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Abstract.   

The Sun’s orbital motion around the Solar System barycentre contributes a small quadrupole 

component to the gravitational energy of Mercury. The effect of this component has until 

now gone unnoticed, but it actually induces a significant part of the observed precession of 

Mercury’s orbit.  
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1.   Introduction 

The orbit of planet Mercury has been calculated by several investigators; see 

Clemence (1947), Brouwer & Clemence (1961), a review in Pireaux & Rozelot 

(2003). In these calculations, Newton’s inverse square law has been applied to set up 

the differential equations of motion using the instantaneous measured distances and 

velocities between Mercury, the Sun and planets. The individual contributions to the 

motion of the perihelion of Mercury have been listed as due to the general precession 

in longitude, the planets, solar oblateness, and relativity. However, an omission from 

this list has been identified because the slow motion of the Sun around the barycentre 

produces a small quadrupole component in the potential energy of Mercury, which 

induces some precession of Mercury’s orbit.  

Thus, the calculated orbit of Mercury incorporates the moving Sun, and the 

total precession is known very accurately, but it is the attribution of 43arcsec/cy to a 

general relativity effect which is wrong. Contrary to received wisdom, such 

precession due to the wobbling Sun is not zero, nor automatically nulled, nor is it 

included in the calculation of Jupiter's effect on Mercury. This obscure precession 

now destroys any credible application of the Schwarzschild solution to the Solar 

System. 

 

2. Derivation of precession due to the moving Sun 

 Imagine Mercury alone orbiting the Sun in absolute free space, in an ideal 

closed elliptical orbit with no perturbations nor precession of the orbit. Now, imagine 

the Sun moving rapidly in a circle of radius equal to 1.068 solar radii, due to a 

rapidly moving Jupiter. Mercury can still orbit this ''effectively-toroidal'' Sun, but its 

orbit will certainly not be exactly elliptical as before, and its binding energy will 

become stronger. The average gravitational field directed towards the centre of mass 

could no longer be an inverse square law, but it would be like the field of an oblate 

Sun containing a small additional toroidal component. Even if subsequently, the 

Sun’s period were made greater than the period of Mercury, the toroidal field would 

still exist in essence but at a reduced level. 
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 Thus, some precession of Mercury’s orbit will be caused specifically by the 

remaining toroidal field component. It cannot be reduced to zero by calculating 

planetary trajectories in heliocentric coordinates. The precession of Mercury due to 

Jupiter itself has always been calculated using heliocentric coordinates, but this is 

totally independent of the above effect of a moving Sun on Mercury's orbit. 

 

 
 

Figure 1.   Schematic diagram showing Jupiter and the Sun moving around their 

centre of mass C.  Mercury is considered to be stationary during one orbit of the Sun. 

 

The binding energy of Mercury, in the field of the Sun orbiting around the 

barycentre, may be calculated by using Newton’s law. First, from Figure 1, let 

Mercury (mass M1) be regarded as stationary while the Sun (mass M) travels rapidly 

around the centre C at radius rSC .  Then, for the Sun at distance r1 from Mercury we 

can write: 

  θ−+= cosrr2rrr SCC1SCC11
222  .  (1a) 
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The instantaneous gravitational force exerted by the Sun on Mercury is given by the 

inverse square law, (F1 = - GMM1 / r1
2); therefore, the force directed towards C is (F 

= F1cosα), where α is the angle between the Sun and centre C given by: 

   α−+= cosrr2rrr 1C1C1SC
2

1
22  .   (1b) 

Therefore we get: 
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After simplifying, so that all the cosθ terms are in the numerator before averaging 

over a complete orbit of the Sun, then the average force towards C derived from 

Eq.(2a) becomes: 

   



























+














−≈

2

2

2
C1

SC

C1

1

r

r
4
3

1
r

GMM
F
~

 .   (2b) 

Thus, a small additional term distinguishes this from the inverse square law of force. 

The absolute potential energy of Mercury can be calculated by integrating this force 

from infinity to r1C : 
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This also equals the kinetic energy that Mercury would gain if it fell straight from 

infinity to its position r1C from C.  It follows that the angular momentum, kinetic 

energy, and trajectory of orbiting Mercury would be different from that around a 

stationary Sun.  

 If the computation of Mercury's trajectory around this orbiting Sun were done 

with heliocentric coordinates for the equations of motion employing the inverse 

square law, then it would be necessary to introduce this modified potential during the 

integration process. Clearly, the choice of heliocentric coordinates or barycentric 

coordinates (centre C) should not matter. We are interested in the particular form of 

the force, which adds some precession to the perihelion of Mercury. 
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 In practice, the Sun’s period around C due to Jupiter is 49 times longer than 

Mercury’s period, so the toroidal component of potential energy must be decreased. 

The aim now is to determine how the constant angular momentum of Mercury 

around this moving Sun stabilises the near-elliptical orbit against the perturbation by 

the Sun. 

 Let us consider this as a perturbation problem such that the long-term mean 

distance of Mercury from the Sun is (r1C = 57.91x106km), but the Sun can shift 

distance rx in any direction from its position at the origin of coordinates. When the 

Sun moves towards Mercury, the potential of Mercury might increase to: 
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but the Sun moving away by rx might reduce the potential: 
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The average of these is derived by using the binomial expansion: 
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then the average gravitational acceleration on Mercury is: 
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Upon substituting (u = 1/r1C), plus specific angular momentum h, then orbit theory 

leads to a differential equation for Mercury 
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General relativity theory produces a similar expression for the trajectory of Mercury, 

(see Rindler, 2001): 
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The final term in this expression is responsible for 43arcsec/cy precession of 

Mercury's orbit, so we can calculate the precession to be expected from using Eq.(5): 
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  cysec/arc43r
h
c 2

x ×






=δω    .    (7) 

 In the analysis leading to Eq.(2b), Mercury was held stationary, but now it is 

free to move in harmony with the Sun's motion, in an effort to maintain its angular 

momentum and average distance r1C . This means that rx in Eq.(4) is not equal to the 

actual motion of the Sun around C at radius rSC , but is greatly reduced and given by: 
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where (2/π)rSC is the mean perturbation amplitude of the Sun relative to Mercury, for 

arbitrary positions of Mercury and the Sun; and (rSC = 7.43x105km) is due to Jupiter. 

The term in the square bracket is the corresponding perturbation parameter. Upon 

substituting this value of rx in Eq.(7), we get precession: 

  cysec/arc48.743174.0 =×=δω    .    (9) 

There is an adjustment to be made due to the effect of cosα in Figure 1, which has 

not been included yet. The factor (3/4) in Eq.(2b) is due to cosα, so the final 

precession should be: 

  cysec/arc61.5)4/3(48.7 =×=δω    .   (10) 

Inclusion of an eccentricity factor (1-e2) would make this become 5.86arcsec/cy. 

 Further precession due to the effect of the other planets on the Sun's motion 

will be smaller than this but has not been derived, yet. Precessions attributable to 

general relativity effects in the orbits of Venus, Earth and Icarus, (Shapiro et al 

(1968), Lieske & Null (1969), Sitarski (1992)) will be likewise decreased. 

 

3. Conclusion 

 Motion of the Sun, around the Solar System barycentre, adds a small 

quadrupole term to the gravitational binding energy of Mercury.  This term has been 

overlooked previously, but it is responsible for significant precession in the orbit of 

Mercury.  The residual part of the total measured precession is therefore less than the 

acclaimed 43arcsec/cy. Fortunately, Einstein's general relativity theory is capable of 

describing the world without singularities, and with a real prospect of unification 
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(Wayte, 1983). This is very welcome news for physicists because singularities have 

invariably been due to a breakdown of theory. 
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