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Experiment to test the quantum effect of a waveguide (I)
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Abstract:Abstract:Abstract:Abstract: The waveguide can be regarded as a potential barrier to microwaves and we apply
quantum mechanics to study the coefficient of reflection and transmission . An initialR T
experimental result is also presented in this paper that the transverse momentum of the
electromagnetic field in a waveguide is zero which is no longer in proportion to the transverse wave
vector. We're preparing to detect under other conditions and will report as soon as possible.
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The coefficient of reflection and transmission of energy flow depends on the momentum asR T
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For example, is to a free and non-relativistic particle moving along the axis and then1zp Em02 z

in a step barrier where the potential energy is , [1])(2 02z ϕ−= Emp ϕ
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The form is still tenable to relativistic particles. In optics, the momentum of a photon is in direct proportion
to the refractive index of the medium (Minkowski formulation) . Therefore [2],n
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We use a rectangular waveguide that the cross section is , and the length ismma 16= mmb 8=
whose cut-off frequency is . The terminal is connected to ammd 153= GHz
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microwave generator and power meter respectively through two commutators. The input momentum of a

quantum in the coaxial cable is ( ). As to the rectangular waveguide,
c
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when the mentioned state (i) is true [3] and hence22
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By contrast, if the state (ii) is correct that is ,)/1(/1k 2222
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The initial data are as bellows,

They satisfy (2''') in the region of high frequencies approaching to full transmission. Since the waveguide is in
a circuit and affected by other factors, we will measure the open-ended waveguide according to the following
diagram,

The waveguide can be regarded as an finite square well and the solution is [4]

(4)2
z2

2
1z2z

222
1z

2
1z

1z
222

z2
2
1z

4)/(sin)(
)/(sin)(
ppdppp

dpppR
+−

−
=

ℏ
ℏ

(((( ))))f GHz (((( ))))outputP Wµ (((( ))))inputP Wµ inputoutput PP / (((( ))))iT theory

<9 <10 522 <2% —

9.7 24.9 522 4.8% —

9.8 47.6 522 9.1% —

9.9 191 522 36.6% —

10 195 522 37.4% —

10.1 256 522 49.0% —

10.2 390 522 74.7% 80%
10.4 409 522 78.4% 84%
11 472 522 90.4% 90%
12 491 522 94.1% 94%
13 493 522 94.4% 96%
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The momentum of an incident photon moving along the axis from the unbounded space isz
c

p ωℏ
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and corresponding to the state (i) ,22
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Especially, the transmission is still non-zero even in the classical forbidden zone ,cωω <
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ConclusionConclusionConclusionConclusion

The initial result implies the longitudinal momentum of a quantum in the waveguide is which//p //kℏ
equals the total momentum proposed in [3]. Whereby the transverse momentum//kℏ=p

is not in direct proportion to .02
//
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PostscriptPostscriptPostscriptPostscript::::

The equation (6) is deduced from the postulate that the momentum of in the waveguide iscωω <
imaginary which is on the basis of the relativistic mechanical theory [3]

cωω >

rest mass 2
0 / cm cωℏ=

velocity ccV c <−= 22 /1 ωω

energy ωℏ=
−

=
22

2
0

/1 cV
cmE

momentum 22

22
0 /1

/1
ωω

ω
cccV

Vmp −=
−

=
ℏ

Actually, a superluminal theory can be applied[4] if the quanta passing through the waveguide in the above
tunnel effect are faster than light. In this case,
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where the momentum is still a real quantity in the classical forbidden zone and the coefficient of transmission
should be
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On the other hand, if the following tachyonic equations are tenable to the quanta ,cωω <

rest mass 2
0 / cm cωℏ=

velocity 1/ 22 −= ωωccV
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To make a comparison with the experimental result and (7)~(9) is helpful get speeds of quanta in the
tunneling effect and judge whether they exceed or not.00/1 µε=c
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