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Abstract. This article represents an extension of [Tabirca, 2000a]. A new 

equation for upper bounds is obtained based on the Smarandache f-inferior part 

function. An example involving upper diagonal matrices is given in order to 

illustrate that the new equation provide a better computation.  

 

1.INTRODUCTION  

 

Loop imbalance is the most important overhead in many parallel applications. Because loop 

structures represents the main source of parallelism, the scheduling of parallel loop iterations 

to processors can determine its decreasing. Among the many method for loop scheduling, the 

load balance scheduling is a recent one and was proposed by Bull [1998] and developed by 

Freeman  et.al. [1999, 2000]. Tabirca [2000] studied this method and proposed an equation 

for the case when the work is distributed to all the processors.   

 

Consider that there are p processors denoted in the following by P1, P2, …, Pp and a single 

parallel loop (see Figure 1.). 

 
do parallel i=1,n 
 call loop_body(i); 
end do     
 

Figure 1. Single Parallel Loop 

 

We also assume that the work of the routine loop_body(i) can be evaluated and is given by 

the function RNw →: , where iwiw =)(  represents the number of routine’s operations or 

its running time (assume that w(0)=0). The total amount of work for the parallel loop is 
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Let jl and jh  be the lower and upper bounds, pj ,...,2,1= , such that processor j executes all 

the iterations between jl and jh . These bounds are found distributing equally the work on 

processors by using  

     ( )pjiw
p

iw
n

i

h

li

j

j

,...,2,1)(1)(
1

=∀⋅≈ ∑∑
==

.     (1) 

Moreover, they satisfy the following equations  
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if we know jl , then jh  is given by Wiw
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Suppose that Equation (2.b) is computed by a less approximation. This means that if we have 

the value jl , then we find jh as follows: 
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The Smarandache f-inferior part function represents a generalisation of the inferior part 

function ZR →:][, , 1][ +<≤⇔= kxkkx . If RZf →:  is a strict increasing function 

that satisfies −∞=
−∞→

)(lim nf
n

 and ∞=
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n

, then the Smarandache f-inferior part 

function denoted by ZRf →:[]  is defined by [see  www.gallup.unm.edu/~smarandache] 
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Tabirca [2000a] presented some Smarandache f-inferior part functions for which 
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Tabirca [2000] also proposed an equation for the upper bounds of the load balance scheduling 

method based on the Smarandache f-inferior part function. If the work w satisfies certain 

conditions [Tabirca, 2000], then the upper bounds are given by  

( ) pjWjfh j ,...,2,1,[]
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Moreover, Tabirca [2000a] applied this method to the product between an upper diagonal 

matrix and a vector. It was proved that the load balance scheduling method offers the lowest 

running time in comparison with other static scheduling methods [Tabirca, 2000b]. 

 

2. A NEW EQUATION FOR THE UPPER BOUNDS 

In this section, a new equation for the upper bounds is introduced. Some theoretical 

considerations about the new equation and Equation (7) are also made. Consider that 

RNf →:  is defined by ∑
=

=
k

i
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)( , 0)0( =f . For the work w, we assume the 

following [Tabirca, 2000]: 
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A2: There are equations for the functions [], ff .   

 

Theorem 1. The upper bounds of the load balance scheduling method are given by  
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Proof. For easiness we denote in the following )2(
jj hh = . Equation (3) gives the upper 

bounds of the load balance scheduling method. We start from the equation 
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Based on the definition of []f , we find that ( )Whffh jj += − )( 1[] .               ♦  

 

The following theorem illustrates how these bounds are.   

Theorem 2. pjhh jj ,...,2,1,)1()2( =≤ . 

Proof. Recall that these two upper bounds satisfy  
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All the sums from Equation (9.b.) are added finding  
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Because )1(
jh  is the last index satisfying Equation (9.a) we find that )1()2(
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Consequence: pjWjhfhf jj ,...,2,1,)()( )1()2( =⋅≤≤ . 

This consequence obviously comes from the monotony of f and the definition of the bounds. 

 

Now, we have two equations for the upper bounds of the load balance scheduling method. 

Equation (8) was obtained naturally by starting from the definition of the load balance. It 

reflects that case when several load balances are performed consecutively. Equation (7) was 

found by considering the last partial sum that is under Wj ⋅ . This option does not consider 

any load balance such that we expect it to be not quit efficient. Moreover, it is difficult to 

predict which equation is the best or is better to use it of a given computation. The best 

practical advice is to apply both of them and to choose the one, which gives the lowest times. 

 

3. COMPUTATIONAL RESULTS 

In this section we present an example for the load balance scheduling method. This example 

deals with the product between an upper diagonal matrix and a vector [Jaja, 1992]. All the 

computations have been performed on SGI Power Challenge 2000 parallel machine with 16 

processors. The dimension of the matrix was n=300.   

DO PARALLEL i=1,n 
 11, xay ii ⋅=  

DO j=2,i 

     
jjiii xayy ⋅+= ,   

END DO     
END DO     
 

Figure 2. Parallel Computation for the Upper Matrix – Vector Product. 

Recall that )()(
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The parallel computation of Equation (10) is shown in Figure 2.  

 

The work of iteration i is given by niiiw ,...,2,1,)( == . We have that the total work is 
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scheduling method are given by   

pj
p
nnj

h j ,...,2,1,
2

)1(411
)1( =



















 +⋅⋅⋅++−
=   or  (11) 

pj
p
nnhh

h
jj

j ,...,2,1,
2

)1(4)1(411 )2(
1

)2(
1

)2( =



















 +⋅⋅++⋅⋅++−
=

−−

.  (12) 

The running times for these two types of upper bounds are presented in Table 1. Figure 3 

proves that these two types of bounds for the load balance scheduling are comparable the 

same.  

 

 P=1 P=2 P=3 P=6 P=8 
)1(

jh  1.847 1.347 0.987 0.750 0.482 

)2(
jh  1.842 1.258 0.832 0.639 0.412 

 

Table 1. Times of the computation. 

 

4. FINAL CONCLUSSION 

An important remark that can be outlined is the Smarandache inferior part function was 

applied successfully to solve an important scheduling problem. Based on it, two equations for 

the upper bounds of the load balance scheduling methods have been found. These equations 

have been used to solve the product between an upper diagonal matrix and vector and the 

computational times were quite similar. The upper bounds given by the new equation have 

provided a better computation for this problem. 
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Figure 3. Graphics of the Running Times. 
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