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This short letter manifests how Smarandache geometries can be employed in order to
extend the “classical” (Riemannian geometry) basis of the General Theory of Relativity
through joining the properties of two or more (different) geometries in the same single
space. Perspectives in this way seem much profitly: the basic space-time of General
Relativity can be extended to not only metric geometries, but even to non-metric ones
(where no distances can be measured), or to spaces of the mixed kind which possess
the properties of both metric and non-metric spaces (the latter should be referred to as
“semi-metric spaces”). If both metric and non-metric properties possessed at the same
(at least one) point of a space, it is one of Smarandache geometries, and should be re-
ferred to as “Smarandache semi-metric space”. Such spaces can be introduced accord-
ing to the mathematical apparatus of physically observable quantities (chronometric
invariants), if considering a breaking of the observable space metric on the continuous
background of the fundamental metric tensor.

When I was first expressed with Smarandache geometries
many years ago, I immediately started application of these,
in order to extend the basic geometry of Einstein’s the Gen-
eral Theory of Relativity.

Naturally, in already the 1910’s once the General Theory
of Relativity was established, Albert Einstein stated that Rie-
mannian geometry advised to him by Marcel Grossmann is
not a top of excellence. The main advantage of Riemannian
geometry were the invariance of the space metric and also the
well-developed mathematical apparatus which allowed Ein-
stein to calculate numerous specific effects, unknown or un-
explained before (now, they are known as the effects of Gen-
eral Relativity). Thus, Einstein concluded, the basic space-
time of General Relativity will necessarily be extended in the
future, when new experiments will overcome all the possibil-
ities provided by the geometry of Riemannian spaces.

Many theoretical physicists and mathematicians tried to
extend the basic space-time of General Relativity during the
last century, commencing in the 1910’s. I do not survey all
the results obtained by them (this would be impossible in so
short letter), but only note that they all tried to get another ba-
sic space, unnecessary Riemannian one, then see that effects
manifest themselves in the new geometry. No one person (at
least according to my information on this subject, maybe in-
complete) did consider the “mixed” geometries which could
possess the properties of two or more (different in principle)
geometries at the same point.

This is naturally, because a theoretical physicist looks for
a complete mathematical engine which could drive the ap-
plications to physical phenomena. What would happen if no
Bernhard Riemann, Elwin Christoffel, Tullio Levi-Civita, and
the others, but Einstein would be enforced to develop Rie-
mannian geometry in solitude from the beginning? I think

this would be dead duck at all. Einstein followed a very right
way when took the well-approved mathematical apparatus of
Riemannian geometry. Thus, a theoretical physicist needs
a solid mathematical ground for further theoretical develop-
ments. This is why the people, when tried to extend the basis
of General Relativity, just took merely another space instead
the four-dimensional pseudo-Riemannian space initially used
by Einstein.

Another gate is open due to Smarandache geometries,
which can be derived from any of the know geometries by
the condition that one (or numerous, or even all) of its ax-
ioms is both true and violated in the space. This gives a pos-
sibility to create a sort of “mixed” geometries, which possess
the properties of two or more geometries in one. Concerning
the extensions of General Relativity, this means that we can
do not refuse the four-dimensional pseudo-Riemannian space
to another single geometry, but create a geometry which is
common to the basic one and one or numerous other geome-
tries in addition to it. As a simplest example, we can create
a space possessing the properties of both the curved Rieman-
nian and the flat Euclidean geometries. So forth, we can cre-
ate a space, every point of which possesses the common prop-
erties of Riemannian geometry and another geometry which
is non-Riemannian.

Even more, we can extend the space geometry in such
a way that the space will be particularly metric and partic-
ularly non-metric. In the future, I suggest we should refer
to such spaces as semi-metric spaces. Not all semi-metric
spaces manifest particular cases of Smarandache geometries.
For example, a space wherein each pair of points is segregated
from the others by a pricked point, i.e. distances can be deter-
mined only on differential fragments of the space segregated
by pricked points. This is undoubtely a semi-metric space,
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but is not a kind of Smarandache geometries. Contrary, a
space wherein at least one pair of points possesses both metric
and non-metric property in the same time is definitely that of
Smarandache geometries. In the future, I suggest, we should
refer to such spaces as Smarandache semi-metric spaces, or
ssm-spaces in short.

Despite the seemed impossibility of joining metric and
non-metric properties in one, Smarandache semi-metric
spaces can easily be introduced by means of even the “classi-
cal” General Relativity. Just one example how to do it.

Regularly, theoretical physicists are aware of the cases
where the signature conditions of the space are violated. They
argue that, because the violations produce a breaking of the
space, the cases have not a physical meaning in the real world
and, hence, should not be considered. Thus, when consider-
ing a problem of General Relativity, most theoretical physi-
cists artifially vanished, from consideration, those solutions
which led to the violated signature conditions and, hence, to
a breaking of the space. On the other hand, we could con-
sider these problems by means of the mathematical appara-
tus of chronometric invariants, which are physically observ-
able quantities in General Relativity. In this way, we have
to consider the observable (chronometrically invariant) met-
ric tensor on the background of the fundamental (general co-
variant) metric tensor of the space. The signature conditions
on the metrics are determined by different physical require-
ments. So, in most cases, the violated signature conditions
of the observable metric tensor, i.e. a breaking of the observ-
able space, can appear on the continuous background of the
fundamental metric tensor (and vice versa). This is definitely
a case of Smarandache geometries. If a distance (i.e. a met-
ric, even if non-Riemannian) can be determined in the sur-
face of the space breaking, this is a metric space of Smaran-
dache geometry. I suggest we should refer to to such spaces as
Smarandache metric spaces. However, if the space breaking
is unable for determining a distance inside it, this is a Smaran-
dache semi-metric space: the space possesses both metric and
non-metric properties at all points of the surface of the space
breaking.

A particular case of this tricky situation can be observed
on Schwarzschild spaces. There are two kinds of these: a
space filled with the spherically symmetric gravitational field
produced by a mass-point (the centre of gravity of a spherical
solid body), and a space filled with the spherically symmet-
ric gravitational field produced by a sphere of incompressible
liquid. Both cases manifest the most appeared metrics in the
Universe: obviously, almost all cosmic bodies can be approx-
imated by either a sphere of solid or a sphere of liquid. Such
a metric space has a breaking along the spherical surface of
gravitational collapse, surrounding the centre of the gravitat-
ing mass (a sphere of solid or liquid). This space breaking
originates in the singularity of the fundamental metric tensor.
In the case of regular cosmic bodies, the radius of the space
breaking surface (known as the gravitational radius, it is de-

termined by the body’s mass) is many orders smaller than the
radius of such a body itself: it is 3 km for the Sun, and only
0.9 cm for the Earth. Obviously, only an extremely dense
cosmic body can completely be located under its gravitational
radius, thus consisting a gravitational collapsar (black hole).
Meanwhile, the space breaking at the gravitational radius is
really existing inside any continuous body, close to its centre
of gravity. Contrary, the space breaking due to the singularity
of the observable metric tensor is far distant from the body;
the sphere of the space breaking is huge, and is like a plane-
tary orbit. Anyhow, in the subspace inside the Schwarzschild
space breaking, distances can be determined between any two
points (but they are not those of the Schwarzschild space dis-
tances). Thus, if considering a Schwarzschild space without
any breaking, as most theoretical physicists do, it is mere a
kind of the basic space-time of General Relativity. Contrary,
being a Schwarzschild space considered commonly with the
space breaking in it, as a single space, it is a kind of Smaran-
dache metric spaces — a Schwarzschild-Smarandache met-
ric space, which generalizes the basic space-time of General
Relativity. Moreover, one can consider such a space break-
ing that no distance (metric) can be determined inside it. In
this case, the common space of the Schwarzschild metric and
the non-metric space breaking in it is a kind of Smarandache
semi-metric spaces — a Schwarzschild-Smarandache semi-
metric space, and is an actual semi-metric extension of the
basic space-time of General Relativity.

So, we see how Smarandache geometries (both metric and
semi-metric ones) can be a very productive engine for further
developments in the General Theory of Relativity. Because
the Schwarzschild metrics lead to consideration of the state
of gravitational collapse, we may suppose that not only reg-
ular gravitational collapsars can be considered (the surface
of a regular black hole possesses metric properties), but even
a much more exotic sort of collapsed objects — a collapsar
whose surface cannot be presented with metric geometries.
Because the absence of metricity, the surface cannot be inhab-
ited with particles (particles, the sort of discrete matter, mean
the presence of coordinates). Only waves can be there. These
are standing waves: in the metric theory, time cannot be in-
troduced on the surface of gravitational collapse due to the
collapse condition g00 = 0; the non-metric case manifests the
state of collapse by the asymptopic conditions from each side
of the surface, while time is not determined in the non-metric
region of collapse as well. In other words, the non-metric
surface of such a collapsar is filled with a system of stand-
ing waves, i.e. a hologram. Thus, we should refer to such
objects — the collapsars of a Schwarzschild-Smarandache
semi-metric space — as holographic black holes.

All these is in very course of the paradoxist mathematics,
whose motto is “impossible is possible”.
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