
the x-axis. In fact, it is easy to see that the helical path will coincide with the linear path when 
we take the radius of the helical path to be zero. In that sense, the helical path solution is more 
general than the linear path solution. The fact that (15) and (15A) does not express the physical 
amplitude of the wave should not be taken as a serious defect in the solution. Note that the 
wave equation for the electric and the magnetic fields appear as separate wave equations.  In a 
similar way, we may express the wave equations representing the spatial oscillations also by 
way of separate equations. For this, we substitute for ξy and ξz from (12) into (15) and (15A) to 
obtain 
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We should keep in mind that all these wave equations involving ξy, βy, ξz, Bz, y and z are 
coupled. Since the conventional approach treats the radius of the helical wave in the real space 
as zero, the amplitude of the oscillations in the physical space turns out to be zero. Therefore, 
the wave as defined in (15B) does not make its appearance in the conventional approach.  
 

            We saw that in the case of the conventional solutions discussed in the previous section, 
ξy and ξz has no variation in the y and z directions. The variations in ξy and ξz are in the x-
direction and they travel as a wave front. In the case of the helical wave solution obtained now, 
we observe that ξy and ξz  would vary in the y and z directions. In fact, they vary in proportion 
to the displacement from the axis.  In this case, we have to examine how the wave front is 
formed. It is reasonable to assume that the displacement of the point along the y and z 
directions will set off disturbance in those directions. Therefore, we can imagine a wave front 
of helical waves moving parallel to each other just like in the conventional approach. The only 
difference is that here we have a front constituted by the helical waves while in the 
conventional approach the wave front is constituted by the plane waves. 
 

           The form of the EM wave in terms of the new solution will be as given in figure 2. If we 
take any point on the helical wave with its axis along the x-axis, then the electric field will be 
directed perpendicular to the x-axis in the y-z plane along the direction of the vector 
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representing the displacement from the x-axis while the magnetic vector at the same point will 
be orthogonal to both the x-axis and the electric vector. Note that in the conventional approach 
while the wave length and the frequency are related to each other, the magnitude of the electric 
vector (also the magnetic vector) is not connected to them in any manner. Going by the same 
reasoning, the radius of the helical wave should also be able to take on any value. Actually, 
this lack of clarity on the value of the electric and the magnetic vectors is quite surprising. 
There is no reason why only this aspect of the wave should remain undefined when 
 
 

 
                                ξ 
                            B         r                                      
                                                                                x                                                                           

                                                                                                                      
                                                                           

          
                                                                                    

(a)                                                                   (b) 
 

                        .(a) shows that the field of the EM wave moves on a helical path with the electrical field always perpendicular 
                         to the direction of propagation but parallel to the radius vector while the magnetic field is orthogonal to both 
                         electric and the direction of propagation. (b) gives the transverse cross sectional view of the helical wave. Note 
                            that the electric field (magnetic field not shown) is always directed outward in line with the radius vector.    

 

                                                                           Figure. 2 
 

all other aspects (frequency and the wave length) are clearly defined for the wave. In section 5, 
we shall show that there is justification in limiting the spatial amplitude of the EM wave and 
attributing a definite value for the magnitude of the electric vector and consequently for the 
radius of the helical wave. 
 
3  Solutions with the Electric Vector Oriented Differently 
 
          In the preceding discussion we have considered the case where the electric field is 
defined by (12) and (12A). This applies to the case where the radial vector and the electric 
field are in phase. In fact, the condition of the zero divergence of the electric field would be 
satisfied even if we had taken 
  

                               
zandy zy αξαξ =−=    ,                                      (16) 

 

[ ] [ ] .sincos kxtRzandkxtRywhere −−=−= ωω                      
 

In this case, the electric vector would be having a phase difference of π with the radius      
vector and hence would be directed inward when the EM wave is viewed in the direction of the 
propagation of the EM wave (see figure 3). Note that in this case the direction of the electric 

       z 
                   y 

                   

(16A) 
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field is the reverse of the case represented by (12) and (12A). Therefore, the field created 
would be in the opposite direction. This phase difference does not in any way affect the   
 
                                                                                       

                                                                                             

 

 

 

                                                                                                                 
                 The figure gives the view of the EM wave in the direction of the progression .Here the phase of  
                 the electric field denoted by the arrow in the epicycle differs from that of the radius vector by π. 
                   

 

                                                               Figure.3 
 
 

behavior of the EM wave significantly. Note that when the radius of the helical wave becomes 
zero the, it becomes the EM wave as is understood at present.  
 

          Apart from these two, there are two other possibilities which we shall discuss now. The 
third possibility arises when we take 
 

                                      
zandy zy αξαξ −==    ,                                (17) 

 

         [ ] [ ] .sincos kxtRzandkxtRywhere −=−= ωω             (17A)  

This represents the case where the rotation of the electric field and the radial vector are in the  
 

                                                                Q                                                                    Q    
                                                                         

  

                               R                                      P                       R                                      P  

                                                                                                                                   P 

                                                   S                                                                S 
                                                                             

      (a)                                                                    (b) 
 

                             (a).shows the case where the rotation of the helical wave is in the anti-clockwise direction while the 
                             electric field rotates in the opposite direction. The  field has positive component ξy at P on the y-axis 
                             and becomes –ξz at Q, then –ξy at R and ξz at S. (b) represents the case with the same direction of rot- 
                                        ation but with the phase of of the electric vector differing from that of case (a) by π . 
 

                                                                                   Figure 4   
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opposite directions. Here ξy and ξz are related to y and z just as in the first case. However, 
(17A) represents a wave which is rotating in the anti-clockwise direction (see figure 4.a ). Here 
The electric vector does not maintain its direction with regard to the radius vector.  
 

          The fourth possibility arises when we take  

                                  
zandy zy αξαξ =−=   ,                                     (18)

 

      [ ] [ ] .sincos kxtRzandkxtRywhere −=−= ωω                 
 

The direction of the electrical field at any point on the helical wave is given in figure 4(b).  
Here also the picture is similar to the third case except that there is a phase difference of π.   
 

          We can construct  four more different combinations of the rotation of the helical wave 
and the electrical vector. Those would pertain to the states having the rotation to the helical 
wave and the polarization vector reverse of those which are given above. Note that in the 
conventional description of the EM wave, these different structures would not show up since 
the radius of the helical wave in the physical space is taken to be zero. This would reduce the 
possibilities to only two helicity states which pertains to the right handed circular polarization 
and the left handed circular polarization. It may be possible to set up an experiment which 
could establish the fact that the EM wave has a helical structure in the physical space. We shall 
discuss about it in section 5. 
 
4   Determining the Spatial Amplitude of the EM Wave 
 
          These new solutions of the Maxwell’s equations do not alter our views regarding all the 
phenomena which are understood in the conventional approach. The reason why the possibility 
of the “new solutions” were never explored may be traced to the historical origin of the 
concept of the EM wave. Right from the beginning, the EM wave was thought of in terms of 
the linearly polarized wave and the linearly polarized state was considered as the most basic 
state of the wave. The circularly polarized wave was assumed to be a composite state formed 
by two such basic linearly polarized states with a phase difference of π. Because of such  an 
assumption, the solutions sought from the Maxwell’s equations were for waves which are 
linearly polarized. And it can be easily seen from the above discussion that a linearly polarized 
state is not consistent with the helical structure of the wave in the physical space. It allows only 
such solution where the electric and the magnetic fields have no variations in the transverse 
directions and this is the one which is universally followed in all text books.  
 

          Let us now see if we could determine the physical amplitude of the EM wave exactly. 
We saw that the circularly polarized EM wave represents the locus of a point possessing 
electric field which undergoes two mutually orthogonal oscillations in the physical space in the 
transverse directions with a phase difference π. The electric (also the magnitude of the 
magnetic) field at the point is directly proportional to its displacement from the x-axis, which 
is taken as the line of propagation of the EM wave. The path taken by such a point in the 

(18A)
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transverse direction will be a circular one (see figure 5). The simplest case of the circular 
motion is obtained if we assume that it is  executed at the velocity of light, c. Any other 
velocity would involve introduction of a new attribute to the electromagnetic wave. Since the  
 
 

                                                                C                   x 

                                                      c 

 

 
 

 
                          The figure represents transverse view of a propagating electromagnetic wave. 
                          The vertical and the horizontal lines stand for two perpendicular oscillations  
                               having phase difference of π. Here the circular velocity is taken as c.  
 
 
 

                                                                Figure.5   

 

wave is also progressing with the velocity c, It is obvious that by the time the EM wave 
progresses the distance of one wave length, it would have executed one full circle in the 
transverse direction. This would mean that  the circumference of the circular path is also λ. 
Therefore, we  may conclude that the radius, R of the circle would be given by 

                                            kR 12 == πλ   .                                                     (19) 
 
Once the value of R is fixed, then we have from (12) that   
 
                              ( ) λπαααξ 2/ === kR .                                       (19A) 
 
This shows that the magnitude of the electric vector is proportional to the wave length. Since 
the magnitude of the magnetic vector is equal to that of the electric vector in the case of the 
EM wave, we have 
 

                                                            ( )λπα 2=B .                                                                          (19B) 

                                                                                                    
5  Discussion                
 
                  It is quite surprising to note that that no body had noticed that the Maxwell’s 
equations contained the helical wave solution within it.  We know that photon, as it possesses 
unit spin, has to be treated as a circularly polarized state. In that sense, the new solutions are 
consistent with this treatment. But strictly speaking a photon cannot be treated as a wave as it 
represents the particulate aspect of light. All the same, the circular polarized sate appears to be 
more fundamental than the linear one. But we should keep in mind that a linearly polarized 
state can be obtained by the superposition of two circularly polarized states of opposite 
helicity.  The circularly polarized state in turn could be obtained by the superposition of the 

     Z    λ/2π 
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linearly polarized states which are perpendicular to each other but with a phase difference of 
π.  But if the new solution obtained in section 2 is correct, then any circularly polarized state, 
even those formed by the superposition of two linearly polarized states, could be treated as a 
pure state. This means that if we have a source of circularly polarized light, it could be used to 
verify the correctness of the proposed helical structure of the EM wave.  
 

          The problem we face when we want to measure the helical structure of the EM wave is 
that this property gets camouflaged by the formation of the secondary waves formed with each 
point on the original wave as a source. In other words, we cannot obtain a single wave for 
observation. If we take a source of radiation with high intensity, there the waves will interfere 
with each other making it lose the helical structure. The best way would be to observe the 
photons passing through a hollow cylinder of length, say equal to the wave length of the  
 
 
                                                                                       Cylindrical                         O 
                                                                                             aperture   
                                Source                                                                                    Screen 
                                                                  P               Q                        
                                    S                             

 
                                                                                                                               O’ 
 
                 S is a very weak monochromatic microwave source. PQ is the cylindrical adjustable aperture while 

                                   OO’ represents the screen which measures the intensity of the microwave falling on it. If the helical 
                  wave hypothesis is correct, the aperture could block all waves having wave length more than 2πr. 
 

                                                                    Figure. 6 
 

photon to be observed. The experimental set up is very simple (see figure.6).  We have to have 
a source of EM wave preferably Maser having wavelength in the range of , say, 0.10 mtr . A 
metal sheet of 0.10 mtr thickness having a cylindrical aperture (PQ) with adjustable radius 
could be installed close to the Maser source. It is important to have the length of the aperture in 
the range of the wave length of the EM wave to be used to avoid formation of the secondary 
waves at Q.  A screen should be place behind the metal sheet to capture the microwave energy 
passing through the aperture. 
 

          Let the cylindrical aperture be kept very large to begin with. The intensity of the energy 
received on the screen from the Maser source will be quite high. Now as we reduce the radius 
of the cylindrical aperture, the intensity received on the screen would keep on decreasing.  If 
the helical wave hypothesis is correct, then when the radius of the aperture becomes less than 
λ/2π, there should be a sudden drop in the intensity of the energy received on the screen. In 
principle, there should be an absolute cut off at this aperture. But then due to interference 
which cannot be avoided completely, some energy may leak through the aperture. But the dip 
in the energy intensity received on the screen should be sharp. In the conventional approach, 
the aperture radius of λ/2π does not have any significance and  therefore the reduction in the 
intensity should be smooth.  
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          Another foolproof method to check the veracity of the hypothesis is to use a source of 
the monochromatic radiation in the microwave range so weak that only one photon is emitted 
at an instant. This way the possibility of two waves interfering with each other and affecting its 
basic structure could be avoided. Since the light source is so weak that it emits only one photon 
in one instant, the helical structure of the wave would be maintained. Here some objection 
could be raised against the proposal on the ground that the moment we opt for the photon 
picture, we have to discard the wave picture, and treat the photon as a point particle. To avoid 
such controversies, we just propose that the wave train emitted by the source is a single one at 
a time so that there is no interference to destroy its basic structure. We shall make the radius of 
the cylindrical aperture adjustable. Initially, the radius of the aperture may be kept at twice the 
wave length of the wave as in the earlier experiment. If the basic structure of the EM radiation 
is a helical one in space with a radius λ/2π, then there should be a clear cut off of the radiation 
passing through the aperture when its radius becomes λ/2π. In terms of the conventional 
approach, there will not be any cut off although the intensity may fall off.  So the existence of 
a cut off at the aperture radius of λ/2π will be the proof for the helical structure of the EM 
wave.  
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