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Abstract.   

The Sun’s orbital motion around the Solar System barycentre contributes a small quadratic 

component to the gravitational energy of Mercury. The effect of this component has 

previously gone unnoticed, but it generates a significant part of the observed precession of 

Mercury’s orbit. Consequently, the residual precession currently attributed to general 

relativity theory by default (43 arcsec/cy) is too large by 6.6 arcsec/cy. 

 

PACS Codes: 96.12.De, 96.30.Dz. 

 

1.   Introduction 
For many years, the observed precession of planet Mercury’s orbit has been 

acclaimed a confirmation of General Relativity theory because of its remarkable, 

close agreement. Nevertheless, in view of the enduring singularity problem and 

unnatural features of black-hole theory, and the unattainable unification of GR with 

quantum theory, it is appropriate to question the finality of this agreement. To this 

end, a serious omission has indeed been identified in the list of contributions which 

make up the total precession. 

 The orbit of planet Mercury has been calculated satisfactorily by several 

investigators; see Clemence [1], Brouwer & Clemence [2], Nobili & Will [3].  In 

these calculations, Newton’s inverse square law has been applied to set up the 

differential equations of motion using the instantaneous measured distances and 
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velocities between Mercury, the Sun and planets. Clemence [1] has listed the 

contributions to the motion of the perihelion of Mercury due to the individual 

planets, solar oblateness, general precession in longitude, and relativity. 

No effect on the perihelion has ever been attributed to the Sun travelling 

around the Solar System barycentre, independently of Mercury. In fact, the circular 

motion of the Sun produces a toroidal component in the potential energy of Mercury, 

which generates some precession of Mercury’s orbit. Such a direct physical effect on 

Mercury is not negated by calculating everything in heliocentric coordinates. 

Consequently, the residual precession attributable to general relativity theory must be 

less than the proclaimed 43 arcsec/cy. This effect has never been incorporated 

automatically, nor acknowledged in the precession calculations to date. 

A thought-experiment may help to clarify this assertion as follows: 

a) First, imagine Mercury alone orbiting the Sun in absolute free space, in an 

ideal closed elliptical orbit with no perturbations. 

b) Now let the Sun be moved by some unspecified mechanism in a circle of 

radius equal to 1.068 solar radii. Mercury can still orbit this moving Sun, but its orbit 

will not be exactly elliptical as before, and its energy will be different. 

c) If the period of the solar motion is very short relative to Mercury’s orbital 

period, then Mercury will be steadily attracted towards the centre of this apparent 

‘toroidal’ Sun, even though the instantaneous attraction is always to the Sun itself, 

according to Newton’s inverse square law. The absolute energy of Mercury will be 

different from the closed ellipse energy, but more importantly, the form of the energy 

expression for the ‘toroidal’ Sun will cause precession of Mercury’s orbit, similar to 

an oblate Sun. 

d) If the period of solar motion around the circle is made long relative to 

Mercury’s orbital period, then the orbit of Mercury will become more nearly 

elliptical as it almost accommodates the Sun’s movement. The associated precession 

of Mercury’s orbit will be correspondingly small but still remain finite because there 

is no reason for it to suddenly fall to zero at any particular value of Sun velocity. 

e) If the period of solar motion is now set at 11.86 years, then Jupiter could 

be introduced to do the job of moving the Sun around the circle, with the Sun’s 
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centre of motion now at the Jupiter/Sun barycentre. Mercury will obviously continue 

under the influence of the moving Sun, in addition to experiencing the attraction of 

Jupiter in the normal way. Thus, some precession of Mercury’s orbit will remain due 

specifically to the moving Sun, and it amounts to around 6.6 arcsec/cy. The 

precession due to Jupiter has always been calculated using heliocentric coordinates, 

but this does not automatically include the above effect of a moving Sun on 

Mercury's orbit. 

 

2. Derivation of precession due to moving Sun 

To quantify this stronger binding energy for Mercury, imagine that the period 

of Jupiter around the Sun were reduced from 11.86 years to one millisecond. An 

observer on some planet X, well outside the Solar System, would then see the ‘Sun’ 

blurred into a torus around the Jupiter/Sun centre of mass. The absolute potential at 

the observer’s location would be equal to the work done in bringing planet X from 

infinity to that location. The average gravitational force, directed towards the centre 

of mass, would not be an inverse square law but would contain a small additional 

toroidal term, similar to the field of an oblate Sun. If planet X were allowed to move 

inside the orbit of Jupiter it would obviously continue to experience this toroidal 

field. Subsequently, if the Sun’s period were increased, and planet X were to start 

orbiting the Sun, the toroidal field would exist at a much reduced level. 

The binding energy of Mercury in the field of an orbiting Sun may be 

calculated using Newton’s law for each position of the Sun around the described 

orbit. First, from Figure 1, let Mercury be regarded as stationary while the Sun 

travels rapidly around the centre C at radius rSC .  Then for the Sun at distance r1 from 

Mercury: 

   .    (1) θ−+= cosrr2rrr SCC1
2

SC
2

C1
2

1

Over a complete orbit of the Sun, cosθ cancels out on average; so Mercury is at an 

average squared radius ra
2 = (r1C

2 + rSC
2) from this toroidal Sun.  The instantaneous 

gravitational force exerted by the Sun on Mercury is given by the inverse square law, 
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(F1 = - GMM1 / r1
2); therefore, the force directed towards C is F = F1cosα. When 

averaged over one orbit of the Sun, this force becomes: 
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Thus, a small additional term distinguishes this from the inverse square law of force. 

The absolute potential energy of Mercury can be calculated by integrating this force 

from infinity: 
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This also equals the kinetic energy that Mercury would gain if it fell straight from 

infinity to its position r1C from C.  It follows that the angular momentum and kinetic 

energy of orbiting Mercury would be different from that around a stationary Sun. We 

are interested in the particular form of the force, which causes some precession of the 

perihelion of Mercury. 

 

M1 
Mercury r1Cr1J α 

             
Figure 1.   Schematic diagram showing Jupiter and the Sun moving rapidly around their 

centre of mass C.  Mercury is considered to be stationary during one orbit of the Sun. 

MJ 

Jupiter Sun
M 

θ
r1

CrJC  rSC



 5

 In practice, the Sun’s period around C due to Jupiter is much longer than 

Mercury’s period, so the toroidal component of potential energy must be decreased. 

Given that Jupiter is causing this effect, through rSC , the attenuation coefficient will 

be set in terms of the influence of Jupiter upon the ideal Sun-Mercury system; 

namely, set at the ratio of gravitational work done on Mercury by Jupiter relative to 

work done by the Sun. Then from Eq.(2), the elemental increase in Mercury’s 

potential energy at ra , attributable to the Sun’s actual motion around C, would be: 
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where (MJ /M) = (rSC /rJC) and r1J ≈ rJC on average. This expression may be integrated 

to determine the corresponding work done in bringing Mercury into the Solar System 

from infinity. After adding the orthodox potentials we get the total averaged 

coordinate gravitational potential at Mercury, 
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Although the above choice of attenuation coefficient looks arbitrary, it is reasonable 

because if we keep rSC fixed but let MJ → M, and r1J → ra in Eq.(4), then the 

attenuation coefficient is equal to unity, and M would become 2M. Choice of this 

coefficient is limited by using only the available potential energy factors. 

 The additional term in Eq.(6) is very dependent upon the mass of Jupiter, and 

contributes to the precession of Mercury’s perihelion as follows. Kurth [4] has shown 

how an arbitrary variation in gravitational field of the Sun, away from Newton's law, 

such as: 
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would rival general relativity theory by producing 43 arcsec/cy precession in 

Mercury’s elliptical orbit, when k ≈ 6.26(GM/c2). Integration of this function yields a 

gravitational potential of similar form to Eq.(6), (without the Jupiter term): 
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Consequently, by substituting our constants in place of k, Eq.(6) should lead to 

around 5.8 arcsec/cy precession for Mercury's elliptical orbit. 

If Saturn is substituted for Jupiter in Eq.(4), the appropriate changes in rSC and 

rJC would lead to a precession in Mercury's orbit of 0.28 arcsec/cy.  Similarly, if the 

elemental potential energies for the planets can be summed as scalar quantities, then 

the total precession for Mercury increases to 6.3 arcsec/cy.  Inclusion of an 

eccentricity factor (1-e2) would make this become 6.6 arcsec/cy, and only 36.4 

arcsec/cy would remain to be attributed to GR theory. 

Precessions attributable to general relativity effects in the orbits of Venus, 

Earth and Icarus, (Shapiro et al [5], Lieske & Null [6], Sitarski [7]) are likewise 

decreased. 

 

3. Conclusion 
 Motion of the Sun, around the Solar System barycentre, adds a small 

quadratic term to the gravitational binding energy of Mercury.  This term has been 

overlooked previously, but it is responsible for 6.6 arcsec/cy precession in the orbit 

of Mercury.  The residual part of the total measured precession is therefore this much 

less than the acclaimed 43arcsec/cy. Fortunately, Einstein's general relativity theory 

is capable of describing the world without singularities, and with a real prospect of 

unification [8]. This is very welcome news for physicists because singularities have 

invariably been due to a breakdown of theory. 
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