
A PROOF OF RIEMANN HYPOTHESIS USING THE GROWTH

OF MERTENS FUNCTION

YOUNG-MOOK KANG

Abstract. A study of growth of M(x) as x → ∞ is one of the most useful

approach to the Riemann hypophotesis(RH). It is very known that the RH is

equivalent to which M(x) = O(x1/2+ε) for ε > 0. Also Littlewood proved that

”the RH is equivalent to the statement that limx→∞M(x)x−1/2−ε = 0, for

every ε > 0”.[1] To use growth of M(x) approaches zero as x → ∞, I simply
prove that the Riemann hypothesis is valid. Now Riemann hypothesis is not

hypothesis any longer.

1. Introduction

The Riemann zeta-function ζ(s) is the function of complex numbers s (s 6=
1). There are infinitely many zeros at the negative even integers such that at
(s = −2, s = −4, s = −6, · · · ) These are called the trivial zeros. The Riemann
hypothesis(RH) is related the non-trivial zeros, and states that:

”All non-trivial zeros of Riemann zeta-function ζ(s) have real part
1

2
.”

The RH has been implied strong bounds on the growth of many arithmetic
functions. Among them, our most interesting function is Mertens function.

1.1. Mertens function : M(n) is defined as follows :

M(n) =

n∑
k=1

µ(k)

where µ(k) is the Möbius function. [1, 2]

The inverse of the Riemann zeta function is expressed that the Dirichlet series
generates the Möbius function by Euler product.

(1.1)
1

ζ(s)
=

∞∏
k=1

(1− 1

psk
) =

∞∑
n=1

µ(n)

ns

where <(s) > 1 , pk is the k-th prime number

Mertens function, M(x) is closely linked with the positions of zeroes of the
Riemann zeta-function, ζ(s). When we define M(0) = 0, their relation is expressed
as follows : [3]

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
=

∞∑
n=1

M(n)−M(n− 1)

ns
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=

∞∑
n=1

M(n)

ns
−
∞∑

n=1

M(n− 1)

(n)s
=

∞∑
n=1

M(n)

ns
−
∞∑

n=1

M(n)

(n+ 1)s

=

∞∑
n=1

M(n)(
1

ns
− 1

(n+ 1)s
) =

∞∑
n=1

M(n)

∫ n+1

n

s

xs+1
dx

= s

∞∑
n=1

∫ n+1

n

M(x)

xs+1
= s

∫ ∞
1

M(x)

xs+1
dx

since M(x) is constant on each interval [n, n+ 1)

(1.2)
1

ζ(s)
= s

∫ ∞
1

M(x)x−s−1dx

The equation (1.2) shows that a relation of the Mertens function and zeros of the
Riemann zeta-function very well.

If |M(x)| < C|x1/2| for C > 0, then

|M(x)

xs+1
| < |C

√
x

xs+1
| = C√

x
| 1

xs
| = C√

x

1

x<(s)
=

C

x<(s)+1/2

This means that <(s) > 1/2 because, the right integral in equation (1.2) would
converge provided which <(s) + 1/2 > 1. According to this result, it can define
a function analytic in <(s) > 1/2 and extend an analytic continuation of 1/ζ(s)
from <(s) > 1 to <(s) > 1/2. It means that ζ(s) have no zeros for <(s) > 1/2
and also for <(s) < 1/2 by symmetry.[3] Thus, all non-trivial zeros must have real
part one-half.|M(x)| < C|x1/2| called Mertens conjecture is a condition stronger
than RH. Actually, the RH is equivalent to a condition that M(x) = O(x1/2+ε) for
all ε > 0.[2, 4] Also according to a chapter 12 in the reference[1], a necessary and
sufficient condition for the RH is

(1.3) lim
x→∞

M(x)

x1/2+ε
= 0, for every ε > 0 , proven by Littlewood.

I just will prove that equation (1.3) is valid using the growth of M(x), for a proof
of the RH.

2. The Growth of Mertens Function

While I was studying about the growth of M(x) as x→∞, I found a fact that
the equation (1.1) is very similar to

∑∞
n=1 µ(n). If we can remove 1

ns in the equation
(1.1), can we know about

∑∞
n=1 µ(n)? The solution was found very easily. Look at

the equation (2.1).

(2.1)

∞∏
k=1

(1− pk
pk

) = 0 , where pk is the k-th prime number.

Actually, it is seem that means nothing at all. However, I want to call that it is
one of the Golden Keys for opening locked RH. Because, it shows that the growth
of M(x) approaches zero as x →∞.

∞∏
k=1

(1− 1

psk
) =

∞∑
n=1

µ(n)

ns
vs

∞∏
k=1

(1− psk
psk

) =

∞∑
n=1

nsµ(n)

ns
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Theorem 2.1. A Golden Key of the Riemann Hypothesis

∞∏
k=1

(1− pk
pk

) =

∞∑
n=1

µ(n) = lim
n→∞

M(n) = 0

Proof.
∞∏
k=1

(1− pk
pk

) = 0

= (1− 2

2
)(1− 3

3
)(1− 5

5
)(1− 7

7
)(1− 11

11
)(1− 13

13
)(1− 17

17
)(1− 19

19
) . . .

= 1− 2

2
− 3

3
− 5

5
+

6

6
− 7

7
+

10

10
− 11

11
− 13

13
+

14

14
+

15

15
− 17

17
− 19

19
+

21

21
+ . . .

= 1+
−2

2
+
−3

3
+

0

4
+
−5

5
+

6

6
+
−7

7
+

0

8
+

0

9
+

10

10
+
−11

11
+

0

12
+
−13

13
+

14

14
+

15

15
+

0

16
+. . .

=
1× 1

1
+

2×−1

2
+

3×−1

3
+

4× 0

4
+

5×−1

5
+

6× 1

6
+

7×−1

7
+

8× 0

8
+

9× 0

9
+

10× 1

10
+. . .

=
1µ(1)

1
+

2µ(2)

2
+

3µ(3)

3
+

4µ(4)

4
+

5µ(5)

5
+

6µ(6)

6
+

7µ(7)

7
+

8µ(8)

8
+

9µ(9)

9
+

10µ(10)

10
+. . .

=

∞∑
n=1

nµ(n)

n
=

∞∑
n=1

µ(n) = lim
n→∞

M(n) = 0

�

How do you think about the convergence of the growth of M(x)? Maybe most
people have believed that the growth ofM(x) must be diverged as x→∞. However,
the theorem(2.1) shows that the growth of M(x) approaches zero as x→∞.

3. The Probability of Möbius Function

The theorem(2.1) shows some results about probability of Möbius function as
following :

Corollary 3.1.

Pr(µ(n) = +1) = Pr(µ(n) = −1)

where n is the natural number.

Proof.

Because, lim
n→∞

M(n) = 0

Therefore, the numbers of − 1 and + 1 of µ(n) are equal.

�

Corollary 3.2.

Pr(µ(n) = +1) =
3

π2
, Pr(µ(n) = −1) =

3

π2
and Pr(µ(n) = 0) = 1− 6

π2

where n is the natural number.
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Proof.

Using the inclusion-exclusion principle,

a probability of the total square-free numbers is defined as follows :

Pr(µ(n) 6= 0) = (1− 1

22
)(1− 1

32
)(1− 1

52
)(1− 1

72
)(1− 1

112
) · · ·

=

∞∏
k=1

(1− 1

p2k
) =

1

ζ(2)
=

6

π2

Because, Pr(µ(n) = −1) = Pr(µ(n) = +1)

and

Pr(µ(n) = −1) + Pr(µ(n) = +1) + Pr(µ(n) = 0) = 1

Therefore, Pr(µ(n) = +1) =
3

π2
, Pr(µ(n) = −1) =

3

π2
, Pr(µ(n) = 0) = 1− 6

π2

�

Denjoy’s proposal an another probabilistic condition that is equilvalent to RH
with probability one.[1] It has some suppositions which square-free numbers are
random sequences and independent events with symmetrical distribution. In other
words if a square-free number is taken at random and has an equal probability of
containing an odd or an even number of distinct prime divisors, M(x) = O(x1/2+ε)
and the RH is true with probability one. From corollary (3.1) and (3.2), we can
verify a fact that Pr(µ(n) = +1) and Pr(µ(n) = −1) are equal. These are providing
the plausible evidences for the Riemann Hypothesis.

4. A Proof of Riemann’s Hypothesis

Theorem 4.1.

All non-trivial zeros of ζ(s) have real part one-half.

Proof.

Using theorem (2.1), lim
x→∞

M(x) = 0

⇓

lim
x→∞

M(x)

x1/2+ε
= 0, for every ε > 0

This condition is equivalent to the Riemann hypothesis.[1]

Therefore, the Riemann hypothesis is true.

�
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5. Conclusion

I very simply prove the RH using the growth of M(x) approaches zero as x→∞.
From now on, Riemann hypothesis is not his hypothesis any longer. It is reborn an
obvious theorem.

The M(x) closely linked with the positions of zeroes of ζ(s) have some ques-
tions still. Their relation has been very known that the RH is equivalent to
M(x) = O(x1/2+ε).[2, 4] I think that this relation is very similar to |π(x)−Li(x)| =
O(
√
x logx) called Koch’s result. RH is proven using the growth of M(x) ap-

proaches zero as x→∞. This condition is fairly stronger than O(x1/2+ε). If Koch’s
result and M(x) are closely related, I conjecture that limx→∞ |π(x) − Li(x)| = 0
alike the growth of M(x).

Conjecture 1.

|π(x)− Li(x)| ≤ C
√
x logx , where C ≥ 0

lim
x→∞

C = 0

Today, the precise version of Koch’s result is that |π(x)− Li(x)| < π/8
√
x logx

where x > 2657 proven by Schoenfeld.
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